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Abstract 

We embed cycles into IEH graphs. First, IEH graphs are proved to be Hamiltonian except when they are of size 2” - 1 
for all n > 2. Next, we show that for an IEH graph of size N, an arbitrary cycle of even length N, where 3 < Ne < N 
is found. We also find an arbitrary cycle of odd length NO where 2 < NO < N if and only if a node of this graph has at 
least one forward 2-Inter-Cube (IC) edges. These results help describe the whole cycle structure in IEH graphs. @ 1997 
Elsevier Science B.V. 
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1. Introduction 

Hypercube graphs are one class of the most popular 

topologies for implementing massively parallel ma- 

chines. It has many advantages: regularity, symmetry, 

low diameter, optimal fault tolerance, and so on [ 71. 

However, the hypercube has one major drawback: that 

it is not incrementally extensible. The number of nodes 
for hypercubes must be a power of two, and thus con- 

siderably limit the choice of the number of nodes in 
the graphs. A few papers have so far been written to 

improve this drawback [2,5,8,9] but still have prob- 

lems as described briefly in the following. Bhuyan and 
Agrawal [ 21 proposed Generalized Hypercubes that 

have two drawbacks: the network reduces to a com- 

plete graph when the number of nodes is prime and 
changes significantly when a new node is added. Kat- 
seff [5] proposed Incomplete Hyperwbes that suffer 

l Corresponding author. 

from the problem of fault tolerance: failure of a single 

node will cause the entire network to be disconnected. 
Sen [ 81 proposed Super-cubes that become more ir- 

regular as the size of the networks grows. Recently, 

Sur and Srimani [ 93 have proposed a new generaliza- 

tion class of hypercube graphs, Incrementally Exten- 
sible Hypercube (IEH) graphs. This topology can be 
defined for an arbitrary number of nodes and still pre- 
serves several advantages such as optimal fault toler- 

ance, a low diameter, a simple routing algorithm, and 

almost regularity. 

Many papers have addressed the problem of find- 

ing cycles in various network topologies [ 1,3,4,6,7]. 
However, finding cycles in IEH graphs has never been 

studied. In this paper, we focus on IEH graphs and ob- 

tain the following results. First, IEH graphs are proved 
to be Hamiltonian except when they are of size 2n - 1 
for all n > 2. Next, we show that for an IEH graph 

of size N, an arbitrary cycle of even length Ne where 
3 < N, < N is found. We also find an arbitrary cy- 
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Fig. I. IEH( I I ) graph. 

cle of odd length N, where 2 < N, < N if and only 

if a node of this graph has at least one forward 2- 
Inter-Cube (IC) edges. These results help describe 

the whole cycle structure in IEH graphs. 

The rest of this paper is organized as follows. In 

Section 2, we introduce basic terminology for hyper- 

cube graphs and IEH graphs. In Section 3, we show 

IEH graphs are Hamiltonian when their sizes are not 
equal to 2n - I for all n 2 2. In Section 4, we describe 

the cycle structure of IEH graphs. Finally, we give a 

conclusion in Section 5. 

2. Preliminaries 

A hypercube H, is a graph G( YE), where V is the 

set of 2n nodes which are labeled as binary numbers 
of length n; E is the set of edges that connects two 
nodes if and only if they differ in exact one bit in their 

labels. An IEH graph, a generalized hypercube graph, 

is composed of several hypercubes of different sizes. 

These hypercubes are connected with Inter-Cube (IC) 

edges. Let IEH( N) be an IEH graph of N nodes. The 
graph is constructed by the following algorithm [ 93. 

Algorithm CONSTR 
Express N as a binary number (c,, . . , cl ,co)2 
where c, = 1. For each ci, with Ci # 0, construct 

a hypercube Hi. The edges constructed in this step 
are called regular edges. 
For all H,, label each node with a dedicated binary 

number 11.. . lObi_,. . . bo where the number of 
leading 1s is n - i and bi_1 . . . bo is the label of 
this node in the regular hypercube of dimension i. 
Find the minimum i such that ci = 1, set G; = Hi, 
and set j = i. 
i=i+l. 

While i < n 

if Ci # 0 then 
Connect the node 11 . . . 1 b,ib,i_1 . . . bo in G.i 

to the following i - j nodes in Hi: 

n-i i-j-l 

IT-‘ . . . lOll...lbjbj_l . ..bo. 

n-i i-J-1 

TTT?Obl...b,ib,i_l . . . bo, 

. . . . 

n-i i-.j- I 
-- 
11 . ..lOll . ..Objbj_l . ..bo. 

Set j = i and let Gi be the composed graph 

obtained in this step. /* Gi is the graph which 

is composed of the Hks for k < i. */ 
endif 

i=i+l. 
endwhile 

Thus obtain the IEH( N) graph, G,. 

In Algorithm CONSTR, we observe two useful 
properties. First, Gi is the IEH( ch ~2~) graph. 

Second, two nodes which are joined by IC edges dif- 

fer in one or two bits of their labels. For illustration, 

Fig. 1 shows the IEH( I 1) graph. Note that solid lines 

represent regular edges and dot lines represent IC 

edges. 
For convenience of discussion, we divide IC edges 

into two classes: I-ZC edges and 2-IC edges. A I-IC 

edge connects nodes which differ in exactly one bit 

in their labels; and a 2-IC edge connects nodes which 
differ in exactly two bits. Let (u, v) be an IC edge 

with u in Hi and u in Hj for i # j. We call (u, U) 
a forward IC edge of u if i < j, and a backward one 
otherwise. Fig. 1 shows that (1100,1110) is a for- 

ward I-IC edge of node 1110 and that (0000, 1100) 

is a backward 2-IC edge of node 0000. Note that a 
node u which has forward 2-IC edges, connecting to 
some nodes in Hk for k > i, has exactly one for- 
ward l-IC edge to a dedicated node in the same hy- 

percube. 
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Fig. 2. IEH(2” - 1) graphs are not Hamiltonian for all n 3 2. 

3. Hamiltonian cycles in IEH graphs 

In this section, we show IEH( N) graphs are Hamil- 

tonian for all N # 2” - 1 and n 2 2. To prove this 
theorem, we need the following lemmas. 

Lemma 1 (Saad-Schultz [7]). A hypercube dues 
not admit odd cycles. 

Lemma 2 (Saad-Schultz [7]). A cycle of length 1 
can be mapped into H,, when 1 is even between 4 and 
2”. 

Lemma 3. IEH( 2” - 1) graphs are not Hamiltonian 
for all n 3 2. 

Proof. By Algorithm CONSTR, let 

2”- I =(1,1,...,1)2 

where ( 1 , 1, . . . , 1)2 is the binary representation of 
2” - I. We construct the IEH( 2” - 1) graph which is 

a composite graph of H,,_I, H+2, . ., HO. Since all 
His exist for 0 < i < n - 1, any IC edge connects 

two nodes when they are different in exactly one bit. 

Consider a node u in H; (see Fig. 2). Observe that u 

has II - i - 1 forward IC edges, i regular hypercube 

edges, and one backward IC edge if and only if the 
last i significant bits of its label are not all 1. Thus, 
the IEH( 2” - 1) graph is a subgraph of H, induced 

bytheverticesV(H,)\{(l,l,...,l)}.Bythisand 
Lemma I, the IEH(2” - I ) graph is not Hamilto- 

nian. 0 

Fig. 3 shows the IEH(7) graph is not Hamiltonian 
since 7 = 2” - 1. Except for the case of IEH( N) where 

N = 2” - I and n > 2, we prove in the following 
theorem that IEH graphs are Hamiltonian. 

Fig. 3. IEH(7) is not Hamiltonian. 

Theorem 4. IEH( N) graphs are Hamiltanianfor all 
N # 2” - 1 and n 3 2. 

Proof. For simplicity, we define that Ptz is a Hamil- 

tonian path from u to u in a graph G. We consider two 

situations: (I) N is even and (2) N is odd. 

Cusel:Niseven,N>3.LetN=(c,,...,c,,co)2, 

with c, = 1. Because N is even, HO does not exist. 

Let Hj and Hi be two adjacent hypercubes. Without 

loss of generality, let j < i. Let Uj and l1.i be adja- 

cent nodes in H,i. Hence, there exists a Hamiltonian 

path from U.i to Uj in Hj by Lemma 2. By Algorithm 

CONSTR, L’,, is connected to one node of H, by a 

forward I-IC edge. For the same reason, U, also has 

a neighbor node in H;. Let these two neighbor nodes 

of 0.j and l~,i in Hi be ui and Ui, respectively. Note that 
u, and u; will differ in the same bit that u,; and L’.~ do. 

Since there exists a Hamiltonian path from ui to U, in 
H;, we get a cycle 

u./ 4,“: ii --L’~--C,-P~~~,-Ui--llj. 

Now, we prove Gk is Hamiltonian by induction on 
n, where n is the number of hypercubes of Gk. The 

base cases for n = I and 2 can be easily verified by 

Lemma 1 and the previous argument. Assume Gk is 

Hamiltonian and consists of 1 hypercubes. Let G, be 
the graph composed of Gk and H, where x > k. Let 

u and v be adjacent nodes in Gk and let u, and u,, 
respectively, denote their neighbor nodes in H,. We 
then obtain a Hamiltonian cycle 

u-p,:: --“--L’x-P,~*;, --ux-u 

in G,, which consist of I+ 1 hypercubes. This proves 

the induction and we have that IEH( N) is Hamilto- 
nian. 

Case 2: N is odd where N f 2” - 1 and n > 2. 
Since N # 2” - I, there exists a cJ with c, = 0, for 

j # 0,~ By Algorithm CONSTR, HO has at least 
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Fig. 4. IEH(N) graph is Hamiltonian for odd N and N # 2” - I for all n 2 2. 

two forward IC edges connecting to some nodes in 

H; with ci = 1 and ck = 0 for j 6 k < i < n. 
Let v be the neighbor node of Ho in Hi connected 

by the I-IC edge and u be one of the neighbor nodes 
in Hi connected by the 2-IC edges. Note that u and 

v are adjacent. Thus we have a cycle from u to v in 

V( IEH( N) ) \ Ho by the previous case. By adding two 

edges, (HO, u) and (Ho, u) and deleting (u, v), we 

find that IEH(N) graphs are Hamiltonian since we 

have a cycle 

as Fig. 4 shows. Cl 

4. Cycles in IEH graphs 

In this section, we describe the cycle structure of 
IEH graphs. In the following theorem, we show that 

there exists a cycle of even length Ne in an IEH( N) 
graph for 2 < N, < N. 

Theorem 5. Given an arbitrary even number Ne with 
2 < Ne < N, there exists a cycle of length Ne in an 
IEH( N) graph. 

Proof. Let N = (c,, . . . .co)~. with c, = 1, and N, = 
(4,. . . , do)2. Since N > N,, there exists some j such 

thatci=d;=l,forn+l >i>jandcj=l # 

dj = 0. Let Ne = N,i + Ne2 where Nei = Cy=,+, di2’ 

and Ne2 = c{i,’ di2’. Since ci = di for n + 1 > 
i > j, we find a cycle of length Net in the IEH( Nei ) 
graph, G,, composed of H,, H, - 1, . . ., Hi + 1, 

in the same way as we do in Case 1 of Theorem 4. 

By Lemma 2, we find a cycle C of length Ne2 in 

Hj since 2.i > Ne2. Let u,/ and Uj be two neighbor 

nodes in C. Note that both Uj and v,i have neighbor 
nodes in H, by l-IC edges. Let u, and v, be these 

two nodes in H,,. Thus the following cycle of length 

N, exists: 

U,--pU%, -v,,-vj-PUG; I I -u,j--u,, . 0 

In hypercubes, there exist no odd cycles. However, 

it is interesting to note that there exist odd cycles in 

IEH( N) graphs for certain special integers N. The 

following theorem shows that for an odd integer N,, 
where 2 < N, < N, there exists a cycle of length 

N, in an IEH( N) graph if and only if there exists 

one node in Hj which has at least one forward 2-IC 

edge. 

Theorem 6. Given an arbitrary odd number No with 
2 < No < N, there exists a cycle of length No in the 
IEH( N) graph if and only if there exists some node u 
in Hj that has at least one forward 2-IC edge, 

Proof. Assume that all nodes in the IEH( N) graph 

have no 2-IC edges. It is obvious that the IEH( N) 
graph is a subgraph of H, for some n and 2” > N. By 
Lemma 1, there exist no odd cycles in these IEH( N) 
graphs. 

For the converse part, recall that the two adjacent 
graphs Gj and Hi are connected by IC edges for i > 
j in step 3 of Algorithm CONSTR. Thus, if some 
node n in H.i has forward 2-IC edges, then all nodes 
in Hk have 2-IC edges for all k < j. Without loss 
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If the graph is Hamiltonian If the graph contains even cycles If the graph contains odd cycles 

IEH( N) Yes. except when N = 2” - I Yes Yes, when it has 2-IC edges 

lH(N) Yes, only N is even Yes No 

of generality, let HO have forward 2-IC edges, let u 

be the neighbor node by a forward l-IC edge of HO, 
and let u be the neighbor node by a forward 2-IC 

edge of HO. By applying Theorem 5, we find a cy- 
cle C’ of length N,, - 1 through the edge (u, 0). By 

adding HO and its IC edges and deleting the edge 
(u, u), we find a cycle of length No in the IEH( N) 

graph. Cl 

5. Conclusion 

In this paper, we describe the whole cycle structure 

in IEH graphs. The main results are summarized in the 

second row of Table 1. The properties of Incomplete 

Hypercubes (IHs) are listed in the third row [ 51 to 
be compared with the above results in the second row. 

It is obvious that IEH graphs are superior to IHs in 

embedding cycles. 
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