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Fractional Steps Scheme of Finite Analytic Method
for Advection–Diffusion Equation
Tung-Lin Tsai1; Chung-Min Tseng2; and Jinn-Chuang Yang3

Abstract: For simply finding local analytic solution, the time derivative in the traditional finite analytic(FA) method is general
replaced with a first-order finite difference approximation as a source term. However, this may induce excessive numerical
especially for advection-dominated transport problems. In this paper, a fractional steps scheme of the FA method without usin
difference approximation to time derivative is proposed by applying the one-dimensional FA method whose local analytic s
obtained from both spatial and time domains, together with the method of fractional steps. Four hypothetical examples,
two-dimensional and three-dimensional cases, are employed to investigate this newly proposed method as compared with th
FA method, the optimal unsteady FA method, and the alternating direction scheme of the hybrid FA method. The results sho
fractional steps scheme of the FA method can greatly diminish numerical diffusion and is superior to the other methods compa
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CE Database subject headings: Analytical techniques; Finite differences; Diffusion.
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Introduction

The finite analytic (FA) method, unlike the finite differenc
method which applies the Taylor series expansion formulatio
the finite element method which uses the interpolation func
and weighting function, was first proposed by Chen et al.(1981)
and has been applied to many fields. Chen and Chen(1984), Chen
et al.(1987), Aksoy and Chen(1992), and Chen et al.(1995), for
example, used the FA method to compute Navier–Stokes
tions. The FA method was also employed not only to the
pended sediment transport in river channel by Fang and W
(2000) but also to the solute transport in two-dimensional(2D)
groundwater flow by Hwang et al.(1985), Tsai et al.(1995), and
Tsai et al.(2000).

The FA method is based on finding an analytic solution
linear or linearized differential equation on a small subdoma
problem domain. For the one-dimensional(1D) case, two types o
local analytic solutions could be found. With specifying pro
initial and boundary conditions in a subdomain and applying
method of separation of variables, the first type of the local
lytic solution is obtained by solving a partial differential equat
The second one is given by replacing the time derivative w
first-order finite difference approximation as a source term
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solving an ordinary differential equation. The major differe
between these two types of local analytic solutions is tha
former is found from both spatial and time domains, but the la
namely the hybrid FA method, is only derived from spatial
main. However, for 2D and three-dimensional(3D) cases, onl
hybrid formulation could be applied to the FA method due to
difficulty in finding local analytic solution from both spatial a
time domains.

In the FA method, the use of the first-order finite differe
approximation to time derivative may deteriorate the comp
tional results, especially for the large Péclect number. To ta
this problem, Tsai and Chen(1995) proposed an optimal unstea
FA method that introduced an optimal time-weighting facto
improve the approximation for the time derivative in the tr
tional FA method. The optimal time-weighting factor is obtai
from the analytic solution of 1D linear advection and diffusion
a sharp front concentration following a uniform flow velocity a
a constant diffusion coefficient in an infinite domain. Howe
with the use of the optimal time-weighting factor, the simula
cost may increase, especially for 3D problems, due to the ne
a predictor–corrector computational procedure. Alternati
based on the use of the 1D hybrid FA method(only the loca
spatial analytic solution is found) and applying the alternatin
direction implicit method(Peaceman and Rachford 1955) to in-
crease the accuracy of the approximation for time deriva
there is another kind of FA method, namely the alternating d
tion scheme of the hybrid FA method(Lu et al. 1990; Lu and Sh
1990; Lu and Chen 1992; and Yang and Li 1992). In addition, in
order to obviate the use of the finite difference approximatio
the time derivative, Li et al.(1992) applied the Laplace transfor
technique to deal with the time derivative and obtained sati
tory results for the 1D solute transport equation. However
application of the Laplace transformation is limited to linear
ferential equations and transposable boundary conditions. M
over, calculation of the corresponding inverse Laplace tran
mation may be difficult, especially for multidimensio
problems.
In this paper, a fractional steps scheme of the FA method with-
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out using finite difference approximation to time derivative
proposed to solve the multidimensional advection–diffusion e
tion by applying the method of fractional steps(Yanenko 1971
Tsai et al. 2001; Tsai et al. 2002), together with 1D FA metho
whose local analytic solution is found from both spatial and
domains. In order to examine this new type of FA method,
hypothetical examples, including 2D and 3D cases, are co
ered. Comparisons of simulated results by the traditiona
method, the optimal unsteady FA method, the alternating d
tion scheme of the hybrid FA method, and the present schem
conducted.

Brief Reviews of Former Finite Analytic Methods

Optimal Unsteady Finite Analytic Method

The 2D advection–diffusion equation can be written as

] F

] t
+ u

] F

] x
+ v

] F

] y
= «x

]2F

] x2 + «y

]2F

] y2 s1d

where F5concentration of contaminant or temperature;x and
y5spatial coordinates;t5time; u andv5velocity components o
flow in x andy directions, respectively; and«x and«y5diffusion
coefficients. In Eq.(1), u, v , «x, and «y may be given as func
tions of x,y, andt.

In the FA method, the solution domain is subdivided into sm
element of 2Dx by 2Dy as shown in Fig. 1.Dx and Dy are grid
sizes inx and y directions, respectively. Eq.(1) for each loca
element can be linearized and evaluated at time stepn as

1

s«xdi,j
n S ] F

] t
D

i,j

n

+ 2A
] Fn

] x
+ 2BC

] Fn

] y
=

]2Fn

] x2 + C
]2Fn

] y2 s2d

where A=sudi,j
n / s2«xdi,j

n ; B=svdi,j
n / s2«ydi,j

n ; and C=s«xdi,j
n / s«ydi,j

n .
The superscriptn represents values evaluated at thesndth time
step. The subscriptsi , jd represents values evaluated at the ce

Fig. 1. Nine-points local element for two-dimensional finite anal
method
node of rectangular local element as shown in Fig. 1.
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The ease in finding an analytic solution to Eq.(2) is greatly
increased greatly by replacing the time derivative with a fi
difference approximation as

S ] F

] t
D

i,j

n

=
1

1 − v
FFi,j

n − Fi,j
n−1

Dt
− vS ] F

] t
D

i,j

n−1G s3d

wherev5time-weighting factor andDt5time step. In the trad
tional FA method, the time-weighting factor is equal to zerosv
=0d, that is, a first-order finite difference approximation for t
derivative. The optimal unsteady FA method(Tsai and Che
1995) was presented with the introduction of an optimal ti
weighting factor as

v = 0.53 S ] F

] t
D

i,j

n−1

Fi,j
n − Fi,j

n−1

Dt
4

−0.28

s4d

Substituting Eq.(3) into Eq. (2) and specifying four bounda
conditions for a local element as shown in Fig. 1, an ana
solution to Eq.(2) could be found in each local element using
method of separation of variables. When this local analytic s
tion is evaluated at the central nodesi , jd of the local element, a
algebraic equation relating the evaluated nodal value to its
neighboring nodal values and central nodal value at previous
step could be expressed as

F1 +
aP

s1 − vdDts«xdi,j
n GFi,j

n = aNWFi−1,j+1
n + aSEFi+1,j−1

n

+ aSWFi−1,j−1
n + aWCFi−1,j

n + aECFi+1,j
n

+ aNCFi,j+1
n + aSCFi,j−1

n + aNEFi+1,j+1
n

+
ai,j

Dts1 − vds«xdi,j
n Fi,j

n−1

+
v

s1 − vds«xdi,j
n S ] F

] t
D

i,j

n−1

s5d

where the FA coefficientsaP,aNW,… ,aNE could be obtained b
Chen and Chen(1984) and Hwang et al.(1985). Eq. (5) could be
applied for each unknown nodal point to construct a set of
braic equations.

Alternating Direction Scheme of Hybrid Finite Analytic
Method

The component of Eq.(1) in the x direction can be written as

] F

] t
+ u

] F

] x
= «x

]2F

] x2 s6d

Like the traditional FA method as mentioned above, with the
plication of the first-order finite difference approximation to t
derivative, Eq.(6) for a small element on both spatial and ti
domains as shown in Fig. 2 can be linearized and evaluat
time stepn as

]2Fn

] x2 = 2A1

] Fn

] x
+ s s7d

n n n n−1 n
whereA1=sudi / s2«xdi , ands=sFi −Fi d / s«xdi Dt.

.131:23-30.
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Eq. (7) is a linear ordinary differential equation that could
easily solved. With the local analytic solution, the FA algeb
equation at central pointi in a local element as shown in Fig
could be expressed as

Fi
n − Fi

n−1

Dt
=

sudi
n

2Dx sinhsA1Dxd
seA1DxFi−1

n − 2 coshsA1DxdFi
n

+ e−A1DxFi+1
n d s8d

Eq. (8) is the so-called 1D hybrid FA method whose local ana
solution is only found from spatial domain as shown in Eq.(7).

Applying the idea of the alternating direction implicit meth
(Peaceman and Rachford 1955) together with the 1D hybrid F
method as shown in Eq.(8), an alternating direction scheme
the hybrid FA method has been proposed to solve the
advection–diffusion equation as follows:

Fi,,j
n−1/2 − Fi,j

n−1

Dt/2
= LxFi,j

n−1/2 + LyFi,j
n−1 s9d

Fi,,j
n − Fi,j

n−1/2

Dt/2
= LxFi,j

n−1/2 + LyFi,j
n s10d

in which

LxFi,j =
sudi,j

n

2Dx sinhsA1
*Dxd

seA1
*
DxFi−1,j − 2 coshsA1

*DxdFi,j

+ e−A1
*
DxFi,jd s11d

LyFi,j =
svdi,j

n

2Dy sinhsB1
*Dxd

seB1
*
DyFi,j−1 − 2 coshsB1

*DydFi,j

+ e−B1
*
DxFi,j+1d s12d

whereA1
* =sudi,j

n / s2«xdi,j
n ; andB1

* =svdi,j
n / s2«ydi,j

n .

Fractional Steps Scheme of Finite Analytic Method

The traditional FA method, the optimal unsteady FA method,
the alternating direction scheme of the hybrid FA method, as
tioned above, are all developed based on the use of the

Fig. 2. Local element in one-dimensional finite analytic metho
difference approximation to time derivative. However, in the dif-
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ferent types of FA methods, only 1D FA method(not including
the 1D hybrid FA method) does not need the use of the fin
difference approximation to time derivative, and then obtains
local analytic solution from both time and spatial domains(Chen
and Chen 1982). The 1D FA method could be straightforwar
applied to solve multidimensional problems in conjunction w
the method of fractional steps(Yanenko 1971; Tsai et al. 200
2002)

Using the method of fractional steps, the 2D advect
diffusion equation as shown in Eq.(1) can be decoupled into
series of 1D advection–diffusion equations as

] F

] t
+ u

] F

] x
= «x

]2F

] x2 s13d

and

] F

] t
+ v

] F

] y
= «y

]2F

] y2 s14d

By approximating the flow velocity and diffusion coefficient a
constant over a small element as shown in Fig. 2, the linerize
advection–diffusion equation as shown in Eq.(13) can be ex
pressed as

B2

] F

] t
+ 2A2

] F

] x
=

]2F

] x2 s15d

whereA2=sudi
n/ s2«xdi

n andB2=1/s«xdi
n.

Eq. (15) can be solved analytically in a small element by
method of separation of variables with the initial and boun
conditions are specified as

Fsx,0d = asse2A2x − 1d + bsx + cs s16d

Fs− Dx,td = aw + bwt s17d

FsDx,td = aE + bEt s18d

where the nodei is taken as the origin. The coefficients in E
(16)–(18) could be found in terms of the nodal values at
element boundaries as shown in Fig. 2

Evaluating the analytic solution for nodal pointi an algebrai
equation giving the nodal valueFi

n as a function of its five neigh
boring nodal values shown in Fig. 2 can be expressed as

Fi
n = bWCFi−1

n + bECFi+1
n + bSWFi−1

n−1 + bSEFi+1
n−1 + bSCFi

n−1

s19d

where the coefficientsbWC, bEC, bSW, aSE, and bSC in Eq. (19)
are functions ofA2, B2, Dx, andDt (Chen and Chen 1982) and
are displayed in the Appendix. Eq.(19) is a 1D FA method whos
local analytic solution is found from both time and spatial
mains with the partial differential equation as given in Eq.(15)
and initial and boundary conditions as shown in Eqs.(16)–(18).

The 1D FA method, i.e., Eq.(19), can be rewritten as

AxFi
n = BxFi

n−1 s20d

with introducing operatorsAx andBx as

AxFi = − bWCFi−1 + Fi − bECFi+1 s21d
and
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BxFi = bSWFi−1 + bSCFi + bSEFi+1 s22d

Thus, based on the technique of the fractional steps sche
shown in Eqs.(13) and(14), together with the 1D FA method
shown in Eq.(21) for the x component and the one for they
component that can be easily found based on Eq.(20), a fractiona
steps scheme of the FA method is proposed to solve th
advection–diffusion equation as follows:

AxFi,j
* = BxFi,j

n−1 s23d

AyFi,j
n = ByFi,j

* s24d

Here

AxFi,j = − bWCFi−1,j + Fi,j − bECFi+1,j

s25d
BxFi,j = bSWFi−1,j + bSCFi,j + bSEFi+1,j

and

AyFi,j = − bWCFi,j−1 + Fi,j − bECFi,j+1

s26d
ByFi,j = bSWFi,j−1 + bSCFi,j + bSEFi,j+1

where the superscriptp denotes intermediate value. The coe
cientsbWC, bEC, bSW, bSE, andbSC in Eq. (25) can be evaluate
as shown in Eq.(19) with A2=sudi,j

n / s2«xdi,j
n ; and B2=1/s«xdi,j

n ;
Similarly, the coefficientsbWC, bEC, bSW, bSE, and bSC in Eq.
(26) can be calculated as given in Eq.(19) with A2

=svdi,j
n / s2«ydi,j

n ;B2=1/s«ydi,j
n ; and replacingDx by Dy. The sketch

of computational procedure for the fractional steps scheme o
FA method is depicted in Fig. 3.

Demonstrations and Evaluations

Advection and Diffusion of Point Source Contaminant

In order to examine the performances of the fractional s
scheme of the FA method, the advection and diffusion of a p
source contaminant in a uniform flow is considered first.
problem is given by

] F

] t
+ U

] F

] x
= «x

]2F

] x2 + «y

]2F

] y2 s27d

with boundary conditions of

Fsx,y,td → 0 asuxu → ± ` or uyu → ± ` s28d

where U5constant flow velocity in thex direction. When th
initial condition is a point source of massM at x=x0 and y=y0,
the well-known exact solution is

Fsx,y,td =
M

4pts«x«yd1/2expH−
fsx − x0d − Utg2

4«xt
−

sy − y0d2

4«yt
J
s29d

To allow a numerical solution based on an initial peak conce
tion of unity, calculation begins at timet= t0 having a concentra
tion distribution given by Eq.(29) with the point source of ma
M =4pts«x«yd1/2t0. In this numerical simulation, the following p
rameters are used:t0=1,000 s;U=2 m/s; «x=3.2 m2/s ; «y

=1.6 m2/s ; Dx=Dy=40 m; Dt=15 s; and sx0,y0d
=s80 m,2,000 md.

Fig. 4 shows the contour plots of simulated results at timt

=st0+600d s by the fractional steps scheme of FA(FSSFA)

26 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JANUARY 2005
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method, the alternating direction scheme of hybrid FA(ADSHFA)
method, the optimal unsteady FA method, the traditional
method, and the analytical solution. The computed results
those methods compared herein along the liney=2,000 m are
displayed in Fig. 5. From Figs. 4 and 5, one can clearly find
the traditional FA method induces larger numerical diffusion
the optimal unsteady FA method in which an optimal ti
weighting factor is introduced. The computational result by
alternating direction scheme of the hybrid FA method seem
agree with the one yielded by the optimal unsteady FA me
The fractional steps scheme of the FA method can greatl
crease numerical diffusion in comparison with the other t
methods by evading the use of finite difference approximatio
time derivative.

Advection and Diffusion of Line Source Contaminant

This example simulates advection and diffusion of a line so
contaminant in a uniform flow on semi-infinite domain as sh
in Fig. 6. The governing equation is given by Eq.(27) with the
boundary and initial conditions as follows:

Fs0,y,td = 1
s30d

Fig. 3. Sketch of computational procedure for fractional s
scheme of finite analytic method
0 ø y ø y0

.131:23-30.
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Fs0,y,td = 0
s31d

y0 ø y ø y1

Fs`,y,td = bounded

0 ø y ø y1 s32d

U ] F

] y
U

y=0

= 0

s33d
x . 0

U ] F

] y
U

y=y1

= 0

s34d
x . 0

Fsx,y,0d = 0

x . 0
s35d

0 ø y ø y1

The exact solution was presented by Bruch and Street(1967). The
FSSFA method, the ADSHFA method, the unsteady FA me
and the traditional FA method are used to simulate this prob
With y1=20 m; y0=10 m; U=0.1 m/s;Dx=Dy=0.5 m; Dt
=4 s; «x=0.003 m2/s; and«y=0.001 m2/s, the simulated resu
at t=80 s and on the liney=5 m are displayed in Fig. 7. It
clearly found that the fractional steps scheme of the FA me
has the best results in comparison with the other three sch
The traditional FA method produces larger numerical diffu
among those methods compared herein. The simulated resu
the alternating direction scheme of the hybrid FA solution and
optimal unsteady FA method are comparable.

Two-Dimensional Convective Transport Equation

A 2D nondimensional convective transport equation with a

Fig. 6. Domain and boundary conditions for calculation of advec
and diffusion of line source contaminant
Fig. 4. Comparison of various schemes for advection and diffu
of point source contaminant:(a) traditional finite analytic method;(b)
optimal unsteady finite analytic method;(c) alternating directio
scheme of hybrid finite analytic method;(d) fractional steps schem
of finite analytic method; and(e) exact solution
Fig. 5. Comparison of various schemes for advection and diffu
of point source contaminant(along liney=2,000 m)
 form flow is considered. The governing equation is
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] F

] t
+

] F

] x
+

] F

] y
= DS ]2F

] x2 +
]2F

] y2D s36d

whereD represents the inverse of the Reynolds number. U
the initial condition

Fsx,y,0d = sinspxd + sinspyd s37d

and boundary conditions

Fs0,y,td = ssins− ptd + sinpsy − tddexps− Dp2td

Fs1,y,td = ssinps1 − td + sinpsy − tddexps− Dp2td

Fsx,0,td = ssinpsx − td + sins− ptddexps− Dp2td

Fsx,1,td = ssinpsx − td + sinps1 − tddexps− Dp2td s38d

the exact solution to Eq.(36) can be expressed as

Fsx,y,td = ssinpsx − td + sinpsy − tddexps− Dp2td s39d

A uniform grid size of 0.0230.02, time step of 0.025, andD
=0.0005 are used for this simulation. The computed results a
the line y=x by the FSSFA method, the ADSHFA method,
optimal unsteady FA method, and the traditional FA method
displayed in Fig. 8. The results show that the traditional
method induces severe numerical diffusion. The alternating d
tion scheme of the FA method and the optimal unsteady
method seem to provide comparable simulated results. The
tional steps scheme of the FA method, again, has the best r
among the four methods considered.

Three-Dimensional Diffusion in Shear Flow

In order to further investigate the capability of the fractional s
scheme of the FA method, a case for 3D diffusion in a shear
is studied. The velocity shear in the diffusion of a patch of pas
contaminant from an instantaneous source plays an importan
in groundwater flow or natural streams such as oceans, lake
estuaries. The governing equation for shear diffusion can be

Fig. 7. Comparison of various schemes for advection and diffu
of line source contaminant(along liney=8 m)
ten as
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] F

] t
+ sV0 + Vyy + Vzzd

] F

] x
= Dx

]2F

] x2 + Dy

]2F

] y2 + Dz

]2F

] z2

s40d

where V05mean velocity in thex direction; Vy and Vz denote
horizontal and vertical shear, respectively; andDx, Dy, and Dz

represent eddy diffusivities inx, y, andz directions, respectivel
The analytical solution for an instantaneous point source of
M released atx=y=z=0 was obtained by Carter and Oku
(1965) as follows:

Fsx,y,z,td =
M

8p3/2sDxDyDzd1/2t3/2s1 + b2t2d1/2

3exp −F sx − V0t − 0.5sVyy + Vzzdtd2

4Dxts1 + b2t2d

+
y2

4Dyt
+

z2

4Dzt
G s41d

Fig. 8. Comparison of various schemes for the two-dimensional
dimensional convective transport equation:(a) t=2 and(b) t=3
where
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b2 =
bsVy

2Dy/Dxd + sVz
2Dz/Dxdc

12
s42d

Allowing numerical solution to have an initial peak concentra
of unity, simulation begins at timet= t0 with the point source o
massM as

M = 8p3/2sDxDyDzd1/2t3/2s1 + b2t0
2d1/2 s43d

In the numerical simulation,t0=1,000 s;V0=0.2 m/s;Vy=Vz

=0.00021/s; Dx=Dy=Dz=5.0 m2/s ; Dt=100 s; and grid spac
Dx=Dy=Dz=100 m are used. Fig. 9 shows the contour plot
the fractional steps scheme of the FA method and the exact
tion at t=4,000 and 6,000 s on the planez=0, respectively. From
Fig. 9, one can observe that the fractional steps scheme of t
method gives convincing simulated results.

Conclusions

The FA method, unlike the finite difference method which app
the Taylor series expansion formulation or the finite elem
method which uses the weighted residual method with inter
tion function and weighting function, is based on finding an
lytic solution to a linear or linearized differential equation o
small subdomain of the problem domain. It is observed tha
placing the time derivative with a first-order finite difference
proximation in the traditional FA method may induce exces
numerical diffusion, especially for a large Péclect number
improve the use of the first-order finite difference approxima
to time derivative in the traditional FA method several alte
tives, such as the applications of optimal time-weighting fa
and the alternating direction implicit method, have been
sented. In this paper, a new fractional steps scheme of th

Fig. 9. Contour plots of diffusion in shear flow by fraction
method is proposed, in which the local analytic solution is found

JOUR

J. Eng. Mech. 2005
from both time and spatial domains. It is as expected tha
traditional FA method induces the largest numerical diffu
among the four methods compared herein. The alternating
tion scheme of the hybrid FA method and the optimal unst
FA method seem to give comparably better results, while the
posed fractional steps scheme of the FA method gives the
numerical diffusion as compared with the other three method
to avoiding the use of the finite difference approximation to
time derivative.

Appendix. Coefficients of One-Dimensional Finite
Analytic Method

bWC= eA2DxS1,
s44d

bEC = e−A2DxS1

bSW= eA2DxS2,
s45d

bSE= e−A2DxS2

bSC= 4A2Dx coshsA2DxdcothsA2DxdP2 s46d

S1 =
B2Dx2

Dt
sP2 − Q2d + Q1 s47d

S2 =
B2Dx2

Dt
sQ2 − P2d − 2A2Dx cothsA2DxdP2 s48d

P2 = o
`

s− 1dm+1lmDxe−FmDt

fsA2Dxd2 + slmDxd2g2 s49d

s scheme of finite analytic on planez=0 at t=4,000 and 6,000 s
al step
m=1
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Fm =
A2

2 + lm
2

B2
s50d

lm =
s2m− 1dp

2Dx
s51d

Q1 =
1

eA2Dx + e−A2Dx s52d

Q2 =
eA2Dx − e−A2Dx

2A2DxseA2Dx + e−A2Dxd2 s53d

Notation

The following symbols are used in this paper:
D 5 the inverse of Reynolds number;

Dx,Dy,Dz 5 eddy diffusivities inx,y, andz directions;
Lx,Ly 5 operators;

u,v ,U 5 flow velocity component;
V0 5 mean velocity inx direction;
Dt 5 time increment;

Dx,Dy,Dz 5 computational grid intervals inx, y, andz
directions

«x,«y,«z 5 diffusion coefficients inx, y, andz directions;
F 5 concentration; and

Vy,Vz 5 horizontal and vertical shear.

Subscripts

i , j 5 x andy directional computational point index

Superscripts

n 5 time step index.
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