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Fractional Steps Scheme of Finite Analytic Method
for Advection—Diffusion Equation

Tung-Lin Tsai*; Chung-Min Tseng? and Jinn-Chuang Yang®

Abstract:  For simply finding local analytic solution, the time derivative in the traditional finite analy#®) method is generally

replaced with a first-order finite difference approximation as a source term. However, this may induce excessive numerical diffusion,
especially for advection-dominated transport problems. In this paper, a fractional steps scheme of the FA method without using the finite
difference approximation to time derivative is proposed by applying the one-dimensional FA method whose local analytic solution is
obtained from both spatial and time domains, together with the method of fractional steps. Four hypothetical examples, including
two-dimensional and three-dimensional cases, are employed to investigate this newly proposed method as compared with the tradition
FA method, the optimal unsteady FA method, and the alternating direction scheme of the hybrid FA method. The results show that the
fractional steps scheme of the FA method can greatly diminish numerical diffusion and is superior to the other methods compared hereir
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Introduction solving an ordinary differential equation. The major difference
between these two types of local analytic solutions is that the
The finite analytic(FA) method, unlike the finite difference  former is found from both spatial and time domains, but the latter,
method which applies the Taylor series expansion formulation or namely the hybrid FA method, is only derived from spatial do-
the finite element method which uses the interpolation function main. However, for 2D and three-dimension8D) cases, only
and weighting function, was first proposed by Chen et®981) hybrid formulation could be applied to the FA method due to the
and has been applied to many fields. Chen and Ch@84), Chen difficulty in finding local analytic solution from both spatial and
et al.(1987), Aksoy and Cherg1992, and Chen et al1995), for time domains.
example, used the FA method to compute Navier—Stokes equa- In the FA method, the use of the first-order finite difference
tions. The FA method was also employed not only to the sus- approximation to time derivative may deteriorate the computa-
pended sediment transport in river channel by Fang and Wangtional results, especially for the large Péclect number. To tackle
(2000 but also to the solute transport in two-dimensio(D) this problem, Tsai and Chdd995 proposed an optimal unsteady
groundwater flow by Hwang et 11985, Tsai et al.(1995, and FA method that introduced an optimal time-weighting factor to
Tsai et al.(2000. improve the approximation for the time derivative in the tradi-
The FA method is based on finding an analytic solution to a tional FA method. The optimal time-weighting factor is obtained
linear or linearized differential equation on a small subdomain of from the analytic solution of 1D linear advection and diffusion of
problem domain. For the one-dimensio(HD) case, two types of  a sharp front concentration following a uniform flow velocity and
local analytic solutions could be found. With specifying proper a constant diffusion coefficient in an infinite domain. However,
initial and boundary conditions in a subdomain and applying the with the use of the optimal time-weighting factor, the simulating
method of separation of variables, the first type of the local ana- cost may increase, especially for 3D problems, due to the need for
Iytic solution is obtained by solving a partial differential equation. a predictor—corrector computational procedure. Alternatively,
The second one is given by replacing the time derivative with a based on the use of the 1D hybrid FA meth@ahly the local
first-order finite difference approximation as a source term for spatial analytic solution is foundand applying the alternating
direction implicit method(Peaceman and Rachford 1956 in-
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4y The ease in finding an analytic solution to K@) is greatly
nw ne ne increased greatly by replacing the time derivative with a finite
a1 difference approximation as
v | we p e
A X n n n-1 n-1
A ad 1 | ® - ad
Y v | sw sc se <—) = — —"J—"J—_w<_> (3)
Ax g where w=time-weighting factor and\t=time step. In the tradi-
Y 9-points local element tional FA method, the time-weighting factor is equal to zéio
A =0), that is, a first-order finite difference approximation for time

{ derivative. The optimal unsteady FA methgdisai and Chen
/ 1995 was presented with the introduction of an optimal time-
! weighting factor as
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X Substituting Eq.(3) into Eq. (2) and specifying four boundary
conditions for a local element as shown in Fig. 1, an analytic
Fig. 1. Nine-points local element for two-dimensional finite analytic solution to Eq(2) could be found in each local element using the
method method of separation of variables. When this local analytic solu-
tion is evaluated at the central noflgj) of the local element, an
algebraic equation relating the evaluated nodal value to its eight
out using finite difference approximation to time derivative is neighboring nodal values and central nodal value at previous time
proposed to solve the multidimensional advection—diffusion equa- step could be expressed as
tion by applying the method of fractional stepganenko 1971;

Tsai et al. 2001; Tsai et al. 2092ogether with 1D FA method a
whose local analytic solution is found from both spatial and time [1 +—Pn}<l>ﬂj = agwdly jo + asePlhy oy
domains. In order to examine this new type of FA method, four (1 - w)At(ey);
hypothetical e>'<amples, mcludmg 2D and 3D cases, are consid- +aSV\FI)in—1,j—1+aWC(Din—l,j +aECCI)in+1,j
ered. Comparisons of simulated results by the traditional FA N N N
method, the optimal unsteady FA method, the alternating direc- +anc®iji tasclij-y + aneDii i
tion scheme of the hybrid FA method, and the present scheme are a; -
conducted. +———L——f;
At(1 - ) (g "

® @ n-1 .

Brief Reviews of Former Finite Analytic Methods * 1-w)(e)]\ at ) ®)
. - . where the FA coefficientsp,ayw; ---,aye could be obtained by

Optimal Unsteady Finite Analytic Method Chen and Chei1984 and Hwang et al(1985. Eq. (5) could be
The 2D advection—diffusion equation can be written as applied for each unknown nodal point to construct a set of alge-

braic equations.
ab 9D 9D FD PO
E+u5+v0_yzsxﬁ+8yﬁ_yz (1)

Alternating Direction Scheme of Hybrid Finite Analytic
where ®=concentration of contaminant or temperatuxeand Method
y=spatial coordinateg=time; u andv=velocity components of
flow in x andy directions, respectively; and, and e, =diffusion
coefficients. In Eq(1), u, v, &, ande, may be given as func-
tions ofx,y, andt. ’ A + @:8 (72_(1)

In the FA method, the solution domain is subdivided into small at ax  ax?

element of Ax by 2Ay as shown in Fig. 1Ax and Ay are grid
sizes inx andy directions, respectively. Eq1) for each local

element can be linearized and evaluated at time stap

The component of Eq1) in the x direction can be written as

(6)

Like the traditional FA method as mentioned above, with the ap-
plication of the first-order finite difference approximation to time
derivative, Eq.(6) for a small element on both spatial and time

1 <5¢)n EYou aP"  PP"  PP" domains as shown in Fig. 2 can be linearized and evaluated at
— | +2A—+2BC = + 2 i
Gor\at), o by o Y2 2 time stepn as
where A=(u)/(2s,)7";; B=(v);/(2¢,)];; and C=(e/ (g PP" "
The superscriph represents values evaluated at tingth time 92 =y Ix +S %
step. The subscrift, j) represents values evaluated at the central
node of rectangular local element as shown in Fig. 1. whereA;=(u)!"/(2¢e,)", ands=(d-®" )/ (e,)At.
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Fig. 2. Local element in one-dimensional finite analytic method

Eq. (7) is a linear ordinary differential equation that could be
easily solved. With the local analytic solution, the FA algebraic
equation at central poiritin a local element as shown in Fig. 2

could be expressed as

@ - o (i
= gl -2 A AX)DT
At 2AX sinl‘(Ale)( =17 2 CoStAAX) Dy
+e ML) (8)

Eq. (8) is the so-called 1D hybrid FA method whose local analytic

solution is only found from spatial domain as shown in Eq.

ferent types of FA methods, only 1D FA methéadbot including
the 1D hybrid FA methogddoes not need the use of the finite
difference approximation to time derivative, and then obtains the
local analytic solution from both time and spatial domai@sen
and Chen 198R The 1D FA method could be straightforwardly
applied to solve multidimensional problems in conjunction with
the method of fractional steg&anenko 1971; Tsai et al. 2001,
2002

Using the method of fractional steps, the 2D advection—
diffusion equation as shown in E@l) can be decoupled into a
series of 1D advection—diffusion equations as

@.'_u@— (72_(1) (13)
It ax X
and

v, e P

+ =, 14
at Uay 8yay2 (149

By approximating the flow velocity and diffusion coefficient as a
constant over a small element as shown in Fig. 2, the linerized 1D

advection—diffusion equation as shown in E43) can be ex-
pressed as

0D I _ PO
2 ot Zox X
whereA,=(u)'/ (2e,)!" andB,=1/(g,)}".

Eqg. (15) can be solved analytically in a small element by the

method of separation of variables with the initial and boundary
conditions are specified as

B (15

Applying the idea of the alternating direction implicit method

(Peaceman and Rachford 1956gether with the 1D hybrid FA D(x,0) = a4 — 1) + b + (16)
method as shown in Ed8), an alternating direction scheme of ' S s
the hybrid FA method has been proposed to solve the 2D
advection—diffusion equation as follows: (- Ax,t) =a, + bt (17)
o 12_ pn-t
[ I, —_ -1/, —
_J—J_At/Z =L@+ L@l 9) D(AX,t) = ag + bet (18)
/ where the nodeé is taken as the origin. The coefficients in Egs.
Q" — P2 (16)~(18) could be found in terms of the nodal values at the
i, i, _ -1/2
A2 L@+ Ly (10 element boundaries as shown in Fig. 2
) ) Evaluating the analytic solution for nodal poinan algebraic
in which equation giving the nodal valug!" as a function of its five neigh-
ur . boring nodal values shown in Fig. 2 can be expressed as
LX(I)i,j = m(@lAXqu_l’j - 2 COSNA;_AX)(DM
. ' D' = by Py + bec®ll; + bsw®f + bsedlLy + b D™
+e o) (11 (19
n where the coefficient®yc, bec, bsw, asg andbgc in Eq. (19
L= &j*—(eBZqu)i 1= 2 COSNBZAY)‘D” are functions ofA,, B,, Ax, andAt (Chen and Chen 1982and
* 2Aysinh(B,Ax) ’ ’

+EBNP, ) (12)
whereA;=(u));/(2s,)]}; andB}=(v)}}/(2s,)],.

Fractional Steps Scheme of Finite Analytic Method

The traditional FA method, the optimal unsteady FA method, and
the alternating direction scheme of the hybrid FA method, as men-

are displayed in the Appendix. EQL9) is a 1D FA method whose

local analytic solution is found from both time and spatial do-

mains with the partial differential equation as given in EH)

and initial and boundary conditions as shown in E4$)—(18).
The 1D FA method, i.e., Eq19), can be rewritten as

AP =B, (20

with introducing operator$\,, andB, as

AD; = = by 1 + B = bec®iyg (21

tioned above, are all developed based on the use of the finite
difference approximation to time derivative. However, in the dif- and
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B, @; = bguPi_1 + bsc®; + by (22

Thus, based on the technique of the fractional steps scheme as f

shown in Eqs(13) and(14), together with the 1D FA method as
shown in Eq.(21) for the x component and the one for the
component that can be easily found based on(#g), a fractional
steps scheme of the FA method is proposed to solve the 2D
advection—diffusion equation as follows:

qu)r,j = qu):q,j_l (23)
AP} =B, (24)
Here
AD;j=—bwcPigj + Dij — bec®Diiq
(25
Bu®; j = bouPi_qj + bsc®; j + bseDisq
and
AD; == byc®; o1 + D j = bec®i i1
(26)

By®; ; = bsy; j_1 + bsc®; j + bsgd; j1q

where the superscript denotes intermediate value. The coeffi-
cientsbyc, bec, bsw, bsg andbgscin Eqg. (25) can be evaluated

as shown in Eq(19) with Ay=(u){;/(2s,)7;; and B,=1/(e))}';;
Similarly, the coefficientsbyc, bec, bsw, bsg and bgc in Eq.

(26) can be calculated as given in Eql9) with A,
=(v)j/(2¢y)}:B,=1/(ey);; and replacing\x by Ay. The sketch

of computational procedure for the fractional steps scheme of the
FA method is depicted in Fig. 3.

Demonstrations and Evaluations

Advection and Diffusion of Point Source Contaminant

In order to examine the performances of the fractional steps
scheme of the FA method, the advection and diffusion of a point
source contaminant in a uniform flow is considered first. The
problem is given by

at o ax Kok Vay?
with boundary conditions of
®(x,y,t) — 0 as|x — o orly| — +© (29

where U=constant flow velocity in thex direction. When the
initial condition is a point source of madg at x=x, andy=ys,
the well-known exact solution is

) M C[x=x)) Ut (y-yo)?
O(x,y,t) = _4wt(sxsy)llzexp{ et 4t }

(29

To allow a numerical solution based on an initial peak concentra-
tion of unity, calculation begins at time=t, having a concentra-
tion distribution given by Eq(29) with the point source of mass
M =4mt(e4e,)%,. In this numerical simulation, the following pa-
rameters are used:t,=1,000 sU=2 m/s;e,=3.2 n?/s; &y
=1.6 n?/s; Ax=Ay=40 m; At=15s; and (X0, Yo)
=(80 m, 2,000 n.

Fig. 4 shows the contour plots of simulated results at ttme
=(t,+600 s by the fractional steps scheme of FRSSFA
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Fig. 3. Sketch of computational procedure for fractional steps
scheme of finite analytic method

method, the alternating direction scheme of hybrid BRSHFA)
method, the optimal unsteady FA method, the traditional FA
method, and the analytical solution. The computed results from
those methods compared herein along the k2,000 m are
displayed in Fig. 5. From Figs. 4 and 5, one can clearly find that
the traditional FA method induces larger numerical diffusion than
the optimal unsteady FA method in which an optimal time-
weighting factor is introduced. The computational result by the
alternating direction scheme of the hybrid FA method seems to
agree with the one yielded by the optimal unsteady FA method.
The fractional steps scheme of the FA method can greatly de-
crease numerical diffusion in comparison with the other three
methods by evading the use of finite difference approximation to
time derivative.

Advection and Diffusion of Line Source Contaminant

This example simulates advection and diffusion of a line source
contaminant in a uniform flow on semi-infinite domain as shown
in Fig. 6. The governing equation is given by Eg7) with the
boundary and initial conditions as follows:

dO,y,t)=1
(30)

J. Eng. Mech. 2005.131:23-30.
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Fig. 4. Comparison of various schemes for advection and diffusion
of point source contaminania) traditional finite analytic methodb)
optimal unsteady finite analytic methodc) alternating direction
scheme of hybrid finite analytic metho@) fractional steps scheme
of finite analytic method; an¢e) exact solution
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Fig. 5. Comparison of various schemes for advection and diffusion
of point source contaminariélong liney=2,000 m
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Fig. 6. Domain and boundary conditions for calculation of advection
and diffusion of line source contaminant

®(0,y,t)=0
(31
YoSYsVY1
®(0,y,t) = bounded
Osysy, (32

10
Jy

y=0
(33
x>0

P
ay

Y=y1
(34
x>0

d(x,y,00=0

x>0
(39
Osysy,

The exact solution was presented by Bruch and S{d&#7). The
FSSFA method, the ADSHFA method, the unsteady FA method,
and the traditional FA method are used to simulate this problem.
With y1=20 m;y,=10 m; U=0.1 m/s;Ax=Ay=0.5 m; At

=4 s;£,=0.003 nt/s; ande,=0.001 nt/s, the simulated results

at t=80 s and on the lingg=5 m are displayed in Fig. 7. It is
clearly found that the fractional steps scheme of the FA method
has the best results in comparison with the other three schemes.
The traditional FA method produces larger numerical diffusion
among those methods compared herein. The simulated results by
the alternating direction scheme of the hybrid FA solution and the
optimal unsteady FA method are comparable.

Two-Dimensional Convective Transport Equation

A 2D nondimensional convective transport equation with a uni-
form flow is considered. The governing equation is
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Fig. 7. Comparison of various schemes for advection and diffusion
of line source contaminargalong liney=8 m)

ab Ib 9 <a2<1> a2<1>>
— +—+—=D|—+— (36)

= +
gt ax ay X% ay?

whereD represents the inverse of the Reynolds number. Under
the initial condition

D(x,y,0) = sin(mwx) + sin(wy) (37
and boundary conditions

®(0,y,t) = (sin(— wt) + sinw(y — t))exp(— D)
®(1,y,t) = (sinm(1 —t) + sinw(y — t))exp(— Dw?t)
®(x,0,t) = (sinm(x —t) + sin(— wt))exp(— D)

d(x,1,t) = (sinw(x—t) + sinw(1 —t))exp(- D7) (39

the exact solution to Eq36) can be expressed as

d(x,y,1) = (sinw(x—1) + sinm(y - t))exp(- Dm’t) (39

A uniform grid size of 0.0 0.02, time step of 0.025, anD
=0.0005 are used for this simulation. The computed results along
the line y=x by the FSSFA method, the ADSHFA method, the
optimal unsteady FA method, and the traditional FA method are
displayed in Fig. 8. The results show that the traditional FA
method induces severe numerical diffusion. The alternating direc-
tion scheme of the FA method and the optimal unsteady FA

method seem to provide comparable simulated results. The frac-
P P §1963 as follows:

tional steps scheme of the FA method, again, has the best result
among the four methods considered.

®
o

15 & . ‘:‘

+  FSSFA method "
Exact :

05 k 3 +  Optimal unsteady FA method .
----- ADSHFA method )
»  Traditional FA method

0 L L 2 L
0 0.2 0.4 0.6 0.8 1

Space-x

Fig. 8. Comparison of various schemes for the two-dimensional non-
dimensional convective transport equati¢a):. t=2 and(b) t=3

@_‘_D (5’2_q)_|_D(92_(D
ox2 Yay? TPaZ

(40)

I Jd
— +(Vo+Qy+Q,27—=D
at (O yy ZZ)(?X

where Vo=mean velocity in thex direction; (), and ), denote
horizontal and vertical shear, respectively; a@gd D,, and D,
represent eddy diffusivities ir, y, andz directions, respectively.
The analytical solution for an instantaneous point source of mass
M released atx=y=z=0 was obtained by Carter and Okubo

M
Three-Dimensional Diffusion in Shear Flow Pxy.z 1) = 8w3’2(DXDyD DVA2(1 + pA2)V2
In order to further investigate the capability of the fractional steps (x— Vot — 0.5Q,y + 0,2)t)?
scheme of the FA method, a case for 3D diffusion in a shear flow Xexp - AD1(1 + B2
is studied. The velocity shear in the diffusion of a patch of passive X
contaminant from an instantaneous source plays an important role y? v
in groundwater flow or natural streams such as oceans, lakes, and * AD.t * 4Dt (4D)
estuaries. The governing equation for shear diffusion can be writ- Y
ten as where
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ps scheme of finite analytic on preh&tt=4,000 and 6,000 s

g2= l(ZD,/D,) + (Q2D,/D,)]
12
Allowing numerical solution to have an initial peak concentration

of unity, simulation begins at time=t; with the point source of
massM as

(42

M = 87¥%(D,D,D,)VA%%(1 + p2tH) "2 (43

In the numerical simulationf,=1,000 s}/,=0.2 m/s;Qy:QZ
=0.00021/s; D,=D,=D,=5.0 nt/s; At=100 s; and grid space
Ax=Ay=Az=100 m are used. Fig. 9 shows the contour plots of

the fractional steps scheme of the FA method and the exact solu-

tion att=4,000 and 6,000 s on the plare0, respectively. From

Fig. 9, one can observe that the fractional steps scheme of the FA

method gives convincing simulated results.

Conclusions

The FA method, unlike the finite difference method which applies
the Taylor series expansion formulation or the finite element
method which uses the weighted residual method with interpola-
tion function and weighting function, is based on finding an ana-
lytic solution to a linear or linearized differential equation on a
small subdomain of the problem domain. It is observed that re-
placing the time derivative with a first-order finite difference ap-
proximation in the traditional FA method may induce excessive
numerical diffusion, especially for a large Péclect number. To
improve the use of the first-order finite difference approximation
to time derivative in the traditional FA method several alterna-
tives, such as the applications of optimal time-weighting factor
and the alternating direction implicit method, have been pre-
sented. In this paper, a new fractional steps scheme of the FA
method is proposed, in which the local analytic solution is found

from both time and spatial domains. It is as expected that the
traditional FA method induces the largest numerical diffusion
among the four methods compared herein. The alternating direc-
tion scheme of the hybrid FA method and the optimal unsteady
FA method seem to give comparably better results, while the pro-
posed fractional steps scheme of the FA method gives the least
numerical diffusion as compared with the other three methods due
to avoiding the use of the finite difference approximation to the
time derivative.

Appendix. Coefficients of One-Dimensional Finite
Analytic Method

bwc=€2¥s,,
(44)
bec = €724S,
bsw= €"2¥S,,
(45
bsg=e72¥S,
bgc= 4A,Ax cosiA,Ax)coth(A,Ax) P, (46)
B,AX?
S = At (P2=Qp) +Q, (47)
B,AX?

S= AL (Q,— P,) — 2A,Ax coth(A,AX) P, (48

©

sz

m=1

(_ l)m+17\mAxe‘FmA‘
(AAX)% + (A AX)?T?

(49
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AS+)\2

m= g (50)

2

2m-21m

m T oA (59

_ 1
Q= ghoBX | g PoAX (52)

eAzAx _ e‘AzAX

Q (53

= DPAAX(P + g PabN)2

Notation

The following symbols are used in this paper:
D = the inverse of Reynolds number;
D,,Dy,D, = eddy diffusivities inx,y, andz directions;
Ly, Ly, = operators;
u,v,U = flow velocity component;
Vo = mean velocity inx direction;
At = time increment;
Ax,Ay,Az = computational grid intervals ix, y, andz
directions
&y, €y,&, = diffusion coefficients inx, y, andz directions;
@ = concentration; and
0,,Q, = horizontal and vertical shear.

Subscripts
i,Jj = xandy directional computational point index.
Superscripts

n = time step index.
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