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Conventional data envelopment analysis (DEA) approaches (e.g., CCR model, 1978; BCC model, 1984) do 

not adjust the environmental effects, data noise and slacks while comparing the relative efficiency of decision-
making units (DMUs). Consequently, the comparison can be seriously biased because the heterogeneous 
DMUs are not adjusted to a common platform of operating environment and a common state of nature. 
Although Fried et al. (2002, Journal of Productivity Analysis, 17, 157-174) attempted to overcome this 
problem by proposing a three-stage DEA approach, they did not account for the slack effects and thus also led 
to biased comparison. In measuring the productivity growth, Färe et al. (1994, American Economic Review, 84, 
66-83) proposed a method to calculate the input or output distance functions. Similarly, they did not take 
environmental effects, statistical noise and slacks into account and thus also resulted in biased results. To 
correct these shortcomings, this paper proposes a four-stage DEA approach to measure the railway transport 
technical efficiency and service effectiveness, and a four-stage method to measure the productivity and sales 
capability growths, both incorporated with environmental effects, data noise and slacks adjustment. In the 
empirical study, a total of 308 data points, composed of 44 worldwide railways over seven years (1995-2001), 
are used as the tested DMUs. The empirical results have shown strong evidence that efficiency and 
effectiveness scores are overestimated, and productivity and sales capability growths are also overstated, 
provided that the environmental effects, data noise and slacks are not adjusted. Based on our empirical 
findings, important policy implications are addressed and amelioration strategies for operating railways are 
proposed. 

 
KEYWORDS: Four-stage DEA, productivity, railway transport, sales capability, service effectiveness, 

technical efficiency 
 

1. INTRODUCTION 
 
Rail transport has long played an important role in the economic development for a 

country. However, many railways in the world have been facing keen competition from 
other modes such as highway and air carriers over the past few decades. Some railways 
have even suffered from major decline in the market share and failed to adopt effective 
strategies to correct the decline situation. Taking the freight transport as an example, the 
market share (ton-km) for China Railway (CR) has declined from 40% in 1990 to 32% 
in 1998 (Xie et al., 2002). The market share for European Union (EU) rails has declined 
from 32% in 1970 to 12% in 1999 (Lewis et al., 2001). As Fleming (1999) pointed out, 
truckers can deliver furniture from Lyon, France to Milan, Italy in eight hours, while 
railways need forty-eight hours; the decline of railway market could be attributed to 
relatively higher level-of-service of other competitive modes or to rail’s poor 
performance itself in technical efficiency and/or service effectiveness. Without in-depth 
analysis, one can hardly gain insights into the main causes of the decline. In addition, 
enhancing the technical efficiency and service effectiveness as well as the productivity 
and sales capability should always be viewed as an important issue for the railway 
transport industry to remain competitive and sustainable in the market. If one could 
scrutinize the sources of inefficiency and ineffectiveness by making a clear distinction 
between efficiency and effectiveness or between productivity and sales capability, one 
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would perhaps be capable of proposing more practical strategies to ameliorate the rail 
transport operation. 

For ordinary commodities, measures of technical efficiency (a transformation of 
outputs from inputs) and technical effectiveness (a transformation of consumptions from 
inputs) are essentially the same because the commodities, once produced, can be 
stockpiled for consumption. Nothing will be lost throughout the transformation from 
outputs to consumptions if one assumes that all the stockpiles are eventually sold out. 
For non-storable commodities such as transport services, however, technical efficiency 
and technical effectiveness usually represent two distinct measurements. When such 
commodities are produced and a portion of which are not consumed right away, the 
technical effectiveness (with combined effects of both technical efficiency and sales 
effectiveness) would be less than the technical efficiency. In other words, it would make 
more sense if one could separate technical efficiency from sales effectiveness in 
evaluating the performance of non-storable commodities. More importantly, it would 
provide lucid sources of any poor performance so that appropriate enhancement 
strategies could be proposed accordingly. Therefore, to elucidate the non-storable nature 
of railway transport, it is important to expand the technical efficiency and productivity 
measurements to service effectiveness and sales capability measurements. 

In the evaluation of mass transport performance, Fielding et al. (1985) proposed a 
concept of cost-efficiency, service-effectiveness and cost-effectiveness by indexing the 
ratios of appropriate factors drawn from output/input, consumption/output and 
consumption/input, respectively. Following their concept, this paper measures the 
railway’s technical efficiency and productivity by corresponding appropriate outputs to 
inputs, and service effectiveness and sales capability by corresponding appropriate 
consumptions to outputs as depicted in Figure 1. For technical efficiency evaluation we 
use input-oriented data envelopment analysis (DEA) which measures the maximum 
possible proportional reduction in all inputs, keeping all outputs fixed; for service 
effectiveness evaluation we use consumption-oriented DEA which measures the 
maximum possible proportional expansion in all consumptions, also keeping all outputs 
unchanged. Likewise, for productivity evaluation we use input-based Malmquist 
productivity index; for sales capability evaluation we use consumption-based Malmquist 
sales index. 

 

Inputs:(x)
Lines
Passenger cars
Freight cars
Employees

Outputs:(y)
Passenger train-kms
Freight train-kms

Productivity index(yj/xj) Sales capability index(zj/yj)

Input-oriented technical
efficiency(xmin/xj)|y fixed

Consumption-oriented service
effectiveness (zj/zmax)|y fixed

Consumptions:(z)
Passenger-kms
Ton-kms

 
FIGURE 1: A framework for measuring the non-storable railway transport performance 
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In measuring the technical efficiency, conventional DEA approaches neither consider 
the environmental effects and data noise nor account for the slack effects; thus, the 
comparison is frequently seriously biased. The main reason is because all the decision 
making units (DMUs) are not placed on a common platform of operating environment 
and a common state of nature. In measuring the change in productivity, previous studies 
often calculate the distance functions without taking environmental effects, statistical 
noise and slacks into account; thus, the estimated productivity growth is often biased. To 
correct these shortcomings, this paper proposes a four-stage DEA approach to measure 
the railway transport technical efficiency and service effectiveness and also proposes a 
four-stage method to measure the productivity and sales capability growths. Both of 
four-stage DEA approach and four-stage method have considered the effects of 
environmental factors, data noise and slacks. Details of our proposed four-stage DEA 
approach, four-stage method, the empirical analysis and important policy implications 
will be elaborated in the subsequent sections. 

 
2. LITERATURE ON RAILWAY PERFORMANCE MEASURES 

 
The methods for measuring the efficiency or productivity of rail systems are generally 

classified into two categories: non-parametric and parametric techniques (e.g. Coelli et 
al. (1998) and Oum et al. (1999)). Depending on whether or not the inefficiency is 
accounted for, each category can be further divided into frontier and non-frontier 
approaches. Methods of index number and least squares are attributed to non-frontier 
approaches since they ignore the technical inefficiency. While data envelopment analysis 
(DEA) and stochastic frontier analysis (SFA) are regarded as frontier approaches 
because they consider the technical inefficiency. Oum et al. (1999) undertook an overall 
survey on these four categories of methods that have been used in the railway industry. 
Freeman et al. (1985) applied the index number method to measure and compare the 
total factor productivity of the Canadian Pacific (CP) and Canadian National (CN) 
railways over the period of 1956-81. Tretheway et al. (1997) also conducted the same 
study with the index number method; but they extended the data to 1991 and found that 
although CP and CN sustained modest productivity growth throughout the period of 
1956-1991, their performance slipped over the past decade, partly because of slower 
output growth. The cost function can also be used to measure the productivity. Caves et 
al. (1981) specified the variable cost function and adopted the least squares method to 
estimate the productivity growth of US railroads. They concluded that the behavioral 
assumptions underlying cost function analysis had important implications for the 
measurement of productivity growth. Friedlaender et al. (1993) selected labor, 
equipment, fuel, and materials and supplies as the inputs, ton-miles as the output, and 
then used the least squares method to estimate the short-run variable cost function of US 
class I railroads. They concluded that the institutional barriers to capital adjustment 
might be substantial; therefore, with respect to capital stock adjustment, the rail industry 
still had a long way to go. McGeehan (1993) also employed the least squares method to 
estimate the railway cost functions and found that the Cobb-Douglas function would not 
be appropriate for describing the production structure of Ireland railways. Atkinson and 
Cornwell (1998) proposed an alternative econometric framework for estimating and 
decomposing the productivity and then applied it to measure the productivity change for 
twelve US class I railroads over the period 1951 to 1975. The results concluded that a 
likelihood ratio test rejected the standard non-frontier specification. Total factor 
productivity (TFP) can be derived from a cost function since Caves et al. (1981). More 
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recently, Loizides and Tsionas (2004) specified a translog cost function, using Monte 
Carlo simulation methods, to derive the exact distribution of productivity growth of ten 
European railways over the period 1969 to 1993, and to explore in detail how the 
productivity growth distribution shifts as a result of changes in input prices and output. 

Oum and Yu (1994) adopted a two-stage DEA approach to evaluate the efficiency of 
19 OECD countries’ railways over the period of 1978 to 1989. The first stage was to 
measure efficiency by using DEA method and the second stage is to find out the factors 
that influence efficiency by using Tobit regression. The results indicate that the 
efficiency measures may not be meaningfully compared across railways without 
controlling for the effects of the differences in operating and market environments. 
Chapin and Schmidt (1999) used the DEA approach to measure the efficiency of US 
Class I railroad companies and found that the efficiency had been improved since 
deregulation, but not due to mergers. Cowie (1999) also applied the DEA method to 
compare the efficiency of Swiss public and private railways by constructing technical 
and managerial efficiency frontiers and then measured both efficiencies. It was found 
that private railways had higher technical efficiency than the public ones (89% versus 
76%). Lan and Lin (2003) compared the difference of technical efficiency and service 
effectiveness for 76 worldwide railway systems with different DEA approaches, 
including conventional DEA, exogenously fixed inputs DEA (EXO DEA), and 
categorical DEA (CAT DEA) models. Their results showed that the efficiency and 
effectiveness estimated by EXO DEA and CAT DEA models were somewhat higher 
than those estimated by conventional DEA models because the environmental factors 
have been taken into account. Cantos and Maudos (2000) estimated productivity, 
efficiency and technical change for 15 European railways by using the SFA approach. 
Their results showed that the most efficient companies were those with higher degrees of 
autonomy. Cantos and Maudos (2001) also employed SFA to estimate both cost 
efficiency and revenue efficiency for 16 European railways. They concluded that the 
existence of inefficiency could be explained by the strong policy of regulation and 
intervention. Lan and Lin (2002) compared the performance difference for 85 worldwide 
railway systems measured by SFA and DEA approaches. The results indicated that 
different approach has led to different results and the Spearman rank correlation matrix 
of technical efficiency for SFA and DEA was 0.81. More recently, Lan and Lin (2004) 
proposed various stochastic distance function models to carry out performance 
evaluation for 46 worldwide railways by distinguishing the technical efficiency from the 
service effectiveness over the period of 1998-2000. The results showed that the 
percentage of electrified lines, population density, per capita gross national income and 
line density were the main factors affecting technical efficiency; while per capita gross 
national income, population density, ratio of passenger train-kilometers to total train-
kilometers and line density were the main factors affecting service effectiveness. 
Kennedy and Smith (2004) applied two parametric techniques (COLS and SFA) to 
assess the relative efficiency of Railtrack’s zones over the period 1995/96 to 2001/02. 
The results demonstrated that zonal differences in scale, technology, and other 
environmental factors are relatively small compared with external benchmarking studies. 

From the literature review we found that most previous railway performance studies 
did not distinguish technical efficiency from technical effectiveness. Some others did not 
make distinction between cost efficiency and technical efficiency or between cost 
effectiveness and technical effectiveness. None have been endeavored to evaluating the 
service effectiveness and sales capability. As explained in the introduction, to elucidate 
the non-storable nature of railway transport, it is necessary to distinguish efficiency from 
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effectiveness and to distinguish productivity from sales capability so that one could 
clearly diagnose the sources of any poor performance in order to propose more practical 
improvement strategies. In the context of international comparison, different countries’ 
currencies may not be ready to convert into common currency due to copious 
fluctuations of exchange rates; or different railways’ factor prices and sale revenues are 
often difficult to collect. Under this circumstance, one could only compare the technical 
efficiency (effectiveness) rather than the cost efficiency (effectiveness). 

 
3. METHODOLOGIES 

 
Conventional DEA approaches, such as CCR model proposed by Charnes et al. (1978) 

or BCC model proposed by Banker et al. (1984), have become increasingly widespread 
in the efficiency measurement in the past two decades. However, these conventional 
DEA approaches may lead to biased comparison among DMUs. First, they do not 
consider the difference of efficiency scores caused by environmental diversity across the 
DMUs. Second, they do not take statistical errors of data into consideration. Third, when 
measuring the efficiency, there are usually slacks in inputs or outputs, but conventional 
DEA approaches do not account for the slack effects. To explain the slacks, Figure 2 
demonstrates with four DMUs (A, B, C, and D) that all produce a certain level of output 
y with two inputs x1 and x2. DMUs C and D are assumed efficient and located on the 
piecewise frontier (isoquant) composed of a vertical line ending at C, a line segment 
connecting C and D, and a horizontal line starting at D. DMUs A and B are assumed 
inefficient and can proportionally (in radial direction) reduce both of their inefficient 
inputs towards the frontier at E and F, respectively, to become “efficient.” The point E is 
essentially efficient because it is a combination of two efficient points C and D, but the 
point F may not be efficient. In Figure 2, obviously, F can further curtail the input x1 by 
S2 and still produce the same amount of output y. In DEA literature, S1 is termed as 
radial slack (measuring the magnitude of radial inefficiency for input x1) and S2 is 
defined as non-radial slack (measuring the magnitude of non-radial inefficiency for input 
x1). 

A

B

C

D

E

F

O
S2 S1

x
1
/y

x
2
/y

 
FIGURE 2: An illustration of radial and non-radial slacks by input-oriented DEA 

 
The above shortcomings can significantly bias the relative efficiency scores, thus some 

researchers have devoted to improve the conventional DEA models. For instance, to take 
the non-discretionary environmental factors into account, Banker and Morey (1986a, 
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1986b) proposed an exogenously fixed inputs and outputs DEA model. They also 
introduced a categorical DEA model in which the DMUs are classified into several 
reference sets based on the operating environments. A specific DMU is then compared to 
other DMUs at the same rating of operating environments. To consider the effects of 
external operating environments, Fried et al. (1993) adopted conventional DEA approach 
to evaluate the performance of U.S. credit unions in the first stage and then regressed the 
sum of radial and non-radial slacks on some explanatory variables by using seemingly 
unrelated regression (SUR) in the second stage. Fried et al. (1999) also introduced a 
procedure to obtain the measure of managerial efficiency that controls for the exogenous 
features of operating environments. To further decompose the slacks into environmental 
effect, statistical noise, and managerial efficiency, Fried et al. (2002) proposed a three-
stage DEA approach. In the first stage, conventional DEA is applied to measure the 
preliminary efficiency score for each DMU. In the second stage, the total slacks (radial 
and non-radial slacks) are regressed by the environmental factors using stochastic 
frontier analysis (SFA), which can decompose the slacks into environmental effect, 
managerial efficiency and statistical noise. In the third stage, input or output data 
(depending on the orientation used in the first stage) are adjusted and then the 
performance is re-evaluated by DEA. Although Fried’s three-stage DEA has taken the 
environmental effects and statistical noise into account, they did not adjust the slack 
effects, thus the results can still be biased. In order to overcome this problem, this paper 
proposes a four-stage DEA approach, which is elaborated as follows. 

 
3.1 Technical efficiency measurement 

 
In the first stage, we use input-oriented DEA (measuring the maximum possible 

proportional reduction in all inputs, keeping all outputs fixed) to measure the technical 
efficiency (a transformation of inputs to outputs). Assume that there are J DMUs, each 
of which produces K products by utilizing M input factors; the input-oriented BCC 
model is specified as follows (Banker et al., 1984). 
 θ

λθ,
Minimize  

subject to 
 Kkyy Jj jkjj ,1,,0 K=≥λ⋅+− ∑ ∈

, (1) 

 Mmxx Jj jmjj ,1, , 0 K=≥λ⋅−⋅θ ∑ ∈
, 

 JjjJj j ,1,0,,1 K=≥λ=λ∑ ∈
, 

where xmj is the mth input and ykj is the kth output for the jth DMU, respectively; λj is a 
constant and θ is a scalar standing for efficiency of the jth DMU. Solving this LP, one 
obtains the efficiency score for each DMU. As illustrated in Figure 2, the slack problem 
arises because model (1) uses piecewise linear segments to represent the efficient 
frontier. 

In the second stage, factors affecting the slacks (the magnitudes of inefficiency for 
inputs) are further investigated. We regress the sum of radial and non-radial slacks on 
potential environmental factors by using SFA (Aigner et al., 1977). Thus, the sum of 
slacks can be decomposed into environmental influences, managerial inefficiency and 
statistical error (data noise) terms by the following: 
 ( ) J jMmuvfS mjmjmiijmmj ,,1;,,1,; KK ==++δω= , (2) 
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where dependent variables Smj are the sum of radial and non-radial slacks estimated in 
the first stage; ω are the corresponding environmental factors and δ are the parameters to 
be estimated; fm (ωij; δmi) is the deterministic slack frontier of mth input; vmj is the 
statistical noise and umj represents the managerial inefficiency. Assume that vmj follows a 
normal distribution with zero mean and variance 2

vσ  and umj is a positive half-normal 

distribution with mean µ and variance 2
uσ , and that vmj is independent of umj. 

In the third-stage, the adjusted inputs are constructed from the estimated results of (2) 
by using 
 [ ] [ ] J jMmvvmaxmaxxx mjmjjmjijmjijjmj

A
mj ,,1;,,1,ˆ)ˆ(ˆ)ˆ( KK ==−+δω−δω+= , (3) 

where A
mjx  and mjx  are adjusted and observed input quantities, respectively. This 

adjustment will put all DMUs into a common platform of operating environment and a 
common state of nature (Fried et al., 2002). The DEA-based efficiency for each DMU 
can be re-estimated again by substituting the adjusted data into (1) with which the 
environmental and statistical effects have been incorporated. However, such inputs 
adjustment in the third stage still does not account for the slack effects and thus a slack 
adjustment is further required (see, Sueyoshi (1999), Sueyoshi et al. (1999), Hibiki and 
Sueyoshi (1999), Sueyoshi and Goto (2001)). 

In the fourth-stage, we further adjust the effect of slacks. The slack-adjusted (SA) 
model as shown in (4) counts the slacks in one dimension (Sueyoshi, 1999); however, 
the results are likely biased if slacks occur in two or more dimensions. To avoid this 
problem, we adopt Coelli’s (1998) multi-stage model to estimate efficiency and slacks, 
and then substitute the results into the objective function of (4) to get the slack-adjusted 
technical efficiencies. 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
θ ∑∑

=

++

=

−−
K

k
kk

M

m
mm RsRs

KM 11
)/()/(1-Minimize  

subject to 
 Kksyy kJj jkjkj ,1,,0 K==−λ+− +

∈∑ , (4) 

 Mmsx-x mJj jmjmj ,1,,0 K==−λ⋅θ −
∈∑ , 

 freeJjjJj j :,,,1,0,1 θ=≥λ=λ∑ ∈
K , 

where −
ms  and +

ks  are input and output slacks, respectively, 

),...,1(max MmxR mjjm ==−  and ),...,1(max KkyR kjjk ==+ . 
 

3.2 Effectiveness measurement 
 
Similar to the aforementioned efficiency measurement, a four-stage DEA approach is 

also applied to the service effectiveness measurement (a transformation of outputs to 
consumptions). We measure the service effectiveness for each DMU by employing 
consumption-oriented DEA (measuring the maximum possible proportional expansion in 
all consumptions while all outputs remaining unchanged). In the first-stage, assume that 
K outputs (yk) are transformed to Q consumptions (zq), the consumption-oriented BCC 
model is then specified as follows. 
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 φ
λφ,

Maximize  

subject to 
 Qqzz Jj jqjj ,1,,0 K=≥λ⋅+⋅φ− ∑ ∈

, (5) 

 Kkyy Jj jkjj ,1,,0 K=≥λ⋅−∑ ∈
, 

 JjjJj j ,1,,0,1 K=≥λ=λ∑ ∈
, 

where zqj is the qth consumption of jth DMU, yj and λj are defined as (1); φ denotes 
proportional increase in consumptions, ranging from one to infinity, which could be 
achieved by the jth DMU without changing the output levels; φ/1 defines the service 
effectiveness of each DMU, which varies between zero and one. DMU is effective if 

φ/1 is equal to one and is ineffective if φ/1 is less than one. 
In the second- and third-stage, same procedures as the aforementioned efficiency 

measurement are applied. In the fourth-stage, the SA model as shown in (6) is used to 
adjust the slacks. Likewise, we also adopt Coelli’s (1998) multi-stage model to estimate 
the effectiveness and slacks and then substitute the results into the objective function of 
(6) to get the slack-adjusted service effectiveness. 
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)/()/(1Minimize  

subject to 
 Qqszz qJj jqjqj ,1,,0 K==−λ+⋅φ− +

∈∑ , (6) 

 Kksyy kJj jkjkj ,1,,0 K==−λ− −
∈∑ , 

 freeJjjJj j :,,,1,0,1 θ=≥λ=λ∑ ∈
K , 

where −
ks  and +

qs  are output and consumption slacks, respectively, 

),...,1(max KkyR kjjk ==−  and ),...,1(max QqzR qjjq ==+ . 
 

3.3 Productivity measurement 
 
Malmquist index was first proposed in the consumer context (Malmquist, 1953). Caves 

et al. (1982) further introduced two theoretical indexes, named Malmquist input and 
output productivity indexes. Färe et al. (1989) exploited the fact of Malmquist indexes as 
ratios of distance functions and the distance functions to be reciprocal to Farrell’s (1957) 
measurement of technical efficiency. Färe et al. (1994) assumed the production 
technology to be constant returns to scale and free disposability for inputs and outputs, 
thus an input-based Malmquist productivity index (MPI), denoted as mI, could be 
expressed as follows. 

 
2/1
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where ys, yt, xs, xt represent outputs (y) and inputs (x) at periods s and t, respectively. We 
adopt Färe’s et al. input-based MPI rather than output-based one since our objective is to 
look for a minimal proportional contraction of the input vector, given an output vector. 
Thus ),( tt

t
I xyd  in (7) stands for the input-oriented distance between the observation 

),( tt xy  at period t and the production frontier at period t. The mI can further be 
decomposed into two terms: efficiency change )( I∆  and productive technology change 

)( P∆ , as shown in (8). 
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The first term, I∆ , captures the catching-up effect; the second term, P∆ , measures the 
movement of the frontier. To measure the mI, Färe et al. (1994) proposed to calculate 
four distance functions by using linear programming technique (hereafter, called FGNZ 
method). It should be noted, however, that when solving for the four LPs one would 
employ the CCR model (see Charnes et al. (1978)) rather than BCC model. The reasons 
for adopting CCR model can be found in Färe et al. (1994, 1997). Also note that there 
are few shortcomings in FGNZ method where the solutions of LPs frequently contain 
slacks that are typically ignored. When slacks are present, radial efficiency measures will 
overstate the true efficiency and thus affects the productivity index in an unknown way. 
For example, assume that there is no technical change between period t and t+1, namely 
the DMUs face the identical frontier, and that the measured DMU is located on the 
frontier in both t and t+1 periods with non-radial slacks of St and St+1 (St > St+1) 
respectively. The conventional DEA-like Malmquist index method will lead to a result 
that there has no productivity improvement. However, the definition of productivity tells 
us that this result is biased. In addition, the FGNZ method does not take environmental 
effects and statistical noise into account. 

To measure MPI more precisely, we solve four distance functions by substituting the 
adjusted data, directly obtained from the third-stage of the four-stage DEA efficiency 
measurement, and adopting SA model (4) (hereafter, called four-stage method in 
contrast to FGNZ method). Consequently, the effects of environmental factors, statistical 
noise and slacks are all considered in our proposed four-stage method. While measuring 
the productivity of non-storable rail transport service, some previous studies utilized 
passenger-km and ton-km as “outputs” (in fact they are “consumptions”). In this paper, 
we would measure the productivity by the input-based Malmquist productivity index, 
thus passenger-train-km and freight-train-km will be used as outputs rather than 
passenger-km and ton-km. 

 
3.4 Sales capability measurement 

 
The sales capability index will be used to define the transformation ability of a railway 

outputs to consumptions. The relationship between sales capability index and 
productivity index is similar to the relationship between service effectiveness and 
technical efficiency. Productivity index, corresponding to technical efficiency, can be 
viewed as a ratio of outputs to inputs; while sales capability index, corresponding to 
service effectiveness, can be viewed as a ratio of consumptions to outputs. Since we look 
for a maximal proportional expansion of the consumption vector, given an output vector, 
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the consumption-based Malmquist sales capability index (MSI), denoted as mC, can be 
defined as follows. 
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where zs, zt, ys, yt stand for consumptions (z) and outputs (y) at periods s and t, 
respectively; ),( tt

t
C yzd  represents the consumption-oriented distance between the 

observation (zt ,yt) at period t and the sales frontier at period t. Likewise, mC can be 
decomposed into two terms: effectiveness change (∆E) and sales innovation change (∆S) 
as follows. 
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Similarly, in order to measure MSI more precisely, we solve four distance functions by 
substituting the adjusted data, directly obtained from the third-stage of the four-stage 
DEA effectiveness measurement, into (10) and then measure the four distance functions 
by adopting SA model (6) (hereafter, also called four-stage method in contrast to FGNZ 
method). Again, our proposed four-stage method accounts for the effects of 
environmental factors, statistical noise and slacks simultaneously. 

 
4. EMPIRICAL ANALYSIS 

 
4.1 Data 

 
In the present paper we focus on multi-product railways which provide both passenger 

and freight services. The single-product railways providing only passenger or freight 
service are not studied here. Since we attempt to investigate how external factors 
affecting the efficiency (effectiveness) measures, those railways with incomplete data, 
including two consumptions, two outputs, four inputs, two external and two internal 
variables, in our study horizon will not be analyzed. Our data set, drawn from 
International Railway Statistics published by the International Union of Railways (UIC), 
contains 350 panel data composed of 50 railways covering seven years (1995-2001). 
Since DEA measures the relative efficiency (effectiveness) of each observation to the 
most efficient (effective) DMUs, the results might be significantly affected by the 
influential observations (i.e., outliers). Therefore, it is important to detect the outliers 
from the samples. We conduct a boxplot test and identify six outliers. After removing 
these outliers, our final data set only contains 44 railways, including 308 data points. 

Table 1 summarizes the descriptive statistics of these 308 data points, including two 
consumptions (passenger-kilometers and ton-kilometers), two outputs (passenger train-
kilometers and freight train-kilometers), four inputs (length of lines, number of 
passenger cars, number of freight cars, and number of employees), two external 
(environmental) variables (per capita gross national income and population density), and 
two internal variables characterizing the railways (percentage of electrified lines and 
ratio of passenger train-kilometers to total train-kilometers). One can easily find that the 
data are rather heterogeneous. Take GNI as an example, the data ranges from 220 to 
45,060 US dollars, and the standard deviation is 13,086 US dollars. It reveals that the 
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environments faced by different railways are quite varied; thus, we must consider the 
effects of environmental factors on the variation of efficiency (effectiveness) scores. Due 
to data availability, we do not consider such factors as state/private ownership or 
regulatory differences across the railways. 

For measuring the rail technical efficiency, some studies selected passenger train-
kilometers and freight train-kilometers as outputs, number of employees, number of cars 
and length of lines as inputs (for example, Coelli and Perelman (2000)). We do not 
directly use length of lines as an input factor for two reasons. First, for rail transport 
industry, line-related facilities such as tracks, signals, stations and yards should be 
viewed as sunk, which are attributed to “fixed” costs. In this paper, we attempt to 
measure the efficiency of “variable” input factors. Second, the length of lines for these 
44 railways ranges from 220 to 62,915 kilometers, which are rather heterogeneous. To 
account for the heterogeneous network scale and for a more homogeneous set of DMUs, 
where comparison makes more sense, we measure the technical efficiency by selecting 
number of passenger cars per kilometer of lines, number of freight cars per kilometer of 
lines, and number of employees per kilometer of lines as input factors and passenger-
train-kilometer per kilometer of lines and freight-train-kilometer per kilometer of lines as 
output variables. In measuring the service effectiveness, on the other hand, we choose 
passenger-kilometers and ton-kilometers as two consumptions and passenger train-
kilometers and freight train-kilometers as two outputs. 

 
4.2 Results 

 
For the purpose of comparison, the efficiency and effectiveness scores are estimated by 

three DEA approaches: BCC model, Fried’s et al. three-stage DEA approach and our 
proposed four-stage DEA approach. The DEA is solved by DEAP version 2.1 (Coelli, 
1996a) and checked by GAMS computer software (Brooke et al., 1998). The SFA is 
estimated by FRONTIER 4.1 (Coelli, 1996b). The detailed results for each DMU by 
these three DEA approaches are presented in Appendix 2, which reports the average 
scores during the study horizon from 1995 to 2001. Table 2 further summarizes the 
distribution of efficiency and effectiveness scores by these three DEA approaches. Based 
on the results and some extended analyses, we draw important findings as follows. 

 
TABLE 2: Frequency distribution of efficiency and effective scores by three different 

DEA approaches 
Efficiency measurement Effectiveness measurement Range of scores 

BCC 3-stage 4-stage BCC 3-stage 4-stage 
Less than 0.2 15 0 0 16 0 0 
0.200~0.299 16 0 0 89 2 2 
0.300~0.399 37 0 0 56 4 5 
0.400~0.499 53 0 2 20 6 5 
0.500~0.599 22 0 3 22 2 3 
0.600~0.699 33 0 27 23 1 0 
0.700~0.799 23 6 59 23 16 18 
0.800~0.899 28 91 64 15 40 42 
0.900~0.999 32 178 80 26 217 213 

1.000 49 33 32 18 20 20 
Max. 1.000 1.000 1.000 1.000 1.000 1.000 
Min. 0.143 0.752 0.409 0.177 0.247 0.223 
Mean 0.639 0.924 0.849 0.497 0.923 0.917 

Std. Dev. 0.269 0.054 0.109 0.271 0.130 0.135 
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Finding 1. Efficiency (effectiveness) scores by BCC model are relative low and 
varied among regions 

 
Based on the BCC model, in general, rail transport services are characterized with 

rather low efficiency (effectiveness) scores. For the whole industry, the average 
efficiency score is only 0.639, while average effectiveness score is 0.497 (Table 2). We 
further adopt Kruskal-Wallis rank test to examine whether or not the scores vary among 
regions. The samples are divided into four regions, which are West Europe, East Europe, 
Asia (Oceania included), and Africa (Mid-East included). The statistic proposed by Hays 
(1973) is used for the rank test: 

 )1(3
)1(

12 2
+−

⎥
⎥
⎦

⎤

⎢
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⎡

+
= ∑ J

n
T

JJ
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p p
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where Tp is the sum of ranks for group p, np is the number of data points in the group p 
and J is total number of data points, that is 308. The testing result indicates that the null 
hypothesis of scores invariance among regions should be rejected; that is, both efficiency 
and effectiveness scores vary among these four regions. We find that, on average, 
African railways have the worst performance while West European railways have the 
best performance in both technical-efficiency and service-effectiveness measurements. 

 
Finding 2. Some efficient (effective) DMUs are rather robust (insensitive) but some 
others are very sensitive to data change 
 

Many researchers criticize the robustness of DEA because the efficiency scores may be 
very sensitive to data change, for example, Charnes and Neralic (1990), Charnes et al. 
(1992), Zue (1996), Seiford and Zue (1998a,b). To investigate which DMUs are 
sensitive to possible data change, Seiford and Zue (1998b) consider the case when all 
data are changed simultaneously by solving the following LP model. 
 β=β Min*  
subject to  (12) 
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They show that under the circumstance of *1 β≤ , where *β  is the optimal value to 
(12), an efficient DMUO with efficiency score equal to 1.000 will still remain efficient, 
provided that the percentages increase in all inputs for the DMUO are less than 

1* −β=Og  and the percentages decrease in all inputs for the remaining DMUs are 

less than ** /)1( β−β=−Og . The upper-bound levels (gO, g-O) can be viewed as the 
sensitivity indexes. The results of Seiford and Zue’s sensitivity analysis for efficiency 
measurement are indicated in Table 3. For instance, the efficient DMU 149 (CFF, 98), 
DMU 281 (CFF, 2001) and DMU 306 (TRA, 2001) are rather robust (stable) because 
their sensitivity indexes are relative large (higher than 15%), suggesting that they are not 
sensitive to possible data change. In contrast, the efficient DMU 44 (QR, 95), DMU 125 
(TRC, 97), DMU 176 (QR, 98), DMU 179 (DSB, 99), DMU 191 (NSB, 99), DMU 220 
(QR, 99), DMU 257 (TRC, 2000), DMU 264 (QR, 2000), DMU 278 (SJ, 2001), DMU 
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279 (NSB, 2001) and DMU 286 (GYSEV, 2001) are very sensitive to possible data 
change because they have relatively small sensitivity indexes (less than 1%). 

 
TABLE 3: Sensitivity indexes of efficient DMUs by input-oriented DEA (BCC model) 

Railway gO g-O Railway gO g-O Railway gO g-O 

DMU10 4.18% 4.02% DMU176 0.14% 0.14% DMU242 4.52% 4.33% 
DMU11 6.71% 6.28% DMU179 0.90% 0.89% DMU257 0.54% 0.54% 
DMU14 4.59% 4.39% DMU191 0.89% 0.88% DMU264 0.49% 0.49% 
DMU42 8.15% 7.53% DMU192 6.53% 6.13% DMU265 8.56% 7.89% 
DMU44 0.99% 0.98% DMU198 6.51% 6.12% DMU267 11.93% 10.66% 
DMU58 8.10% 7.50% DMU213 5.83% 5.51% DMU275 5.71% 5.40% 
DMU66 2.52% 2.45% DMU216 10.11% 9.18% DMU278 0.27% 0.27% 
DMU81 2.61% 2.54% DMU220 0.01% 0.01% DMU279 0.84% 0.83% 
DMU102 5.48% 5.20% DMU221 5.40% 5.13% DMU280 3.52% 3.40% 
DMU110 1.82% 1.79% DMU223 6.10% 5.75% DMU281 15.81% 13.65% 
DMU125 0.06% 0.06% DMU226 2.70% 2.63% DMU286 0.92% 0.91% 
DMU128 1.67% 1.64% DMU231 2.25% 2.20% DMU301 2.65% 2.58% 
DMU139 5.34% 5.07% DMU234 3.86% 3.72% DMU304 12.20% 10.87% 
DMU147 3.19% 3.09% DMU235 4.82% 4.60% DMU306 15.50% 13.42% 
DMU148 2.16% 2.11% DMU236 4.37% 4.19% DMU308 3.14% 3.05% 
DMU149 16.03% 13.82% DMU237 2.37% 2.32%    
DMU169 7.13% 6.65% DMU241 4.23% 4.06%    

Note: gO denotes the percentages increase in all inputs for the DMUO, and g-O denotes the percentages decrease 
in all inputs for the remaining DMUs 

 
Similarly, consider the following LP model  

 α=α Max*  
subject to  (13) 
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Seiford and Zue (1998b) also show that under the circumstance of 1* ≤α , 

where *α is the optimal value to (13), an efficient DMUO will remain efficient, provided 

that the percentages decrease in all outputs for the DMUO are less than *1 α−=Oh  and 
the percentages increase in all outputs for the remaining DMUs are less than 

** /)1( αα−=−Oh . The upper-bound levels (hO, h-O) are the sensitivity indexes. The 
results of Seiford and Zue’s sensitivity analysis for effectiveness measurement are 
indicated in Table 4. For example, the effective DMU 36 (CFM, 95), DMU 66 (GYSEV, 
96), DMU 81 (TRC, 96) and DMU 227 (CH, 2000) are robust because their sensitivity 
indexes are rather large (higher than 15%), implying that they are not sensitive to 
possible data change. In contrast, the effective DMU 84 (JR, 96), DMU 251 (UZ, 2000) 
and DMU 295 (UZ, 2001) are very sensitive to possible data change because they have 
relatively small sensitivity indexes (less than 1%). 

 
Finding 3. The total slacks and average slacks by three-stage DEA approach are 
smaller than those by BCC model 

 
The input-oriented (consumption-oriented) DEA approach imposes a piecewise linear 

production (consumption) frontier to input-output (output-consumption) data set, thus 
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both radial and non-radial slacks may simultaneously appear in the estimated results. 
Table 5 summarizes the results of slack analysis by BCC model and Fried’s three-stage 
DEA approach. It shows that both input- and consumption-oriented estimation results 
exhibit a large amount of input and consumption slacks. Taking the BCC effectiveness 
measurement as an example, the consumption slacks for passenger-kilometer and ton-
kilometer are 7,247,057 (6,608,582 in radial plus 638,475 in non-radial) and 7,079,282 
(7,011,008 in radial plus 68,274 in non-radial), respectively. As anticipated, the total 
slacks and average slacks (TS and AS in Table 5) by three-stage DEA approach are 
smaller than those by BCC model, suggesting that the estimated results are seriously 
biased if one were not to consider the effects of environmental factors and statistical 
noise. 

 
TABLE 4: Sensitivity indexes of effective DMUs by consumption-oriented DEA (BCC 

model) 
Railway hO h-O Railway hO h-O Railway hO h-O 

DMU11 1.18% 1.20% DMU80 7.45% 8.05% DMU251 0.20% 0.20% 
DMU31 2.16% 2.21% DMU81 17.39% 21.05% DMU260 1.43% 1.45% 
DMU36 16.61% 19.92% DMU84 0.10% 0.10% DMU285 7.48% 8.08% 
DMU37 2.26% 2.31% DMU110 8.11% 8.82% DMU295 0.81% 0.82% 
DMU44 1.19% 1.21% DMU227 15.80% 18.76% DMU305 3.63% 3.76% 
DMU66 16.13% 19.23% DMU250 10.58% 11.83% DMU308 5.92% 6.29% 

Note: hO denotes the percentages decrease in all consumptions for the DMUO, and h-O denotes the percentages 
increase in all consumptions for the remaining DMUs 

 
Finding 4. The significant external and internal factors affect the input and 
consumption slacks 
 

We regress the input and consumption slacks (TS values of BCC model in Table 5) on 
the external and internal factors (defined in Table 1), respectively, by using SFA (2). The 
estimated results are reported in Table 6, from which we find that most parameters are 
significant to the magnitude of slacks (i.e., the inputs inefficiency or consumptions 
ineffectiveness). It should be noted that negative sign represents an opposite direction to 
the magnitude of slacks. For the input slacks, higher percentage of electrified lines or 
higher ratio of passenger service can lower the magnitude of input slacks. Positive sign 
in the coefficient of length of line (LINE) indicates that larger scale of railway will 
increase the magnitude of input slacks. On the other hand, for the consumption slacks, 
negative sign in the coefficient of PD implies that higher population density can lower 
the magnitude of consumption slacks. Positive sign in the coefficient of GNI indicates 
that higher income per capita will increase the magnitude of consumption slacks. This 
reflects the fact that higher GNI will generally lead to higher private car ownership thus 
lower the public transport usage. Similar to the input slacks; positive sign in the 
coefficient of LINE implies that larger scale of railway generally creates greater 
consumption slacks both in passenger and freight services. 
 
Finding 5. Efficiency (effectiveness) scores by three-stage DEA approach are 
considerably higher than those by BCC model 
 

Once the parameters (Table 6) are estimated, the input and consumption data can then 
be adjusted by (3). We therefore use the adjusted data to re-estimate the efficiency 
(effectiveness) scores by (1). Table 2 indicates that the efficiency and effectiveness 
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scores re-estimated from the adjusted data (Fried’s three-stage DEA approach) are 
considerably higher than those estimated from the unadjusted data (BCC model), 0.924 
vs. 0.639 and 0.923 vs. 0.497, respectively. We also note that the standard deviation of 
efficiency (effectiveness) scores has decreased from 0.269 (0.271) to 0.054 (0.130) and 
the number of high efficient (effective) railways has drastically increased after the data 
being adjusted. For instance, the number of DMUs with efficiency (effectiveness) scores 
greater or equal to 0.9 is changed from 81 (44) by BCC model to 211 (237) by three-
stage DEA approach. Obviously, the results by three-stage approach are more reasonable 
than those by BCC model because both the environmental factors and statistical noise 
have been taken into account. 
 

TABLE 6: Factors affecting input and consumption slacks by SFA 
Input slacks Consumption slacks 

Parameters Employee Pax-cars Fre-cars Parameters Pax-km Ton-km 

Constant 1.457* 
(10.472) 

0.731* 
(5.867) 

-1.217* 
(-5.272) Constant -5.092* 

(-6.854) 
-2.745* 
(-5.593) 

ln(ELEC) -0.327* 
(-4.561) 

-0.255* 
(-3.873) 

-0.462* 
(-4.741) ln(PD) -2.183* 

(-3.409) 
-0.258* 
(-5.383) 

ln(ROP) -2.546* 
(-5.551) 

-0.106 
(-0.344) 

-3.200* 
(-5.760) ln(GNI) 0.605* 

(14.461) 
0.297* 
(8.551) 

ln(LINE/1000) 0.195* 
(6.156) 

0.060* 
(1.991) 

0.055 
(1.215) ln(LINE/1000) 1.076* 

(15.688) 
1.315* 

(26.333) 

σ2 15.639* 
(2.450) 

9.397* 
(3.662) 

14.621 
(1.140) σ2 10.390* 

(5.729) 
10.559* 
(2.685) 

γ 
 

0.996* 
(413.306) 

0.997* 
(555.945) 

0.989* 
(112.241) γ 0.987* 

(275.729) 
0.987* 

(251.639) 
µ 
 

-7.893* 
(-1.974) 

-6.121* 
(-2.886) 

-6.445 
(-0.745) µ -6.404* 

(-3.935) 
-6.456* 
(-1.799) 

Log likelihood 
function -329.023 -259.455 -355.538 Log likelihood 

function -410.812 -403.307 

LR one-sided 
test 98.370 106.256 61.975 LR one-sided 

test 129.93 101.97 

Note: t-values in parentheses, asterisks (*) represent significant at the 0.05 level. Also note that 
22222 , σσ=γσ+σ=σ uvu  

 
Finding 6. Efficiency (effectiveness) scores by three-stage DEA approach are 
slightly overestimated in comparison with our proposed four-stage DEA approach 

 
Table 5 shows the evidences that although the total and average slacks have been 

decreased by three-stage DEA approach, there still exist slack problems in both inputs 
and consumptions. Therefore, we further employ the proposed four-stage DEA approach 
to re-estimate the efficiency and effectiveness scores and the results are also presented in 
Appendix 2 and Table 2. Compared with Fried’s three-stage approach, our four-stage 
DEA approach has 52 (199) DMUs remaining unchanged in the efficiency 
(effectiveness) measurement. On average, the efficiency and effectiveness scores 
estimated by four-stage approach are slightly less than those by three-stage approach. In 
other words, the efficiency and effectiveness scores are slightly overestimated by the 
three-stage DEA approach because the slacks are not adjusted. 

 
Finding 7. Productivity growth measured by FGNZ method is overestimated in 
comparison with our proposed four-stage method 
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We measure the change in Malmquist productivity index (MPI) and its components for 
the 44 railway companies over the period of 1995-2001 by using both FGNZ method 
and our proposed four-stage method. The results are indicated in Appendix 3 and 
summarized in Table 7, and the time trends are presented in Figures 3a and 3b. It reveals 
that the productivity measured by FGNZ method is overestimated because of ignoring 
the slacks adjustment. These 44 railways have an average productivity growth of 20.2 
percent over 1995-2001 by the FGNZ method; while the actual average productivity 
growth is only 6.6 percent by our four-stage method. The results also reveal that the 
productivity growth is due to improvements in efficiency (∆I) rather than productive 
technology change (∆P). 

 
TABLE 7: Changes in Malmquist productivity index and its components (base year 

1995) 
 FGNZ method  Four-stage method Year 

∆I ∆P ∆MPI  ∆I ∆P ∆MPI 
1995 1.000 1.000 1.000  1.000 1.000 1.000 
1996 1.079 0.971 1.047  1.071 0.911 0.976 
1997 1.117 0.988 1.104  1.083 0.918 0.994 
1998 1.091 1.020 1.112  1.110 0.874 0.970 
1999 1.086 1.043 1.131  1.190 0.851 1.013 
2000 1.083 1.065 1.155  1.197 0.851 1.019 
2001 1.197 1.003 1.202  1.126 0.947 1.066 

Note: ∆I, ∆P and ∆MPI represent efficiency change, productive technology change and Malmquist total factor 
productivity change, respectively. 

 
(a) FGNZ method 
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(b) Four-stage method 
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FIGURE 3: Changes in productivity index and its components 
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Finding 8. Sales capability growth measured by FGNZ method is slightly 
overestimated in comparison with our proposed four-stage method 

 
The Malmquist sales capability indexes are reported in Appendix 3 and summarized in 

Table 8, and the time trends and its components are depicted in Figures 4a and 4b. Based 
on the results, on average, sales capability grows at a rate of 7.3 percent over the period 
of 1995 to 2001 when adopting the FGNZ method. However, if we adjust the slacks by 
adopting the four-stage method, it becomes 6.1 percent. The results indicate that sales 
capability index is slightly overestimated if one does not take slacks adjustment into 
account. The results also reveal that the sales capability growth is due to sales innovation 
change (∆S) rather than improvements in effectiveness (∆E). 

 
TABLE 8: Changes in Malmquist sales capability index and its components (base year 

1995) 
 FGNZ method  Four-stage method Year 

∆E ∆S ∆MSI  ∆E ∆S ∆MSI 
1995 1.000 1.000 1.000  1.000 1.000 1.000 
1996 0.969 1.026 0.994  0.978 1.014 0.992 
1997 0.985 0.993 0.979  0.992 1.019 1.010 
1998 0.954 1.027 0.980  0.990 1.030 1.019 
1999 0.972 1.043 1.015  0.988 1.042 1.030 
2000 0.963 1.067 1.029  0.998 1.058 1.055 
2001 0.985 1.089 1.073  0.995 1.067 1.061 

Note: ∆E, ∆S and ∆MSI stand for effectiveness change, sales innovation change and Malmquist sales 
capability change, respectively. 

(a) FGNZ method 
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(b) Four-stage method 
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FIGURE 4: Changes in sales capability index and its components 
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5. POLICY IMPLICATIONS 
 
In order to propose appropriate improvement operational strategies for different 

railways, we construct effectiveness-efficiency matrices as shown in Figures 5a (BCC 
model) and 5b (four-stage DEA approach). As anticipated, the number of DMUs in the 
third quadrant (both efficiency and effectiveness scores less than the mean values) in 
Figure 5b has been significantly decreased because the original heterogeneous DMUs 
have been adjusted to a common platform of operating environment and a common state 
of nature by our proposed 4-stage DEA approach. Since we adopt input-oriented DEA to 
measure the relative efficiency of railways, those railways in the second quadrant with 
low efficiency but high effectiveness should consider strategies of input factors 
curtailing to increase the technical efficiency. Our empirical analysis shows that (Table 
5) the total slack of employee is 1,344 persons per kilometer of lines (1,182.3 in radial 
and 161.5 in non-radial), which is larger (in terms of the magnitude of value) than the 
total slacks of the other two input factors (82 passenger-cars per kilometer of lines and 
867 freight-cars per kilometer of lines), hence, reducing the excess number of employees 
is perhaps more urgent than reducing the excess number of freight-cars than reducing the 
excess number of passenger-cars, provided input factor cutting strategies are to be 
considered. 

Our results also indicate that percentage of electrified lines is a significant factor 
affecting the magnitude of input slacks as well as technical efficiency. In general, the 
efficient DMUs are those with high percentages of electrified lines. For example, the 
percentages of electrified lines of NS (Netherlands), SJ (Sweden) and BLS (Switzerland) 
are 0.727, 0.748, and 1.000 and their average efficiency scores in the study period are 
0.972, 0.991 and 0.958, respectively, based on the BCC model. In contrast, the average 
efficiency scores of CFM (E) (Moldova), ONCFM (Morocco) and CFS (Syria) are 
0.164, 0.400, and 0.337, and their percentages of electrified lines are all zero. The policy 
implication suggests that a railway company can enhance its technical efficiency by 
introducing more electrified lines. 

Since a higher ratio of passenger train-kilometers to total train-kilometers (ROP) will 
generally lower the input slacks and as a result higher the technical efficiency. Our 
results indicate that some DMUs such as NS (Netherlands), DSB (Denmark) and JR 
(Japan) orient their rail service toward passenger transport (with average ROP values of 
0.925, 0.874 and 0.899, respectively) and they experience significantly higher efficiency 
than those DMUs with low ROP values. This can be partly explained by the fact that the 
speeds (including loading and unloading at terminals) or frequencies of freight trains are 
generally much lower than the passenger trains. It could also be due to the national 
policy to provide guideway passenger transport to attract more private cars in these 
countries. Although the implication for raising the rail technical efficiency is to increase 
the share of passenger service rather than freight; yet railway is still the most effective 
freight mode in land transport, particularly for the low-valued bulky commodities such 
as raw materials, intermediate and final products. Rail freight service is rather labor 
intensive and time consuming, especially at the terminals where loading and unloading 
take place. Hence, expediting the process of freights at terminals by introducing fast 
loading and unloading equipment and advanced information and communication 
technologies would be critical to make the rail service more compatible with the trucking 
service. The intercity passenger trains or high-speed trains can also provide line-haul 
service for high-valued compact freights, such as express parcels, provided it is well 
integrated with the local pickup and delivery logistics. 
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(a) BCC model 
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(b) Four-stage DEA approach 
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FIGURE 5: Effectiveness versus efficiency matrix 

 
The strategies for improving the service effectiveness can be quite different from those 

for raising the technical efficiency. Since we adopt the consumption-oriented DEA 
approaches to measure the service effectiveness, those firms in the fourth quadrant with 
relative high efficiency but low effectiveness should devote to raising the consumption 
in passenger or freight or both to enhance the effectiveness. Our slack analysis shows 
that the total slack (radial and non-radial) of passenger-km is greater than that of ton-km, 
thus priority should be given in promoting the passenger services rather than the freight, 
which concurs with the implication of technical efficiency analysis by increasing the 
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share of passenger service rather than freight. Our results also show that per capita gross 
national income (GNI) and population density (PD) are the two external factors 
significantly affecting the service effectiveness of railways. Although the operators can 
hardly control these two external factors to level up the service effectiveness, they can 
still consider various operational strategies, including increasing the punctual rate, 
replacing the over-aged assets (tracks and rolling stocks), rescheduling the trains better 
matching the demands, improving the booking system, and providing discounts to 
frequent users, to attract more patronages from competitive modes. Our results explicate 
that the selected 44 railways have an average of positive progress in both efficiency and 
effectiveness of recent years. The decline of rail market share in these countries would 
be attributed to higher level-of-service of other competitive modes, not to rail’s poor 
performance in technical efficiency or service effectiveness. 

In Figure 6, we further construct a similar matrix in which the changes in each 
railway’s sales capability and productivity are indicated. We note that quite a number of 
railways have exhibited deterioration in productivity growth over 1995-2001. Since the 
MPI can be decomposed into efficiency change and productive technology change, it is 
necessary to find out the determinants causing productivity decline. If the source comes 
from efficiency drop, the strategies for improving efficiency described above are 
applicable. If the determinant is due to productive technology change, then introducing 
innovative production technologies should be a correct direction. In our analysis, the 
cumulative efficiency change, productive technology change, and Malmquist total factor 
productivity change over 1995-2001 are 1.197, 1.003 and 1.202 respectively based on 
the FGNZ method, and 1.126, 0.947 and 1.066, respectively based on the proposed four-
stage method. In other words, the source of productivity growth is due to improvements 
in efficiency rather than productive technology change. Its policy implication strongly 
suggests improvement of productive technology be a critical direction for raising the 
productivity. Such strategies as improving the line geometry or introducing tilting trains 
to increase the train operating speed can be considered. Construction of high-speed rails, 
application of new technologies in signaling and traffic controls, upgrading the 
infrastructures (such as tracks) and facilities (such as loading and unloading equipment) 
can also be promising in raising the rail productivity. 

From Figure 6 we also notice that several companies have revealed a decrease in sales 
capability over the same period. Similar to MPI, the MSI can be decomposed into 
effectiveness change and sales innovation change. Therefore, for those with sales 
capability decline, one requires further investigating the determinants of recession. If the 
effectiveness recession is the source, then the strategies for improving effectiveness 
described above may be applicable. If the deterioration is due mainly to sales problem, 
then improving effectiveness would be a wrong way. In this case, introducing innovative 
marketing techniques, such as new dispatching management information systems, 
automatic ticketing by vending machine, seat booking by internet and alliance with other 
firms, convenience stores or tourist agencies, could be good strategies. Our empirical 
analysis shows that the cumulative effectiveness change, sales innovation change, and 
Malmquist sales capability change over the seven years are 0.983, 1.092 and 1.073 
respectively based on the FGNZ method and 0.994, 1.067, and 1.061 respectively based 
on the four-stage method. In other words, the source of sales capability growth is due to 
sales innovation change rather than effectiveness change. Its policy implication strongly 
suggests improvement of effectiveness be a critical direction for raising the sales 
capability. Therefore, the strategies for improving effectiveness described above can be 
applied to raise the sales capability. 
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FIGURE 6: Sales capability growth versus productivity growth (Four-stage method) 

 
6. CONCLUDING REMARKS 

 
Conventional DEA approaches, such as CCR and BCC models, neither consider the 

environmental differences across the DMUs nor account for the statistical error (data 
noise) and slack effects. Thus, the comparison can be seriously biased because all DMUs 
are not brought into a common platform of operating environment and a common state 
of nature. To overcome these shortcomings, Fried et al. (2002) proposed a three-stage 
DEA approach with consideration of the environmental effects and statistical noise, but 
they still did not adjust the slack effects and thus the results could be biased as well. We 
propose a four-stage DEA approach by elaborating Fried’s three-stage DEA approach 
with further adjustment of slack effects. The empirical results show that our proposed 
four-stage DEA approach has slightly more reasonable efficiency and effectiveness 
scores than those measured by Fried’s three-stage DEA approach, which is far more 
reasonable than those measured by BCC model. 

In measuring the productivity growth, FGNZ method (Färe et al., 1994) measured four 
distance functions without taking the environmental effects, statistical error and slack 
adjustment into consideration and thus the results could be biased. To overcome these 
shortcomings, we follow our four-stage DEA approach by proposing a four-stage 
method, which incorporates environmental factors, statistical noise and slacks into the 
MPI and MSI measurements. The empirical results reveal that the changes in MPI and 
MSI by our proposed four-stage method are somewhat less than those measured by the 
FGNZ method, indicating that the productivity growth or sales capability growth would 
be overstated if one were to ignore the effects of environmental factors, data noise and 
slacks.  

In this study, passenger-train-kilometer and freight-train-kilometer are used as the two 
outputs, which implicitly assume that the average number of cars per train and average 
number of seats per car are the same in different companies and train sets. The reason for 
making this assumption is due to the detailed data not available. To measure the rail 
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performance more in line with the reality, we might select seat-kilometer as passenger 
service output and car-kilometers as freight service output in the future research, 
provided that those data are available. In the present paper, we have ignored the effects 
of congestion and assumed strong disposability for inputs and outputs; namely, a firm 
can always freely dispose unwanted inputs and outputs. In reality, the excess of some 
inputs may not be fully controlled by the operators (e.g., laying-off the extra employees 
may be protected by the labor union) and some undesirable outputs such as air pollution, 
noise and accidents are often inevitable. The input congestion may occur in railway 
transport whenever increasing some inputs will decrease some outputs without 
improving other inputs or outputs, or conversely, whenever decreasing some inputs will 
increase some outputs without worsening other inputs or outputs (Cooper et al., 2001). It 
is of interest to measure the efficiency and effectiveness when congestion is present. 
Therefore, one possible avenue of future research is to measure the rail performance by 
further considering the effects of input congestion (such as labors) and output congestion 
(such as accidents). 
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APPENDIX 1. NOTATIONS 
 

),( tt
s
I yxd  input distance from period t to period s 

),( tt
s
C zyd  consumption distance from period t to period s 

 gO, g-O sensitivity indexes of the Oth DMU in input-oriented DEA model 
 hO, h-O sensitivity indexes of the Oth DMU in consumption-oriented DEA model 
 mI input-based Malmquist productivity index (MPI) 
 mC consumption-based Malmquist sales capability index (MSI) 
 np number of DMUs in group p 
 p number of groups in Kruskal-Wallis rank test 
 x inputs 

mj
A
mj , xx  adjusted and observed mth input quantities for the jth DMU, respectively 

 y outputs 
 z consumptions 
 I number of environmental factors 
 J number of DMUs 
 K number of outputs 
 M number of input factors 
 Q number of consumptions 
 Smj sum of radial and non-radial slacks 
 Tp sum of ranks for group p 
 α*, β* the optimal values in the sensitivity test models (12) and (13) 
 δ parameters of environmental factors 
 θ technical efficiency scores estimated by the input-oriented DEA model 
 λ constant 
 umj managerial inefficiency 
 vmj statistical error (data noise) 
φ/1  service effectiveness scores estimated by the consumption-oriented DEA 

model 
 ωij the ith environmental factor of DMU j 
 ∆E effectiveness change 
 ∆I catching-up effect (efficiency change) 
 ∆P movement of frontier (technical change) 
 ∆S sales innovation change 
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APPENDIX 2. THE AVERAGE EFFICIENCY AND EFFECTIVENESS SCORES 
MEASURED BY THREE DEA APPROACHES OVER 1995-2001 

 
DMUs  Efficiency scores Effectiveness scores 

No. Country Railway  BCC 3-stage 4-stage BCC 3-stage 4-stage 
1 Austria ÖBB 0.876 0.953 0.821 0.199 0.876 0.875 
2 Belgium SNCB/NMBS 0.510 0.951 0.951 0.308 0.944 0.944 
3 Denmark DSB 0.863 0.963 0.940 0.416 0.957 0.953 
4 Finland VR 0.673 0.929 0.882 0.312 0.877 0.877 
5 France SNCF 0.694 0.941 0.920 0.268 0.460 0.458 
6 Germany DB AG 0.872 0.934 0.866 0.268 0.347 0.308 
7 Greece CH 0.589 0.895 0.708 0.691 0.972 0.972 
8 Ireland CIE 0.832 0.860 0.770 0.210 0.938 0.938 
9 Italy FS SpA 0.437 0.971 0.969 0.357 0.799 0.799 

10 Luxembourg CFL 0.693 0.953 0.875 0.428 0.971 0.970 
11 Netherlands NS N.V. 0.972 0.996 0.979 0.755 0.984 0.962 
12 Portugal CP 0.682 0.936 0.896 0.282 0.966 0.966 
13 Spain RENFE 0.664 0.974 0.966 0.250 0.840 0.840 
14 Sweden SJ AB 0.991 0.920 0.906 0.242 0.764 0.763 
15 Norway NSB BA 0.950 0.883 0.802 0.202 0.884 0.884 
16 Switzerland BLS 0.958 0.967 0.881 0.488 0.965 0.965 
17 Switzerland CFF/SBB/FFS 0.890 0.983 0.943 0.268 0.929 0.929 
18 Bulgaria BDZ 0.279 0.926 0.895 0.370 0.977 0.976 
19 Croatia HZ 0.444 0.918 0.826 0.215 0.970 0.970 
20 Czech Rep CD 0.409 0.926 0.905 0.233 0.881 0.881 
21 Estonia EVR 0.591 0.917 0.797 0.864 0.998 0.998 
22 Hungary GYSEV/RÖEE 0.951 0.806 0.671 0.710 0.988 0.988 
23 Hungary MÁV Rt. 0.426 0.941 0.864 0.288 0.923 0.923 
24 Latvia LDZ 0.506 0.911 0.883 0.835 0.994 0.994 
25 Lithuania LG 0.418 0.927 0.882 0.669 0.992 0.992 
26 Poland PKP 0.454 0.916 0.868 0.328 0.765 0.751 
27 Romania CFR 0.237 0.899 0.855 0.355 0.937 0.937 
28 Slovak ZSR 0.501 0.924 0.788 0.274 0.962 0.962 
29 Slovenia SZ 0.860 0.885 0.719 0.197 0.980 0.980 
30 Moldova CFM (E) 0.164 0.892 0.743 0.906 0.994 0.994 
31 Ukraine UZ 0.333 0.871 0.738 0.984 0.996 0.996 
32 Turkey TCDD 0.514 0.887 0.859 0.321 0.957 0.957 
33 Israel IsR 0.667 0.922 0.850 0.630 0.983 0.983 
34 Morocco ONCFM 0.400 0.953 0.907 0.684 0.990 0.990 
35 Syria CFS 0.337 0.942 0.898 0.427 0.969 0.955 
36 Mozambique CFM 0.793 0.875 0.706 0.614 0.972 0.973 
37 Tanzania TRC 0.997 0.817 0.666 0.672 0.981 0.973 
38 Azerbaijan AZ 0.160 0.875 0.698 0.545 0.993 0.993 
39 Korea KNR 0.888 0.979 0.962 0.554 0.984 0.979 
40 Japan JR 0.935 0.971 0.869 0.987 0.994 0.945 
41 India IR 0.334 0.929 0.671 0.938 0.989 0.894 
42 Taiwan TRA 0.959 0.998 0.998 0.519 0.992 0.988 
43 Turkmenistan TRK 0.427 0.945 0.918 0.908 0.994 0.994 
44 Australia QR 0.997 0.873 0.829 0.903 0.980 0.980 

Mean 0.639 0.924 0.849 0.497 0.923 0.917 
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APPENDIX 3. THE AVERAGE PRODUCTIVITY AND SALES CAPABILITY 
GROWTHS MEASURED BY TWO METHODS OVER 1995-200 

 
DMUs  Productivity growth (%) Sales capability growth (%) 

No. Country Railway  FGNZ 
method 

Four-stage 
method 

FGNZ 
method 

Four-stage 
method 

1 Austria ÖBB 117.9 106.1 95.3 99.4 
2 Belgium SNCB/NMBS 107.4 101.4 101.2 100.2 
3 Denmark DSB 110.4 107.1 118.9 94.2 
4 Finland VR 104.5 151.7 98.6 100.7 
5 France SNCF 117.7 104.0 124.9 114.2 
6 Germany DB AG 105.9 89.8 120.4 112.1 
7 Greece CH 104.8 96.6 118.0 93.5 
8 Ireland CIE 90.4 102.2 108.2 101.8 
9 Italy FS SpA 116.0 101.1 113.5 102.6 

10 Luxembourg CFL 94.6 98.7 126.2 87.8 
11 Netherlands NS N.V. 106.9 93.5 97.9 99.2 
12 Portugal CP 108.9 106.9 86.9 100.8 
13 Spain RENFE 116.6 112.1 123.4 102.0 
14 Sweden SJ AB 115.7 121.0 90.0 106.0 
15 Norway NSB BA 124.6 98.7 110.5 99.4 
16 Switzerland BLS 112.2 109.0 121.2 114.6 
17 Switzerland CFF/SBB/FFS 119.7 98.0 103.7 100.6 
18 Bulgaria BDZ 120.7 96.2 85.4 108.1 
19 Croatia HZ 111.0 96.2 85.9 100.6 
20 Czech Rep CD 117.2 96.6 105.8 102.2 
21 Estonia EVR 120.6 114.3 127.4 116.3 
22 Hungary GYSEV/RÖEE 104.5 107.3 119.9 101.9 
23 Hungary MÁV Rt. 110.5 102.3 123.2 101.1 
24 Latvia LDZ 114.1 103.4 135.3 128.1 
25 Lithuania LG 108.9 102.5 125.1 129.2 
26 Poland PKP 97.3 96.3 93.6 107.7 
27 Romania CFR 94.8 100.7 97.6 98.6 
28 Slovak ZSR 123.3 87.4 94.5 91.2 
29 Slovenia SZ 111.9 89.9 99.8 103.3 
30 Moldova CFM (E) 98.0 81.8 111.7 83.8 
31 Ukraine UZ 115.4 93.1 107.5 86.3 
32 Turkey TCDD 99.9 72.2 105.8 100.2 
33 Israel IsR 128.8 111.3 101.1 107.0 
34 Morocco ONCFM 113.1 96.1 112.2 100.1 
35 Syria CFS 107.7 118.3 125.5 115.1 
36 Mozambique CFM 130.2 120.2 83.9 109.2 
37 Tanzania TRC 130.3 126.9 71.6 88.7 
38 Azerbaijan AZ 113.0 100.6 114.2 109.0 
39 Korea KNR 129.4 99.5 98.1 95.4 
40 Japan JR 121.7 95.3 105.4 128.0 
41 India IR 116.2 111.9 116.5 80.6 
42 Taiwan TRA 109.2 88.8 112.5 90.3 
43 Turkmenistan TRK 85.7 102.5 100.5 98.9 
44 Australia QR 116.4 130.1 108.3 119.5 

Mean 120.2 106.6 107.3 106.1 
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