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We propose a self-splitting Gaussian mixture learning (SGML) algorithm for Gaussian mixture modelling. The SGML algorithm
is deterministic and is able to find an appropriate number of components of the Gaussian mixture model (GMM) based on a
self-splitting validity measure, Bayesian information criterion (BIC). It starts with a single component in the feature space and
splits adaptively during the learning process until the most appropriate number of components is found. The SGML algorithm
also performs well in learning the GMM with a given component number. In our experiments on clustering of a synthetic data set
and the text-independent speaker identification task, we have observed the ability of the SGML for model-based clustering and
automatically determining the model complexity of the speaker GMMs for speaker identification.
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1. INTRODUCTION

In many applications, data clustering techniques have been
applied to discover and extract the hidden structure in a
data set and, thus, the structural relationships between in-
dividual data points can be detected. Data clustering is also
known as unsupervised learning [1]. A variety of competitive
learning (CL) schemes has been developed, distinguishing in
their approaches to competition and learning rules. The sim-
plest and most prototypical CL algorithms are mainly based
on the winner-take-all (WTA) [2] (or hard CL) paradigm,
where adaptation is restricted to the single prototype that
best matches the input patterns. Different algorithms in this
paradigm such as LBG (or generalized Lloyd) [3, 4, 5] and
K-means [6] have been well recognized.

In statistical pattern recognition, finite mixture models
(usually the Gaussian mixture models (GMMs)) provide a
formal approach to clustering [7, 8], namely the probabilis-

tic model-based clustering. At the end of Gaussian mixture
modelling process, all the training patterns could be grouped
into clusters by distributing each pattern to the mixture com-
ponent which is most likely to generate it. The most common
approach for learning GMMs is the expectation maximiza-
tion (EM) algorithm [9, 10, 11]. However, there are several
issues related to EM. (1) EM is a local optimization algo-
rithm that is highly sensitive to the initialization of parame-
ters. (2) The full covariance matrices of the Gaussian mixture
components could be singular. (3) It is still an open problem
about how many components are enough to fit the proba-
bilistic distribution of the training patterns. The component
number is usually decided empirically.

There is no theoretical method for selecting the ini-
tial values of the parameters. A common way is to apply
clustering methods (e.g., K-means clustering or hierarchical
clustering [6, 7]) to locate the initial means of Gaussian com-
ponents for the EM algorithm and, thus, the performance of
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EM highly depends on the clustering result. Instead of find-
ing better initial values for the parameters, Ueda et al. [12]
proposed an SMEM (split and merge EM) algorithm that
performs split and merge operations simultaneously (i.e., the
number of components is kept, some components split while
some components merge) after the regular EM training to
escape the condition that there are too many components in
some clusters and too few to well fit the other clusters. How-
ever, the SMEM algorithm only makes improvements to the
estimation of the parameters with a given component num-
ber but does not contribute to the selection of the number of
components.

EM breaks down when any of the covariance matrices
of the Gaussian components becomes singular or nearly sin-
gular. In general, the singularity condition occurs especially
when clusters contain a few observations or when too many
components are used to fit the data set where there are actu-
ally fewer clusters. Ormoneit and Tresp [13] proposed some
Bayesian regularization methods to deal with the singularity
condition.

The selection of the number of components is an impor-
tant issue in Gaussian mixture modelling. With too many
components, the mixture model would overfit the data; on
the other hand, with too few components, it would be not
flexible enough to describe the structure of the data. Sev-
eral model selection criteria have been proposed to select
the number of components of a mixture model among a
set of candidate models, such as Akaike’s information crite-
rion (AIC) [14], Bayesian information criterion (BIC) [15,
16, 17], minimum description length (MDL) [18] (which
is formally identical to BIC), and minimum message length
(MML) [19]. These criteria are also well known as penal-
ized likelihood criteria. In the previous studies, the model-
selection-based approaches first defined the upper bound
kmax of the component number of the candidate models, and
then the best model was the one that has the minimum value
of the specific model selection criterion (MSC) among these
candidate models; that is,

k̂ = arg min
k

{
MSC

(
ŵk
)}

, k = 1, 2, . . . , kmax, (1)

where ŵk is the maximum likelihood estimate of parame-
ters of a mixture model that has k components. MSC(ŵk) =
− log p(X|ŵk) + Penalty(k), where log p(X|ŵk) is the log-
likelihood value of the training data set X for ŵk, and
Penalty(k) is a monotonically increasing function of k that
penalizes more for more complicated models.

There are two major issues with these model-selection-
based approaches. First, they need to define the upper bound
of the component number kmax beforehand. If kmax is too
large (much larger than the best component number deter-
mined by the MSC), the training process will require a high
computation cost. On the other hand, if kmax is too small, the
selected model may not be flexible enough to describe the
structure of the training data. Second, MSC(ŵk) is calculated
from log p(X|ŵk), in which ŵk is usually estimated by EM.
In order to obtain a more robust calculation of MSC(ŵk),

one may use the SMEM or the other learning algorithms to
obtain a better estimation of ŵk, but the training process may
require a higher computation cost and the problem of defin-
ing kmax still remains unsolved.

In this paper, we propose a self-splitting Gaussian mix-
ture learning (SGML) algorithm that starts with a single
component and successively splits the selected component
into two new components until the most appropriate com-
ponent number is found. Both the selection of component
to be split and the determination of appropriate compo-
nent number are based on BIC. The proposed approach has
several advantages. (1) It provides a better initialization for
EM. In the conventional Gaussian mixture learning (GML)
process, the clustering phase often results in ill-initial mix-
ture models with too many components in one part of the
space and too few in another widely separated part of the
space. The following EM phase often fails to escape from
this configuration and falls into an ill-local maximum. In
the splitting process of the proposed SGML, the BIC-MSC
is used to determine which part of the space should be di-
vided into two parts. In this way, the ill-initialization situ-
ation can be avoided to some extent and, thus, a better es-
timation of log p(X|ŵk) can be obtained. (2) It automati-
cally determines the appropriate component number with-
out the need to define the upper bound of the component
number beforehand. The SGML algorithm stops when a “sig-
nificant maximum” in the learning curve (i.e., the BIC plot
here) is found, and then outputs the model yielding the max-
imum BIC valve. The term “significant maximum” will be
defined in Section 3.1. (3) It is deterministic. The output of
the SGML algorithm is always the same in different runs on
the same data set, since there is no randomization in the
learning rules.

We have evaluated the proposed learning algorithm on
two tasks. The first task involves applying the SGML algo-
rithm in automatic clustering of a synthetic data set. The sec-
ond task involves using the SGML algorithm to train speaker
GMMs for the NIST 2001 speaker recognition evaluation. In
both tasks, we have observed a noticeable improvement in
Gaussian mixture modelling.

The rest of this paper is organized as follows. The EM
algorithm, model selection, BIC, and the use of GMMs for
speaker identification are reviewed in Section 2. Then, the
proposed SGML algorithm is described in detail in Section 3,
and the experimental results are discussed in Section 4. Fi-
nally, conclusions are drawn in Section 5.

2. REVIEWS

2.1. Gaussian mixture distribution and EM algorithm

A random vector x ∈ Rd is said to follow an R-component
Gaussian mixture distribution if its probability density func-
tion (pdf) is

p(x|w) =
R∑

r=1

p
(
Θr
)
p
(

x|Θr
)
, (2)
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where p(Θr) ≥ 0, r = 1, 2, . . . ,R, and
∑R

r=1 p(Θr) = 1.
p(x|Θr) is the rth Gaussian component of p(x|w), Θr =
{µr ,Σr}. p(Θr), µr , and Σr denote, respectively, the prior
probability, mean vector, and covariance matrix of p(x|Θr).
w ≡ {p(Θr),Θr | r = 1, 2, . . . ,R} is the complete set of
parameters needed to specify the Gaussian mixture distribu-
tion.

Given a set of independent samples X = {x(t); t =
1, 2, . . . ,N} from a Gaussian mixture distribution, the esti-
mation of the parameters is often carried out with the EM
algorithm [9, 10, 11] in the maximum likelihood sense. The
log-likelihood function of X under w can be computed by

L(X|w) =
N∑
t=1

log p
(

x(t)
∣∣w
)
. (3)

The EM algorithm iteratively reestimates the parameters of w
through the following closed-form solutions and guarantees
that the value of L(X|w) will monotonically increase after
each iteration:

p
(
Θ

( j+1)
r

)
= 1

N

N∑
t=1

p
(
Θ

( j)
r

∣∣∣x(t)
)

,

µ
( j+1)
r =

∑N
t=1 p

(
Θ

( j)
r

∣∣∣x(t)
)

x(t)∑N
t=1 p

(
Θ

( j)
r

∣∣∣x(t)
) ,

Σ
( j+1)
r =

∑N
t=1 p

(
Θ

( j)
r

∣∣∣x(t)
)(

x(t)− µ
( j+1)
r

)(
x(t)− µ

( j+1)
r

)T
∑N

t=1 p
(
Θ

( j)
r

∣∣∣x(t)
) ,

(4)

where p(Θ
( j)
r |x(t)) is the posterior probability of Θ

( j)
r given

x(t), which can be computed by

p
(
Θ

( j)
r

∣∣∣x(t)
)
=

p
(
Θ

( j)
r

)
p
(

x(t)
∣∣∣Θ( j)

r

)
p
(

x(t)
) . (5)

The following reestimation rule based on the Bayesian
regularization can be used to avoid the singularity condition
of a covariance matrix [13]

Σ
( j+1)
r =

∑N
t=1 p

(
Θ

( j)
r

∣∣∣x(t)
)(

x(t)−µ( j+1)
r

)(
x(t)−µ( j+1)

r

)T
+λId∑N

t=1 p
(
Θ

( j)
r

∣∣∣x(t)
)

+ 1
,

(6)

where Id is a d-dimensional identity matrix and λ is a regu-
larization constant determined by some validation data.

2.2. The Bayesian approach for
model selection and BIC

Given a set of patterns X = {x(t); t = 1, 2, . . . ,N} and a
set of candidate models M = {Mk | k = 1, . . . ,L}, each
model associated with a parameter set wk and the posterior

probability p(Mk|X) can be used to select a proper model
from M to represent the distribution of X. By applying Bayes’
theorem, p(Mk|X) can be expressed as follows:

p
(
Mk

∣∣X
) = p

(
Mk
)
p
(

X
∣∣Mk

)
p(X)

, (7)

where p(Mk) is the prior probability of model Mk. p(X) can
be eliminated because it is identical for all models and will
not affect the model selection. Furthermore, because the way
to estimate the probability p(Mk) is still unknown, we may
simply assume each model is equally likely (i.e., p(Mk) =
1/L). As a result, p(Mk|X) is proportional to the probabil-
ity that the data conform to the model Mk, p(X|Mk), which
can be computed by

p
(

X
∣∣Mk

) = ∫ p
(

X
∣∣wk,Mk

)
p
(

wk

∣∣Mk
)
dwk. (8)

The calculation of log p(X|Mk) can be achieved by the
Laplace approximation [16, 20], which gives

log p
(

X
∣∣Mk

) ≈ log p
(

X
∣∣ŵk,Mk

)− 1
2
· d(Mk

) · logN , (9)

where ŵk is the maximum likelihood estimate of wk, d(Mk)
is the number of free parameters in model Mk, and N is the
number of training patterns. In [17], the BIC value of model
Mk over the data set X, BIC(Mk, X), is defined as follows:1

BIC
(
Mk, X

) ≡ 2 log p
(

X
∣∣ŵk,Mk

)− d
(
Mk
) · logN. (10)

Accordingly, the larger the value of BIC, the stronger the ev-
idence for the model is. In other words, the model with the
maximum BIC value will be selected. The BIC can be used to
compare models with different parameterizations, different
numbers of components, or both.

2.3. GMM-based text-independent
speaker identification

In a GMM-based speaker identification system [22, 23], a
group of speakers {S1, S2, . . . , SM} are represented by a set
of GMMs {w1, w2, . . . , wM}. Given a feature vector sequence
X = {x(t); t = 1, 2, . . . ,N}, the objective is to find the
speaker model which has the maximum log-likelihood value
with X. The problem can be formally formulated as follows:

Ŝ = arg max
k

log p
(

X
∣∣wk

)
. (11)

If the individual observations are assumed to be indepen-
dent, p(X|wk) can be decomposed as a product ofp(x(t)|wk),

1Kass and Raftery [21] defined BIC as minus the value given in (10); Fra-
ley and Raftery [17] used the definition of (10) to make it easier to interpret
the plots of BIC values. We follow what Fraley and Raftery did and, thus, the
model with the maximum BIC value in fact corresponds to the model with
the minimum MSC in (1).
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Input data set: X = {x(t); t = 1, . . . ,N}
Output parameter set: w = {p(Θr),Θr | r = 1, 2, . . . , bestNum}, where p(Θr) is the prior probability
of the rth Gaussian component, and Θr = {µr ,Σr} are the mean vector and covariance matrix of the
rth Gaussian component.
BEGIN
(1) Initialization:

SRange = 5;
compoNum = 1;
w = {p(Θ1),Θ1 = {µ1,Σ1}}, where p(Θ1) = 1, µ1,
and Σ1 are the sample mean vector and sample
covariance matrix of X;
BIC set(1) = BIC(GMM1, X); GMM set(1) = w;
//BIC set(compoNum): the BIC value of GMMcompoNum over X.
//GMM set(compoNum): the parameter set of GMMcompoNum over X.

(2) Data clustering:
EM cluteri = φ, for i = 1, 2, . . . , compoNum;
for each pattern x(t):

j = arg maxr{p(Θr|x(t))}; EM cluster j = EM cluster j
⋃

x(t); //add x(t) to
EM cluster j .

(3) Splitting (splitting one component into two new components):
whichSplit = arg maxi{∆BIC21(EM clusteri)};
suppose the parameters of GMM2 corresponding to EM clusterwhichSplit are
λ̄1 = {p(Θ̄1), Θ̄1}, λ̄2 = {p(Θ̄2), Θ̄2}, where
Θ̄r = {µ̄r , Σ̄r}, for r = 1, 2.

Let
p(Θ̄1) = p(Θ̄2) = 1

2 p(ΘwhichSplit);
w = w \ {p(ΘwhichSplit),ΘwhichSplit};//remove {p(ΘwhichSplit),ΘwhichSplit} from w,
w = w

⋃{λ̄1, λ̄2}; //add {λ̄1, λ̄2} to w;
compoNum = compoNum + 1;

(4) Global EM learning:
perform EM learning on all the clusters with w as the initial parameters,
then w would be fine-tuned;
GMM set(compoNum) = w;
BIC set(compoNum) = BIC(w, X);
if compoNum > SRange and BIC set(compoNum-SRange) is the maximum value
in the learning curve,

bestNum = compoNum− SRange; w = GMM set(bestNum); goto END;
else

goto 2;

END

Algorithm 1: The SGML algorithm.

t = 1, 2, . . . ,N , and (11) can be rewritten as follows:

Ŝ = arg max
k

N∑
t=1

log p
(

x(t)
∣∣wk

)
. (12)

The observation-independence assumption has been widely
used in speaker recognition as well as speech recognition sys-
tems.

3. THE BIC-BASED SGML

3.1. The SGML

Given a set of training patterns X = {x(t); t = 1, 2, . . . ,N},
we can partition X into k clusters after applying the EM

algorithm to learn the k-component GMMk. Here, we
call the cluster defined by EM the EM cluster. The self-
splitting algorithm starts with a single component (i.e., sin-
gle EM cluster) in the feature space (i.e., X) and splits
the selected component adaptively during the learning pro-
cess until the most appropriate number of components
(EM clusters) is found. The details of the proposed learn-
ing algorithm are illustrated in Algorithm 1. There are three
main aspects with respect to our self-splitting learning rules.

(I1) How to group the training patterns into clusters?
(I2) Which component should be split into a pair of new

components?
(I3) How many components are enough for representing

the distribution of the training patterns?
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On issue (I1)

After EM, each x(t) ∈ X is distributed to the EM cluster
whose Gaussian component has the largest posterior prob-
ability given x(t); that is, let x(t) belong to EM cluster j if
j = arg maxr p(Θr|x(t)).

On issue (I2)

For each EM cluster, we need to calculate the value of
∆BIC21(EM cluster) (∆BIC21(EM cluster) = BIC(GMM2,
EM cluster)−BIC(GMM1, EM cluster)). GMM1 models the
EM cluster with a single Gaussian component while GMM2

models the EM cluster with a mixture of two Gaussian com-
ponents. The mean vector and covariance matrix of GMM1

can be optimally estimated in an analytic way (respectively,
the sample mean vector and sample covariance matrix of
EM cluster) while those of GMM2 must be estimated by
the EM algorithm. We first use K-means clustering (here,
K = 2) to find two initial mean vectors of GMM2, and
then apply EM learning to fine-tune the parameters. Sup-
pose µ is the mean vector of GMM1, we use µ − ε and µ + ε
as the initial centroids of the K-means clustering, where ε
is a constant vector. The component which corresponds to
the EM cluster that has the largest value of ∆BIC21 is split
into two new components. According to the definition of
BIC, the larger the ∆BIC21 is, the higher the confidence that
GMM2 fits the corresponding EM cluster better than GMM1

does.

On issue (I3)

After the jth split, the number of components grows to
j + 1 and these Gaussian components are used as the ini-
tial values of EM to train the GMM j+1 over X. The value of
BIC(GMM j+1, X) is estimated at the end of EM training. The
BIC values of GMMs with an increasing number of mixture
components form a learning curve (i.e., the BIC plot). The
learning process stops when a “significant maximum” in the
learning curve is found. Given that the SGML has generated
{GMM1, GMM2, . . . , GMMM}, if BIC(GMMM−SRange, X) is
the maximum among the BIC values from BIC(GMM1, X) to
BIC(GMMM , X), the “significant maximum” in the learning
curve is found and the SGML will stop and output the model
corresponding to the “significant maximum,” GMMM−SRange;
otherwise, the SGML will continue to train GMMM+1. Here,
SRange is a positive integer, and around 5 is a reasonable
choice according to our experience.

3.1.1. Complexity analysis of SGML

To simplify the analysis, we assume that both K-means and
EM stop when a predefined iteration number is reached. Let
TKM(k,D) denote the computation needed to apply the K-
means clustering algorithm in the data set D for initializing
the parameters of a GMMk and let TEM(GMMk,D) denote
the computation needed to use EM for learning GMMk from
D given an initial model parameter set. The computation
needed to train GMMk from X using the conventional learn-
ing process; that is, K-means followed by EM, is TKM(k, X) +
TEM(GMMk, X) (random mean selection for initialization of

K-means) or
∑k

i=1 TKM(i, X) + TEM(GMMk, X) (incremen-
tal mean splitting for initialization of K-means). Therefore,
the total amount of computation required to select the best
model by incrementing the Gaussian component number
is roughly

∑kmax
k=1 [TKM(k, X) + TEM(GMMk, X)]. Young and

Woodland [24] proposed to successively increment the mix-
ture component from a single one. Their method split the
mean vector of the Gaussian component with the largest
weight into two new ones in each splitting step, and then per-
formed EM to update all Gaussian components. Since there
is no K-means involved in their method, the total computa-
tion is

∑kmax
k=1 TEM(GMMk, X).

For the proposed SGML, as shown in Algorithm 1, the
computation needed in the splitting step for incrementing
GMMR to GMMR+1 is the computation needed to com-
pute the sample mean vectors and sample covariance ma-
trices for all clusters,

∑R
j=1 TEM(GMM1, EM cluster j), plus

the computation needed to apply K-means (K = 2) fol-
lowed by EM to train GMM2 for all clusters,

∑R
j=1[TKM(2,

EM cluster j) + TEM(GMM2, EM cluster j)], while the com-
putation needed in the global EM learning step is
TEM(GMMR+1, X).

∑R
j=1 TEM(GMM1, EM cluster j) is al-

most equal to TEM(GMM1, X). From (4), it is obvi-
ous that TEM(GMMk, X) is proportional to the com-
ponent number k and the amount of the training
data X. TKM(k, X) has the same property too. There-
fore,

∑R
j=1 TKM(2, EM cluster j) can be approximated by

TKM(2, X), while
∑R

j=1 TEM(GMM2, EM cluster j) can be ap-
proximated by TEM(GMM2, X). In comparison with the
method proposed by Young and Woodland [24], the
SGML has an overhead of TEM(GMM1, X) + TKM(2, X) +
TEM(GMM2, X) in each splitting step. TEM(GMM1, X) is
much smaller than (1/2)TEM(GMM2, X) because no like-
lihood calculation is involved in estimating GMM1. Fur-
thermore, TKM(2, X) is much smaller than TEM(GMM2, X)
too. Therefore, the overhead is just slightly higher than
TEM(GMM2, X). In other words, when R � 2, the over-
head for incrementing GMMR to GMMR+1 is negligible since
TEM(GMM2, X) is much smaller than TEM(GMMR+1, X).

3.2. The fast SGML

The computation requirement becomes an important issue
when the training set is very large. A fast learning procedure
is therefore desirable. Since we can validate whether GMM2

fits a cluster better than GMM1 does via the BIC, a straight-
forward idea is to split all the clusters whose ∆BIC21 val-
ues are larger than a splitting confidence; that is, the con-
fidence threshold for splitting, in each splitting step. The
learning process stops when the ∆BIC21 of all clusters are
less than the splitting confidence. We call this approach the
fast SGML. The fast SGML needs a much lower compu-
tation requirement than the SGML because it allows mul-
tiple splits in the splitting step. The fast SGML resembles
the LBG algorithm [5], but a crucial difference is that the
LBG algorithm successively splits each of the clusters into
two clusters until a given cluster number is reached and no
validation measure is applied while splitting. To avoid the
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BEGIN
(1) Initialization: same as the SGML.

(2) Data clustering: same as the SGML.

(3) Splitting components:
(a) for each EM clusteri:

if ∆BIC21(EM clusteri) > splitting confidence,
split the component corresponding to EM clusteri into two components;
compoNum = compoNum + 1;

(b) if no component is split in (a),
return GMM set(compoNum); goto END.

(4) Global EM learning:
perform EM learning to fine-tune the Gaussian components obtained at Step 3;
if the learning curve starts to go down

let bestNum be the component number which has the maximum value
in the learning curve;
return GMM set(bestNum); goto END;

else
goto 2;

END

Algorithm 2: The fast SGML algorithm.

overfitting condition caused by a too small splitting con-
fidence, the fast learning procedure stops not only when
the ∆BIC21 of all clusters are less than the splitting confi-
dence but also when the learning curve starts to go down.
The details of the fast learning algorithm are illustrated in
Algorithm 2.

4. EXPERIMENTAL RESULTS

We have evaluated the proposed learning algorithms on two
tasks. The first task involves applying the SGML algorithm
in automatic clustering of a synthetic data set. The second
task involves using the SGML algorithm to train speaker
GMMs for the text-independent speaker identification appli-
cation. In each task, the performance of the proposed learn-
ing algorithm was compared with that of the other EM-based
learning approaches whose initial mean vectors of GMMs
were located by hierarchical clustering-based or K-means
clustering-based techniques, including the following.

(1) Hier-ComLink method. The initial Gaussian mean
vectors in EM were determined by complete-link hi-
erarchical clustering.

(2) Hier-SLink method. The initial Gaussian mean vec-
tors in EM were determined by single-link hierarchical
clustering.

(3) Hier-CenLink method. The initial Gaussian mean vec-
tors in EM were determined by centroid-link hierar-
chical clustering.

(4) K-means-random method. The initial Gaussian mean
vectors in EM were determined by K-means cluster-
ing, in which the initial centroids of the K-means
clustering algorithm were randomly selected from the
training patterns.

(5) K-means-BinSplitting method [5]. The initial Gaus-
sian mean vectors in EM were determined by the LBG

algorithm, in which each mean vector was split into
two new ones in each splitting step until the desired
number of clusters was reached.

(6) K-means-IncSplitting method [25]. The initial Gaus-
sian mean vectors in EM were determined by the in-
cremental splitting K-means algorithm, in which only
the mean vector of the cluster with the largest total er-
ror was split into two new ones in each splitting step
until the desired number of clusters was reached.

(7) EMSplitByMaxWeight method [24]. This method split
the mean vector of the Gaussian component with the
largest weight into two new ones in each splitting step,
and then performed EM to update all Gaussian com-
ponents. The number of mixture component was in-
cremented from one to a predefined number.

4.1. The synthetic data clustering task

The synthetic data set, as shown in Figure 1a, was drawn
from a distribution of six Gaussian clusters, and each clus-
ter contains 100 samples. Figure 1 depicts how a full co-
variance GMM with six mixture components was learned
in stages from the above synthetic data set by the SGML al-
gorithm. The SGML algorithm stopped at GMM11 and ob-
tained a “significant maximum” at GMM6. The result indi-
cates that the SGML algorithm performed very well in au-
tomatic clustering of the synthetic data set. We have also
tested the other methods on the same synthetic data set.
In this experiment, all the Gaussian components are of
full covariance and the number of mixture components of
all methods is limited to an upper bound of 13. Figure 2
shows the learning curves obtained by various methods.
We found that, except for the K-means random, all the
methods could estimate the parameters of GMMk (k =
1, 2, . . . , 13) almost as well as the SGML on the synthetic data
set.
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Figure 1: The learning process of applying the SGML in the synthetic data, in which full covariance GMMs were used.

When we used the diagonal covariance GMMs for the
same task, as shown in Figure 3, the SGML grouped the syn-
thetic data into ten clusters. From the perspective of “Gaus-
sian mixture modelling” instead of the perspective of “data
clustering,” the learning process could be divided into three
phases.

(1) The cluster-capturing phase (GMM1–GMM6). In this
phase, the SGML captures the locations of all the clus-
ters of the training data in the feature space roughly by
the self-splitting rules.

(2) The shape-smoothing phase (GMM7–GMM10). A di-
agonal covariance Gaussian component is unable to
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Figure 2: The learning curves of applying various methods in the synthetic data to learn full covariance GMMs.
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Figure 3: The learning curve of applying the SGML in the synthetic
data to learn diagonal covariance GMMs.

model a cluster which has a complex shape, and this
kind of cluster needs to be modelled by a mixture of
Gaussians. For example, as shown in Figure 1a, clus-
ters 3, 4, 5, and 6 are all oblique ellipses and each of
them needs to be modelled by a mixture of two Gaus-
sians. As a result, the learning curve in Figure 3 has the
highest BIC value at GMM10. It is obvious that the in-
crease of BIC value in the shape smoothing phase is
much smaller than that in the cluster-capturing phase.

(3) The overfitting phase (GMM11–). After reaching the
component number with the highest BIC value, the
SGML tends to overfit the training data in each split-
ting step and makes the learning curve go down pro-
gressively.

4.2. The text-independent speaker identification task
In the past several years, Gaussian mixture modelling has
been a predominant method used in speaker recognition ap-
plications [22, 23, 26, 27], out of its ability to provide smooth
approximations to arbitrarily shaped densities of long-term
spectrum that are considered related to the characteristics
of the speaker’s voice rather than the specific linguistic mes-
sage. More recently, the universal background model (UBM)
[27], which is a large GMM with many mixtures (e.g., 512),
has been successfully applied in GMM-UBM speaker recog-
nition systems.2 Conventionally, the component number of
the GMM is decided empirically. Both the issues of “How
to train the GMM?” and “How many components should
a GMM have?” have not yet been well addressed. The pro-
posed SGML algorithm aims to handle both issues simul-
taneously. This section investigates if the SGML is capable
of automatically determining model complexity for speaker
GMMs according to the amount and characteristics of train-
ing data. Without losing generality and for ease of discus-
sion, the speaker identification experiments were conducted

2In the GMM-UBM speaker recognition systems, the UBM is trained by
a lot of speech data from a large population, while the speaker GMMs are
adapted from the UBM by applying speaker adaptation techniques, such as
maximum a posteriori (MAP), on the speaker specific training data.
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using the conventional GMM method. From the perspec-
tive of data fitting, the SGML should be applicable to other
speaker recognition tasks such as speaker verification using
the GMM-UBM method.

4.2.1. Database description and feature selection

We have applied the proposed SGML to the text-independent
speaker identification task. The NIST 2001 cellular speaker
recognition evaluation database was used (see the bench-
mark tests at http://www.nist.gov/speech/tests/index.htm).
There are 74 male speakers and 100 female speakers in the
database, and each speaker has about 2 minutes of training
data and 10 test segments on average. The duration of the
test segments lies within the range of 2–54 seconds. In this
paper, 50 male speakers and 50 female speakers were used
for speaker identification experiments. Both the training data
and test data were first processed by a voice activity detec-
tor (VAD) to discard silence noise frames (see the VIMAS
speech codec at http://www.vimax.com and also [26, 27]).
After passing the VAD, the amount of training data for each
speaker lies within the range of 85–122 seconds, while the
duration of the corresponding test segments ranges from 3
to 54 seconds. There are 615 test segments for the selected
50 male speakers, and 596 test segments for the selected 50
female speakers.

In the front-end of speech processing, spectral analysis
was applied to a 32 millisecond frame of speech waveform ev-
ery 10 millisecond. For each speech frame, 24 mel-frequency
cepstral coefficients (MFCCs) were extracted as the observa-
tion feature vector.3 Cepstral mean substraction (CMS) was
applied in both training and test data for channel normaliza-
tion.

4.2.2. Results in training of speaker GMMs

In this section, we compared the performance of the SGML
and the other existing methods based on the training of
GMMs for speaker identification. Figure 4 shows the learn-
ing curves obtained by various methods on 15 second speech
data (corresponding to 1500 24-dimensional feature vectors)
from one particular male speaker in the NIST 2001 cellular
data. Figures 4a and 4b depict the full covariance case, while
Figures 4c and 4d depict the diagonal covariance case. Their
upper bounds of component number were limited to 15 and
40, respectively (in fact, the SGML stopped at GMM9 and
GMM21, respectively). The corresponding “significant max-
imum” of the learning curves of SGML are, respectively, at
GMM4 and GMM16, which are also, respectively, the global
maximum in the respective learning curves of SGML. We
can see that the learning curves of SGML are smoother than
those of the other methods. The self-splitting learning pro-
cess splits the cluster with the largest ∆BIC21 value in each
splitting step, and makes the learning curve go up steadily
before reaching the most appropriate component number.
After reaching the best component number, the learning

3We did not use energy information and delta MFCC in this work.

process tends to split a well-modelled cluster in each split-
ting step, and makes the learning curve go down progres-
sively. As shown in Figure 4, the BIC values of the GMMs
trained by the SGML are almost always higher than those of
the GMMs trained by the other methods at any component
number. As discussed in Section 2.2, with the same model
complexity, the higher BIC value indicates the higher log-
likelihood value. Therefore, the SGML also outperforms the
other methods in learning the GMM with a given component
number.

In many statistical pattern recognition tasks, the diago-
nal covariance GMM was used to model the probabilistic
distribution of the training patterns [10, 22, 28, 29]. In the
high dimension feature space case, the number of parame-
ters of a diagonal covariance Gaussian component is much
less than that of a full covariance one and, thus, a diagonal
covariance GMM often needs more components to model
the distribution of the training patterns than a full covari-
ance GMM does. In the following, we further investigate into
the learning of diagonal covariance GMMs from 60-second
speech data of one particular male speaker in the NIST 2001
cellular data. Figure 5 shows the learning curves of SGML,
fast SGML, and K-means-BinSplitting. The splitting confi-
dence of the fast SGML is 150 (fast SGML-150), 100 (fast
SGML-100), and 50 (fast SGML-50), respectively. The best
component numbers determined by SGML, fast SGML-150,
fast SGML-100, and fast SGML-50 were 40, 27, 37, and 43,
respectively, and hence, K-means-BinSplitting was forced to
stop at GMM43. It seems that fast SGML-150 and fast SGML-
100 underfit the training data while fast SGML-50 overfit
them. From the learning curve of SGML, we can see that the
GMMs with 30 to 50 components have similar BIC values
to GMM40 (the best model selected by the SGML). The fast
SGML can obtain a GMM with a very close BIC value and a
very close component number to the best GMM trained by
the SGML when the splitting confidence is defined appropri-
ately. Given a component number, the K-means-BinSplitting
always results in smaller BIC values than the fast SGML.

4.2.3. Results of speaker identification

Extensive speaker identification experiments were performed
in the gender dependent mode. All the GMMs used diagonal
covariance matrices. In each gender, 30-, 60-, and 90-second
speech data were used for training the GMMs. We run the ex-
periments in both the variable-length test utterance case and
the fixed-length test utterance case. In the variable-length
case, there are 615 test segments from male speakers and
596 test segments from female speakers. These test segments
range from 3 to 54 seconds as described in Section 4.2.1. In
the fixed-length case, each test segment was divided into ut-
terances of 3, 5, and 8 seconds, which yielded a total of 4714,
2706, and 1577 test utterances for male speakers, and 5583,
3234, and 1903 test utterances for female speakers. Notice
that dividing utterances into short fixed-length pieces might
result in nonindependent identification trials. However, the
experimental results can still show the performance of the
identification system being tested by short utterances.

http://www.nist.gov/speech/tests/index.htm
http://www.vimax.com


A GMM Learning Algorithm with Application to Speaker Identification 2635

151050

Number of components

−1.64

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48

−1.46
×105

B
IC

va
lu

es

Hier-ComLink
Hier-SLink
Hier-CenLink
SGML

(a)

151050

Number of components

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48

−1.46
×105

B
IC

va
lu

es

K-means-random
K-means-BinSplitting
K-means-IncSplitting
EMSplitByMaxWeight
SGML

(b)

4035302520151050

Number of components

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48
×105

B
IC

va
lu

es

Hier-ComLink
Hier-SLink
Hier-CenLink
SGML

(c)

4035302520151050

Number of components

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48
×105

B
IC

va
lu

es

K-means-random
K-means-BinSplitting
K-means-IncSplitting
EMSplitByMaxWeight
SGML

(d)

Figure 4: The learning curves of applying various GMM learning methods in the 15-second speech data of one particular male speaker in
the NIST 2001 cellular data. (a) and (b) depicts the full covariance case, while (c) and (d) depict the diagonal covariance case.

Tables 1 and 2 summarize the mean and standard devia-
tion of the component number of the male speaker GMMs
and female speaker GMMs, respectively, obtained by the
SGML and fast SGML on various amounts of training data.
The splitting confidence within the range of 100 to 150 seems
to be applicable for these two speaker identification tasks
since, based on which, the fast SGML yielded similar model

complexity of speaker GMMs compared to the SGML. Fur-
thermore, it is interesting to find that, on average, a fe-
male speaker GMM needs more Gaussian components than
a male speaker GMM, with the same amount of training
data. It seems that the distribution of training feature vec-
tors of a female speaker is more diverse than that of a male
speaker.
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Figure 5: The learning curves of applying SGML, fast SGML, and
K-means-BinSplitting in the 60-second speech data of one partic-
ular male speaker in the NIST 2001 cellular data to learn diagonal
covariance GMMs. The splitting confidence of the fast SGML was
150, 100, and 50, respectively, and the K-means-BinSplitting was
forced to stop at GMM43.

Reynolds and Rose [22] concluded that there was no
significant difference in speaker identification performance
between K-means with randomly selected initial means
and binary-splitting K-means clustering for initialization of
GMM parameters. In this study, the K-means-BinSplitting
was applied in the baseline GMM-based speaker identifica-
tion system. Tables 3 and 4 show, respectively, the identifica-
tion performance of the male and female speakers, in which
the K-means-BinSplitting, SGML, and fast SGML methods
were performed on various amounts of training speech data.
In Table 3, in the male speaker case of 30 second training
speech, the identification accuracy of K-means-BinSplitting
was first improved by increasing the component number
from 8 to 16, and then degraded by further increasing the
component number to 32 and 64 due to the overfitting of
the training process. In this case, the SGML yielded 23.92
Gaussian components on average for each male speaker, as
shown in Table 1. In Table 4, for the female speaker case, it
seems that the overfitting phenomenon is not as obvious as
that in the male case. For example, in the female speaker
case of 30 second training speech, a similar trend was ob-
served, and the baseline system achieved the best identifi-
cation accuracy with the component number 32. This con-
forms to the observation from Tables 1 and 2 that a female
speaker GMM in general needs more Gaussian components
than a male speaker GMM. In this case, the SGML yielded
29.44 components on average for each female speaker, as
shown in Table 2. In the cases of 60 second and 90 sec-

ond training speech in Tables 3 and 4, we can also ob-
serve that the SGML could automatically capture the ade-
quate model complexity for speaker GMMs according to the
amount and characteristics of training data, though no sig-
nificant difference was found between the results of SGML
and the best accuracies of K-means-BinSplitting under var-
ious training and testing conditions. We have also observed
that there is a huge performance gap between the female case
and the male case. This gap is obviously due to the diversity
of feature vectors of a female speaker. For the female case,
more training data are needed to cover the diverse feature
space.

We have also conducted the same experiments using K-
means-random and EMSplitByMaxWeight [24]. The exper-
imental results have the same trend as that of the K-means-
BinSplitting method and no significant difference in identifi-
cation accuracy was found between these three methods. For
example, as shown in Table 3, for the male speaker case of 90
second training speech and 64 Gaussian mixtures, the iden-
tification accuracies are 68.62, 61.99, 65.67, and 68.36, re-
spectively, when the speaker identification system trained by
the K-means-BinSplitting method was tested with variable-
length, 3 second, 5 second, and 8 second test utterances. The
accuracies are 69.92, 61.94, 65.34, and 68.67, respectively,
when the EMSplitByMaxWeight method was evaluated un-
der the same experimental condition, while they are 67.64,
60.54, 64.15, and 67.72, respectively, when the K-means-
random method was applied.

From Tables 3 and 4, we can find that the fast SGML in
general yielded as good performance as the SGML. Though
the fast SGML with different splitting confidence might re-
sult in GMMs with different numbers of components as
shown in Tables 1 and 2, there was no significant difference in
identification accuracy between these models. The splitting
confidence within the range of 100 to 150 seems to be appli-
cable for these two speaker identification tasks since, based
on which, the fast SGML yielded similar model complexity
of speaker GMMs and identification accuracy compared to
the SGML.

To further assess the statistical significance of the above
experimental results, we applied a bootstrap resampling pro-
cedure [30] to the case of 90-second training speech and
variable-length testing speech. The error bars obtained with
10 000 replications are shown in Figure 6, where the length
of the error bars represents the standard deviation above and
below the mean accuracy. It can be found that the error bars
of the SGML and the fast SGML overlap with the error bars
of the K-means-BinSplitting with 32 mixture components,
either in the male case or the female case.

From the speaker identification experimental results, we
can see that the proposed SGML and fast SGML could au-
tomatically find the appropriate component number for the
GMMs, though the identification accuracy was not signifi-
cantly improved as expected, compared to the best accuracies
of the baseline system. The fast SGML is almost as effective
as the SGML in the training of GMMs, but at a much lower
computation cost.
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Table 1: The mean and standard deviation of the component number of the diagonal covariance male speaker GMMs obtained by the SGML
and fast SGML on various amounts of training data. The first number in parentheses is the mean value while the second number after “/” is
the standard deviation.

Amount of training speech SGML
Splitting confidence (fast SGML)

150 100 50

30 s (23.92/5.07) (20.58/5.31) (25.32/6.63) (27.16/5.99)

60 s (35.96/6.90) (31.72/7.68) (38.22/9.26) (41.50/9.42)

90 s (46.70/9.23) (41.30/9.48) (48.58/11.13) (53.00/10.65)

Table 2: The mean and standard deviation of the component number of the diagonal covariance female speaker GMMs obtained by the
SGML and fast SGML on various amounts of training data. The first number in parentheses is the mean value while the second number after
“/” is the standard deviation.

Amount of training speech SGML
Splitting confidence (fast SGML)

150 100 50

30 s (29.44/4.59) (26.32/5.25) (31.70/5.97) (33.34/5.97)

60 s (45.06/7.18) (42.22/6.93) (50.26/7.85) (52.60/10.40)

90 s (58.26/7.63) (55.82/9.15) (65.16/10.16) (70.18/11.56)

Table 3: Speaker identification accuracy (%) for the male speakers.

Amount of
training speech

Length of test
utterance

Number of components (K-means-BinSplitting)
SGML

Splitting confidence (fast SGML)

8 16 32 64 150 100 50

30 s

Variable length 61.46 62.28 61.46 59.35 61.95 61.46 62.76 61.79

3 s 51.68 54.41 54.41 52.38 54.09 53.67 53.86 54.07

5 s 56.91 58.39 57.02 55.99 57.98 57.58 57.80 57.91

8 s 59.80 60.68 60.24 58.47 61.88 60.11 61.19 60.49

60 s

Variable length 63.25 66.02 66.34 65.85 66.67 66.67 67.15 66.83

3 s 54.29 58.38 58.91 59.29 59.10 59.65 59.80 59.16

5 s 58.94 61.90 62.82 62.12 63.45 62.75 63.19 62.75

8 s 61.95 65.25 66.14 65.88 66.39 66.65 67.22 66.77

90 s

Variable length 65.53 68.78 69.11 68.62 70.08 70.57 71.06 70.24

3 s 55.28 59.10 61.03 61.99 61.69 61.96 61.79 61.75

5 s 60.01 63.34 65.59 65.67 65.78 64.56 65.37 65.78

8 s 63.86 66.01 68.55 68.36 69.93 69.75 69.37 68.29

Table 4: Speaker identification accuracy (%) for the female speakers.

Amount of
training speech

Length of test
utterance

Number of components (K-means-BinSplitting)
SGML

Splitting confidence (fast SGML)

8 16 32 64 150 100 50

30 s

Variable length 29.87 32.21 35.07 30.37 30.54 33.05 29.87 30.70

3 s 27.48 28.46 30.41 29.50 29.09 29.30 27.66 29.23

5 s 29.87 30.55 32.25 30.49 30.67 31.29 28.76 31.08

8 s 31.11 31.90 33.95 32.00 33.00 33.00 30.74 32.79

60 s

Variable length 40.77 42.45 45.30 45.13 44.97 45.13 45.47 45.47

3 s 32.08 34.03 37.20 37.95 37.79 38.06 37.33 37.78

5 s 35.65 37.97 40.66 40.63 40.11 40.91 40.60 41.00

8 s 38.83 40.20 42.62 43.72 43.14 43.77 42.35 43.08

90 s

Variable length 42.95 43.62 48.83 48.49 47.32 47.48 47.65 48.49

3 s 32.12 35.41 39.03 40.66 41.78 40.78 40.64 41.00

5 s 35.62 38.74 42.92 44.47 44.34 44.53 44.59 45.24

8 s 38.52 42.35 46.19 47.08 47.50 47.08 46.82 47.24
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Figure 6: The error bars obtained by applying a bootstrap resampling procedure to the case of 90-second training speech and variable-length
testing speech. (a) The male speaker case. (b) The female speaker case.

5. CONCLUSIONS

In this paper, we have presented the SGML algorithm for the
learning of GMMs. The SGML algorithm tries to tackle two
long standing critical problems in the EM-based Gaussian
mixture modelling; namely, (1) the difficulty in determining
the number of Gaussian components and (2) the sensitivity
to prototype initialization. The SGML algorithm is based on
a splitting validity criterion, BIC. During the learning pro-
cess, according to the splitting validity criterion (BIC), the
prototype with the largest ∆BIC21 value is split into two pro-
totypes. The learning process automatically terminates when
a significant maximum in the learning curve (i.e., the BIC
plot) is observed.

A fast version of the SGML, named fast SGML, was also
presented in this paper. The fast SGML splits multiple pro-
totypes in each splitting step and, thus, needs a much lower
computation requirement than the SGML. The fast SGML is
somewhat like the LBG algorithm [5], but a crucial differ-
ence is that there is no validation measure to decide whether
a cluster should be split into two clusters and how many clus-
ters should be generated in the LBG algorithm.

We have conducted extensive experiments on clustering
of a synthetic data set and text-independent speaker iden-
tification. Compared to the other EM-based Gaussian mix-
ture modelling approaches, both the SGML and fast SGML
achieved a noticeable improvement in the training of GMMs.
In the speaker identification, the proposed algorithms could
automatically find out the suitable model complexity for the
speaker GMMs though no significant improvements in iden-
tification accuracy were obtained compared to the best per-
formance of the baseline system.
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