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Abstract—This paper proposes two intelligent evolutionary
algorithms IEA and IMOEA using a novel intelligent gene col-
lector (IGC) to solve single and multiobjective large parameter
optimization problems, respectively. IGC is the main phase in an
intelligent recombination operator of IEA and IMOEA. Based on
orthogonal experimental design, IGC uses a divide-and-conquer
approach, which consists of adaptively dividing two individuals of
parents into pairs of gene segments, economically identifying
the potentially better one of two gene segments of each pair, and
systematically obtaining a potentially good approximation to the
best one of all combinations using at most 2 fitness evaluations.
IMOEA utilizes a novel generalized Pareto-based scale-indepen-
dent fitness function for efficiently finding a set of Pareto-optimal
solutions to a multiobjective optimization problem. The advan-
tages of IEA and IMOEA are their simplicity, efficiency, and
flexibility. It is shown empirically that IEA and IMOEA have high
performance in solving benchmark functions comprising many
parameters, as compared with some existing EAs.

Index Terms—Evolutionary algorithm (EA), genetic algorithm
(GA), intelligent gene collector (IGC), multiobjective optimization,
orthogonal experimental design.

I. INTRODUCTION

THE GREAT success for evolutionary computation tech-
niques, including evolutionary programming (EP), evolu-

tionary strategy (ES), and genetic algorithms (GAs), came in
the 1980s when extremely complex optimization problems from
various disciplines were solved, thus facilitating the undeni-
able breakthrough of evolutionary computation as a problem-
solving methodology [1]. Inspired from the mechanisms of nat-
ural evolution, evolutionary algorithms (EAs) utilize a collec-
tive learning process of a population of individuals. Descen-
dants of individuals are generated using randomized operations
such as mutation and recombination. Mutation corresponds to
an erroneous self-replication of individuals, while recombina-
tion exchanges information between two or more existing in-
dividuals. According to a fitness measure, the selection process
favors better individuals to reproduce more often than those that
are relatively worse [1].
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EAs have been shown to be effective for solving NP-hard
problems and exploring complex nonlinear search spaces as
efficient optimizers. To solve many intractable engineering
optimization problems comprising lots of parameters using
EAs, these parameters are encoded into individuals where each
individual represents a search point in the space of potential
solutions. A large number of parameters would result in a large
search space. Based on schema theorem, KrishnaKumar et al.
[2] indicated that GAs need an enormously large population
size and, hence, a large number of function evaluations for
effectively solving a large parameter optimization problem
(LPOP). Thierens et al. [3] derive time complexities for the
boundary case which is obtained with an exponentially scaled
problem (BinInt) having building blocks (BBs) and show that
this domino convergence time complexity is linear for
constant intensity selection (such as tournament selection and
truncation selection) and exponential for proportionate
selection. Nowadays, it is difficult for conventional EAs to
effectively solve LPOPs.

In this paper, we propose two intelligent evolutionary algo-
rithms IEA and IMOEA using a novel intelligent gene collector
(IGC) to solve single- and multiobjective LPOPs, respectively.
IGC is the main phase in an intelligent recombination operator
of IEA and IMOEA. Based on orthogonal experimental design
[4]–[7], IGC uses a divide-and-conquer approach, which con-
sists of adaptively dividing two individuals of parents into
pairs of gene segments, economically identifying the better one
of two gene segments of each pair, and systematically obtaining
a potentially good approximation to the best one of all combi-
nations using at most fitness evaluations. IMOEA utilizes a
novel generalized Pareto-based scale-independent fitness func-
tion for efficiently finding a set of Pareto-optimal solutions to
a multiobjective optimization problem. The advantages of IEA
and IMOEA are their simplicity, efficiency, and flexibility. It
will be shown empirically that IEA and IMOEA have high per-
formance in solving benchmark functions comprising many pa-
rameters, as compared with some existing EAs.

The remainder of this paper is organized as follows. Section II
presents the used orthogonal experimental design (OED) for
IGC and the merits of the proposed OED-based EAs. Section III
gives the proposed intelligent gene collector IGC. Section IV
describes the IGC-based IEA and IMOEA. In Section V, we
compare IEA with some existing EAs using benchmark func-
tions comprising various numbers of parameters. In Section VI,
we compare IMOEA with some existing multiobjective EAs by
applying them to solving multiobjective 0/1 knapsack problems
and benchmark functions. Section VII concludes this paper.
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II. ORTHOGONAL EXPERIMENTAL DESIGN (OED)

A. Used OED

Experiments are carried out by engineers in all fields to com-
pare the effects of several conditions or to discover something
new. If an experiment is to be performed efficiently, a scientific
approach to planning it must be considered. The statistical de-
sign of experiments is the process of planning experiments so
that appropriate data will be collected, a minimum number of
experiments will be performed to acquire necessary technical
information, and suitable statistic methods will be used to ana-
lyze the collected data [4].

An efficient way to study the effect of several factors si-
multaneously is to use OED with both orthogonal array (OA)
and factor analysis. The factors are the variables (parameters),
which affect response variables, and a setting (or a discrimi-
native value) of a factor is regarded as a level of the factor. A
“complete factorial” experiment would make measurements at
each of all possible level combinations. However, the number
of level combinations is often so large that this is impractical,
and a subset of level combinations must be judiciously selected
to be used, resulting in a “fractional factorial” experiment [6],
[7]. OED utilizes properties of fractional factorial experiments
to efficiently determine the best combination of factor levels to
use in design problems.

An illustrative example of OED using an objective function
is given as follows:

maximize

and (1)

This maximization problem can be regarded as an experimental
design problem of three factors, with two levels each. Let fac-
tors 1, 2, and 3 be parameters , , and , respectively.
Let the smaller (larger) value of each parameter be the level
1 (level 2) of each factor. The objective function is the re-
sponse variable. A complete factorial experiment would eval-
uate 2 level combinations, and then the best combination

with can be obtained. The
factorial array and results of the complete factorial experiment
are shown in Table I. A fractional factorial experiment uses a
well-balanced subset of level combinations, such as the first,
fourth, sixth, and seventh combinations. The best one of the four
combinations is with . Using
OED, we can reason the best combination (2, 3, 5) from ana-
lyzing the results of the four specific combinations, described
below.

OA is a fractional factorial array, which assures a balanced
comparison of levels of any factor. OA is an array of numbers
arranged in rows and columns, where each row represents the
levels of factors in each combination, and each column repre-
sents a specific factor that can be changed from each combina-
tion. The term “main effect” designates the effect on response
variables that one can trace to a design parameter [5]. The array
is called orthogonal because all columns can be evaluated inde-
pendently of one another, and the main effect of one factor does
not bother the estimation of the main effect of another factor
[6], [7].

TABLE I
EXAMPLE OF A COMPLETE FACTORIAL EXPERIMENT

Let there be factors, with two levels each, used in IGC. The
total number of level combinations is for a complete facto-
rial experiment. To use an OA of factors, we obtain an integer

, where the bracket represents a ceiling oper-
ation, build a two-level OA with rows and
columns, use the first columns, and ignore the other
columns. For example, if , then and

is used. The numbers 1 and 2 in each column indicate
the levels of the factors. Each column has an equal number of 1s
and 2s. The four combinations of factor levels, (1,1), (1,2), (2,1),
and (2,2), appear the same number of times in any two columns.
The “L” stands for Latin, since most of these designs are based
on classical Latin Square layouts, appropriately pruned for effi-
ciency [5]. For example, an is as follows:

Note that the OA is the above-mentioned well-bal-
anced subset of the complete factorial experiment in Table I.
OA can reduce the number of combinations for factor analysis.
The number of OA combinations required to analyze all indi-
vidual factors is only , where . An algorithm
for generating a two-level OA for factors is given as follows.

Algorithm Generate_OA( , )
{

;
for to do
for to do

;
;

;
while do
if and

then
;

;
;
;

} // returns the
th least significant bit of , where

. //
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For IGC, levels 1 and 2 of a factor represent selected genes
from parents 1 and 2, respectively. After evaluation of the
combinations, the summarized data are analyzed using factor
analysis. Factor analysis can evaluate the effects of individual
factors on the objective (or fitness) function, rank the most
effective factors, and determine the better level for each factor
such that the function is optimized. Let denote a function
value of the combination , where . Define the
main effect of factor with level as , where
and , 2

(2)

where if the level of factor of combination is ;
otherwise, . Considering the case that the optimization
function is to be maximized, the level 1 of factor makes a better
contribution to the function than level 2 of factor does when

. If , level 2 is better. On the contrary, if
the function is to be minimized, level 2 (level 1) is better when

. If , levels 1 and 2 have
the same contribution. The main effect reveals the individual
effect of a factor. The most effective factor has the largest main
effect difference . Note that the main effect
holds only when no or weak interaction exists, and that makes
the OED-based IGC efficient.

After the better one of two levels of each factor is deter-
mined, a reasoned combination consisting of factors with
better levels can be easily derived. The reasoned combination
is a potentially good approximation to the best one of the
combinations. OED uses well-planned procedures in which cer-
tain factors are systematically set and modified, and then main
effects of factors on the response variables can be observed.
Therefore, OED using OA and factor analysis is regarded as a
systematic reasoning method.

A concise example of OED for solving the optimization
problem with (1) is described as follows (see Table II). First,
use an , set levels for all factors as above mentioned, and
evaluate the response variable of the combination , where

. Second, compute the main effect where ,
2, 3, and , 2. For example, . Third,
determine the better level of each factor based on the main
effect. For example, the better level of factor 1 is level 2 since

. Therefore, select . Finally, the best combina-
tion (Comb1) can be obtained, which is
with .1 The most effective factor is with the largest

. It can be verified from (1). The second best
combination (Comb2) is , which can be
derived from the best one by replacing level 1 with level 2 of
(the factor with the smallest ). If only OA combinations
without factor analysis are used, as did in the orthogonal GA
with quantization (OGA/Q) [8], the best combination Comb1
cannot be obtained.

1The reasoned combination is not guaranteed to be the best one in general
cases.

TABLE II
CONCISE EXAMPLE OF OED USING AN L (2 )

B. Merits of the Proposed OED-Based EAs

The OED-based methods have been recognized as a more
efficient alternative to the traditional approach, such as one-
factor-at-a-time method and acceptance sampling [4]–[7]. OED
ensures an unbiased estimation of the effects of various factors
on response variables and also plays an important role in de-
signing an experiment of the Taguchi method [5], [9]. The merits
of IEA and IMOEA are that they can simultaneously tackle
the following four issues of the investigated LPOP by incorpo-
rating the advantages of OED into EAs. However, most existing
studies on robust design using OED have addressed only part of
the four issues, described below.

1) Full-Range Process of Continuous Parameters: If data
type of parameters is continuous, it is hard for engineers to de-
cide the number of factor levels and determine the best level
settings, especially considering many parameters. Therefore, an
iterative method is suggested to approximate the level settings
with a small number of levels and then determine the most ap-
propriate level settings by a nonlinear programming method
[10]. Kunjur and Krishnamurty [11] proposed an iterative pro-
cedure to identify the feasible domains of parameters and then
narrow the domains for tuning of a full-range process. Leung
and Wang [8] proposed a single-objective GA using OAs for
global numerical optimization that each continuous parameter
is quantized into a finite number of values.

2) Multiple Objectives and Constraints: As to multiobjec-
tive optimization problems with constraints, the overall aggre-
gating objective function using a penalty strategy is often used
by the Taguchi method. However, the optimization of multiple
objectives by using an aggregating function would possibly lead
to erroneous results and fail to find a proper Pareto front, be-
cause of the difficulty involved in making the tradeoff deci-
sions to arrive at this single expression [11]–[13]. OED-based
approaches using the response surface methodology for opti-
mization of multiple objectives vary from overlaying contours
and surface plots of each objective function to the derivation of
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complex functions [5]. These available optimization approaches
using the response surface methodology do not enable the si-
multaneous optimization of multiple objectives [12], [13].

3) Large Number of Parameters: In traditional OED-based
approaches, most of them dealt with few factors. It is not
easy to design OED when the numbers of factors and levels
increase, and the requirement of avoiding confounding effects
due to interaction effects are imposed [5], [7], [10]. Some ad
hoc methods such as multiple plots, engineering heuristics, and
prior knowledge are used in OED-based approaches to opti-
mizing multiple objectives [10]. Antony [13] uses Taguchi’s
quality loss function and principal component analysis for
transforming a set of correlated responses into a small number
of uncorrelated principal components to achieve an overall
aggregating function. Elsayed and Chen [14] proposed an
approach for product parameter setting that lists all possible
values of the responses in a table and directly selects optimal
levels of the factors. A major disadvantage of these ad hoc
OED-based approaches is that the factors are often with un-
equal numbers of levels, so that some special design techniques
must be performed by the experimenter, such as multilevel
arrangements, dummy treatment, combination design, and idle
column method, etc., [4], [7], [10].

4) Enumeration of Nondominated Solutions: A major draw-
back of the traditional OED-based approaches is that it is dif-
ficult to enumerate a set of nondomination solutions, because
these approaches are designed for producing a single solution
per single run. Song et al. [15] extended the Taguchi method and
developed a discrete multiobjective optimization algorithm that
incorporates the methods of dominated approximations and ref-
erence points to obtain nondominated solutions. The proposed
discrete algorithm is shown to be more efficient for complex
design problems involving many factors and multiple objec-
tives. However, this approach is unable to effectively enumerate
nondominated solutions to the large multiobjective optimization
problems.

IEA and IMOEA take advantage of the reasoning ability of
OED in selecting the potentially best combination of better
levels of factors to efficiently identify good genes of parents and
then generate good children. The divide-and-conquer mecha-
nism of IGC based on OED can cope with the problem of many
parameters. The evolution ability of EA will be used to tune
the levels in the full-range process of continuous parameters.
Furthermore, the evolution ability of IEA and IMOEA can com-
pensate OED excluding the study of interactions existed in the
generalized single- and multiobjective optimization problems
with constraints. In addition, IMOEA can economically find
satisfactory nondominated solutions without further interactive
process or specified reference point [16] from decision makers
to guide evolution to Pareto-optimal solutions.

III. INTELLIGENT GENE COLLECTOR (IGC)

It is well recognized that divide-and-conquer is an efficient
approach to solving large-scale problems. Divide-and-conquer
mechanism breaks a large-scale problem into several subprob-
lems that are similar to the original one but smaller in size,

solves the subproblems concurrently, and then combines these
solutions to create a solution to the original problem. IGC is
the main phase in an intelligent recombination operator of IEA
and IMOEA. It uses a divide-and-conquer approach, which con-
sists of three phases: 1) division phase: divide large chromo-
somes into an adaptive number of gene segments; 2) conquest
phase: identify potentially good gene segments such that each
gene segment can possibly be one part of an optimal solution;
and 3) combination phase: combine the potentially better gene
segments of their parents to produce a potentially good approx-
imation to the best one of all combinations of gene segments.

A. Division Phase

Before the IGC operation, we ignore the parameters having
identical values in two parents such that the chromosomes can
be temporally shortened resulting in using small OAs. Let
be the size of chromosomes represented by using bit string, bit
matrix, integer, or real number, etc. Using the same division
scheme with/without prior knowledge, divide two chromosomes
of nonidentical parents into pairs of gene segments
with sizes , , such that

and (3)

and the alleles of gene segments in the same pair are not
identical. If the maximal value of equals one, the IGC oper-
ation is not necessarily applied. One IGC operation can explore
the search space of combinations by reasoning to obtain a
good child using at most fitness evaluations. If there exists
no or weak interactions among gene segments, a larger value
of can make IGC more efficient. Generally, a larger value of

can make the estimated main effects of gene segments more
accurate. Considering the tradeoff, the best values of and
depend on the interaction degree of problem’s encoding param-
eters in a genotype. An efficient bi-objective division criterion
is to minimize the degree of epistasis, which is taken as a mea-
sure of the amount of interactions in a chromosome [17], while
maximizing the value of . If the epistasis is low, the commonly
used value of is , where the bracket rep-
resents a floor operation and, thus, the used OA is ,
where is the number of parameters participated in the divi-
sion phase. This value of is a maximal one which can make
efficient use of all columns of OA. The cut points are
randomly specified from the candidate cut points which
separate individual parameters. Since gene segment is the unit
of exchange between parents in the IGC operation, the feasi-
bility maintenance is often considered in the division phase such
that all combinations of gene segments are feasible. If feasibility
maintenance is considered or the epistasis is high, the best value
of is problem-dependent.

A simple example of using an OED-based EA for solving a
polygonal approximation problem (PAP) is given to illustrate
the efficient division of chromosomes [18]. The statement of
PAP is as follows: for a given number of approximating ver-
tices which are a subset of the original with points, the ob-
jective is to minimize the error between the digital contour of
a 2-D shape and the approximating polygon. The optimization
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problem is NP-hard having a search space of instances,
i.e., the number of ways of choosing vertices out of points.
The feasible solution is encoded using a binary string that the
numbers of 1’s and 0’s are and , respectively. The bit
has value 1 when the corresponding point is selected. Since the
neighboring points have larger interactions than distant ones,
two neighboring points are encoded as two neighboring bits in
genotypes.

The criterion of chromosome division is to determine a max-
imal number of pairs of gene segments such that the num-
bers of 1’s in every pair of gene segments of parents are equal
and these alleles of two gene segments are not identical. If no
such cut points exist, the recombination operation will not be ap-
plied before performing mutation operations. For instance, let

and . Two feasible parents and can be
divided using as follows: and

. Consequently, an is used, where
one gene segment is treated as a factor. This division criterion
guarantees that all possible combinations of gene segments al-
ways remain feasible.

It is shown that the necessity of maintaining feasibility can
make the OED-based recombination more efficient than the
penalty approach [18]. If it is difficult to divide the chromo-
somes such that all possible combinations of gene segments
always remain feasible, an additional repair operation on
individual gene segments before the recombination can be
advantageously used [19]. For a 0/1 optimization problem with
no constraints and low epistasis, 1 bit can be treated as a gene
segment [20].

B. Conquest Phase

IGC seeks the best combination consisting of a set of good
gene segments. The aim of the conquest phase is to identify good
gene segments according to the main effect of factors (gene seg-
ments). It is desirable to evolve these good gene segments based
on the evolution ability of EA such that a set of optimal gene
segments can exist in a population. Consequently, all these op-
timal gene segments can be collected to form an optimal solu-
tion through the combination phase. The following aspects may
be helpful in obtaining optimal gene segments.

1) Initial Population: In general, an initial population is ran-
domly generated. OED has been proven optimal for additive and
quadratic models, and the selected combinations are good rep-
resentatives for all of the possible combinations [21]. Since OA
specifies a small number of representative combinations that are
uniformly distributed over the whole space of all possible com-
binations, IEA and IMOEA can generate these representative
combinations and select a number of combinations having the
best fitness performance as the initial population, as similarly
did in OGA/Q [8]. Generally, this OA-based initial population is
helpful for optimizing functions with high epistasis. For LPOP,
the OA-based initial population often takes a large number of fit-
ness evaluations because this method is effective when the res-
olution of quantization is relatively high. For a set of real-world
intractable engineering problems, only a small number of sam-
ples are available or a fitness evaluation takes many costs. In
such cases, this approach to generating an initial population is
not practical.

2) Increasing Diversity: Since gene segment is the unit of
inheritance from parents for each IGC operation, it is important
to increase the diversity of gene segments in the evolutionary
process. Besides the above-mentioned initial population, it is a
useful strategy to use variable division configurations and dy-
namic values of and . Generally, cut points/lines can be ran-
domly specified provided that the meaningful gene segments be-
having as tightly linked BBs are not easily destroyed if possible.
The values of and may vary in each recombination step for
various purposes, such as maintaining feasibility of recombi-
nation [18], using a coarse-to-fine approach where the sizes of
gene segments are gradually decreased [19], and speeding up
the evolution process by ignoring the genes having the same al-
leles in two parents to temporally shorten chromosomes [20].

C. Combination Phase

The combination phase aims to efficiently combine good gene
segments from two parents and to breed two good chil-
dren and using IGC at a time. How to perform an IGC
operation with the combination phase is described as follows.

Step 1) Ignore the parameters having identical values in two
parents such that the chromosomes can be tempo-
rally shortened resulting in using small OAs.

Step 2) Adaptively divide parent chromosomes into
pairs of gene segments, where one gene segment is
treated as a factor.

Step 3) Use the first columns of an , where
.

Step 4) Let levels 1 and 2 of factor represent the th gene
segments of chromosomes coming from parents
and , respectively.

Step 5) Compute the fitness value of the combination ,
where .

Step 6) Compute the main effect , where
and , 2.

Step 7) Determine the better one of two levels of each factor
based on main effect.

Step 8) The chromosome of is formed using the combi-
nation of the better gene segments from the derived
corresponding parents.

Step 9) The chromosome of is formed similarly as ,
except that the factor with the smallest adopts
the other level.

In Step 1), the number of parameters participating in the IGC
operation would be gradually decreased, while the evolution
proceeds with a decreasing number of nondeterminate parame-
ters. This behavior can reduce the number of fitness evaluations
for one IGC operation and, thus, can helpfully solve LPOPs.
Note that and are only different in one factor. In some
applications of LPOPs, one factor may represent one parameter.
In other words, if and are almost the same, it may be not
necessary to generate as a child using Step 9). Various vari-
ants of generating can be adaptively used depending on evo-
lutionary computation techniques and parameter specifications
of EA.

An additional step [Step 10)] can be appended to the IGC
procedure for the elitist strategy of IEA as follows.
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Step 10) Select the best two individuals from the generated
combinations, , , and as the final children.

Note that is the combination 1 in Step 5). Step 10) can pro-
vide valuable information for determining an effective value of

. If and are often superior to the conducted combina-
tions, it means the used value of is appropriate. Otherwise, it
means the main effect is inaccurate resulting from high epistasis
such that the value of can be further decreased.

IV. PROPOSED ALGORITHMS IEA AND IMOEA

The main power of IEA and IMOEA arises mainly from
IGC. The merit of IGC is that the reasoning ability of OED is
incorporated in IGC to economically identify potentially better
gene segments of parents and intelligently combine these better
gene segments to generate descendants of individuals. The su-
periority of IGC over conventional recombinations for solving
LPOPs arises from that IGC replaces the generate-and-test
search for descendants with a reasoning search method and
applies a divide-and-conquer strategy to cope with large-scale
problems.

A. Chromosome Encoding

A suitable way of encoding and dividing the chromo-
some into gene segments plays an important role in
efficiently using IGC. The modifying genetic operator
strategy invents problem-specific representation and specialized
genetic operators to maintain the feasibility of chromosomes.
Michalewicz et al. have pointed out that often such systems
are much more reliable than any other GAs based on penalty
approaches [22]. An experienced engineer of using IGC tries to
use appropriate parameter transformation to reduce interactions
among parameters and confine genetic search within feasible
regions.

Arguably, one way to achieve an improved EA is to find
out a set of BBs in genotypes that are responsible for the
properties of interest using statistical analysis. Afterwards, the
EA attempts to produce the next population of the organizm
using genotypes that contain more useful BBs utilizing various
types of intervention in the crossover operator [23]. The im-
proper encoding of chromosomes may result in loose BBs with
high order. Estimation of distribution algorithms (EDAs) may
consider interactions among high-order BBs to facilitate EAs
in efficiently mixing the BBs [24]. Statistic methods used by
EDAs for extracting information need lots of samples and, con-
sequently, cost much computation time, especially in solving
LPOPs. Since it is difficult to detect the loose linkage groups
and inherit the high-order BBs, it is desirable to incorporate
the linkage group existent in the underlying structure of the
problem in encoding chromosomes.

The behavior of gene segments is to be expected as that of
tightly linked BBs with low order. If epistasis is too high, the
performance of EAs will be very poor [17]. To accurately esti-
mate the main effect of OED, chromosome should be encoded
so as to reduce the degree of epistasis and maintain feasibility of
all conducted combinations. A proper encoding scheme of chro-
mosomes that the parameters with strong interactions (if prior
knowledge is available) are encoded together would enhance the

Fig. 1. Fitness values of 12 participant individuals in the objective space
of a bi-objective minimization problem. The fitness value of the dominated
individual A using GPSIFF is 3� 2 + 12 = 13.

effectiveness of chromosome division. An illustrative example
using an effective parameter transformation in encoding chro-
mosomes to reduce the degree of epistasis and confine genetic
search within feasible regions for designing genetic-fuzzy sys-
tems can be referred in [25]. IEA and IMOEA can work well
without using linkage identification in solving LPOPs.

B. Fitness Function GPSIFF

Many multiobjective EAs differ mainly in the fitness assign-
ment strategy which is known as an important issue in solving
multiobjective optimization problems (MOOPs) [26]–[29].
IMOEA uses a generalized Pareto-based scale-independent
fitness function (GPSIFF) considering the quantitative fitness
performances in the objective space for both dominated and
nondominated individuals. GPSIFF makes the best use of
Pareto dominance relationship to evaluate individuals using
a single measure of performance. Let the fitness value of an
individual be a tournament-like score obtained from all
participant individuals by the following function:

(4)

where is the number of individuals which can be dominated
by , and is the number of individuals which can dominate
in the objective space. Generally, a constant can be optionally
added in the fitness function to make fitness values positive. In
this paper, is the number of all participant individuals.

GPSIFF uses a pure Pareto-ranking fitness assignment
strategy, which differs from the traditional Pareto-ranking
methods, such as nondominated sorting [23] and Zitzler and
Thiele’s method [27]. GPSIFF can assign discriminative fitness
values to not only nondominated individuals but also dominated
ones. IGC can take advantage of this assignment strategy to
accurately estimate the main effect of factors and, consequently,
can achieve an efficient recombination using IGC. It is less
efficient for IGC to use Zitzler and Thiele’s method where the
fitness values of dominated individuals in a cluster are always
identical. Fig. 1 shows an example for illustrating the fitness
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Fig. 2. Examples of an IGC operation in solving a bi-objective maximization problem. (a) Good children can be efficiently generated by the multiobjective IGC.
(b) IGC can obtain a well-distributed Pareto front by generating nondominated individuals in the gap between two parents.

value using GPSIFF for a bi-objective minimization problem.
For example, three individuals are dominated by and
two individuals dominate . Therefore, the fitness value
of is . It can be found that one individual
has a larger fitness value if it dominates more individuals. On
the contrary, one individual has a smaller fitness value if more
individuals dominate it.

C. IEA

IEA with IGC is designed toward being an efficient general-
purpose optimization algorithm for solving LPOPs. Of course,
domain knowledge, heuristics, and auxiliary genetic operations,
which can enhance the conventional EAs can also improve the
performance of IEA. The simple IEA can be written as follows.

Step 1) Initialization: Randomly generate an initial popula-
tion of individuals.

Step 2) Evaluation: Compute fitness values of all
individuals.

Step 3) Selection: Perform a conventional selection opera-
tion. For example, truncation selection is used: the
best individuals are selected to form a
new population, where is a selection probability.
Let be the best individual in the population.

Step 4) Recombination: Randomly select parents
including for IGC, where is a recombina-
tion probability. Perform the IGC operations for all
selected pairs of parents.

Step 5) Mutation: Apply a conventional mutation operation
(e.g., bit-inverse mutation) with a mutation proba-
bility to the population. To prevent the best fit-
ness value from deteriorating, mutation is not ap-
plied to the best individual.

Step 6) Termination test: If a stopping condition is satisfied,
stop the algorithm. Otherwise, go to Step 2).

D. IMOEA

Since it has been recognized that the incorporation of elitism
may be useful in maintaining diversity and improving the per-
formance of multiobjective EAs [26]–[29], IMOEA uses an elite
set with capacity to maintain the best nondominated

individuals generated so far. The simple IMOEA can be written
as follows.

Step 1) Initialization: Randomly generate an initial popula-
tion of individuals and create an empty elite
set and an empty temporary elite set .

Step 2) Evaluation: Compute all objective function values
of each individual in the population. Assign each
individual a fitness value by using GPSIFF.

Step 3) Update elite sets: Add the nondominated individ-
uals in both the population and to , and empty

. Considering all individuals in , remove the
dominated ones. If the number of nondomi-
nated individuals in is larger than , ran-
domly discard excess individuals.

Step 4) Selection: Select individuals from the
population using binary tournament selection and
randomly select individuals from to form a
new population, where . If

, let .
Step 5) Recombination: Perform the IGC operations for

selected parents. For each IGC opera-
tion, add nondominated individuals derived from
by-products OA combinations (by-products) and
two children to .

Step 6) Mutation: Apply a conventional mutation operation
with to the population.

Step 7) Termination test: If a stopping condition is satisfied,
stop the algorithm. Otherwise, go to Step 2).

If many nondominated solutions are needed, especially in
solving large MOOPs with many objectives, one may use an
additional external set to store all the nondominated individuals
found so far.

Fig. 2 illustrates two typical examples gleaned from the IGC
operation using an with in solving a bi-ob-
jective 0/1 knapsack problem, described in Section VI. Fig. 2
reveals the following.

1) For one IGC operation, the two children are more
promising to be new nondominated individuals, as
shown in Fig. 2(a). The individuals corresponding to OA
combinations are called by-products of IGC. Because
the by-products are well planned and systematically
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TABLE III
PERFORMANCE OF VARIOUS EAS FOR SOLVING AN LPOP WITH A GLOBAL OPTIMUM 121.598

TABLE IV
BENCHMARK FUNCTIONS

sampled within the hypercube formed by parents, some
of them are promising to be nondominated individ-
uals. For example, there are three and four by-products
being nondominated individuals in Fig. 2(a) and (b),
respectively.

2) If the final Pareto front obtained has a gap without
sufficient solutions, two nondominated individuals com-
prising the gap can be chosen as parents of IGC to fill
the gap, as shown in Fig. 2(b). For one IGC operation,
the number of nondominated individuals is increased

from two to eight, including two parents, two children,
and four by-products.

V. PERFORMANCE COMPARISONS OF IEA

We use three experiments to evaluate the performance of IEA
by comparing with some existing EAs without heuristics using
benchmark functions consisting of various numbers of param-
eters. The used parameters of IEA are , ,
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TABLE V
MEAN FITNESS VALUES AND RANKS FOR FUNCTIONS WITH D = 10. THE MINIMAL AND MAXIMAL FITNESS

VALUES OF SOLUTIONS IN 30 RUNS ARE SHOWN IN BRACKETS

and . Let be the number of parameters partici-
pated in the division phase and . How
to effectively formulate and solve real-world applications of
LPOP using IEA with various variants of IGC can be referred
in [18]–[20], and[25].

A. Performance Comparisons on LPOPs

KrishnaKumar et al. [2] proposed three approaches, sto-
chastic GA, sensitivity GA, and GA-local search, and provided
reasonable success on LPOPs using a multimodal function
with no interaction among parameters

(5)

where parameters [3, 13]. The performances of the above-
mentioned three methods and a simple genetic algorithm (SGA)
are obtained from [2], as shown in Table III. IEA addition-
ally compares with the following EAs: BOA [24], a simple GA
with elitist strategy using one-point crossover (OEGA), simu-
lated annealing GA (SAGA) [30], GA with adaptive probabil-
ities of crossover and mutation (AGA) [31], and OGA/Q [8].
Let be the number of fitness evaluations. To directly com-
pare with the best one of the three proposed GAs in [2], i.e.,
the stochastic GA, we specify , chromosome length
500, and the stopping condition using for the
compared EAs, except BOA and OGA/Q. For obtaining high
performance by using the suggested moderate population size,
BOA uses [24] and OGA/Q uses [8].
The average performances of all compared EAs using ten inde-
pendent runs are shown in Table III.
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TABLE VI
MEAN FITNESS VALUES AND RANKS FOR FUNCTIONS WITH D = 100. THE MINIMAL AND MAXIMAL FITNESS

VALUES OF SOLUTIONS IN 30 RUNS ARE SHOWN IN BRACKETS

For BOA, a commonly used constraint restricts the networks
to have at most ( in this test) incoming edges into each
node. The truncation selection with % is used. The solu-
tion of BOA is only superior to those of SGA, OEGA, AGA, and
SAGA. BOA averagely takes about 1,115.95 s for a single run,
while the other EAs only take less than 1 s using the CPU AMD
800 MHz. It reveals that BOA is hard to solve LPOPs within a
limited amount of computation time.

OGA/Q applies the orthogonal design to generate an initial
population of points that are scattered uniformly over the fea-
sible solution space, so that the algorithm can evenly scan the
search space once to locate good points for further exploration
in subsequent iterations [8]. OGA/Q divides the feasible solu-
tion space along one of all dimensions into subspaces, and
then employs an of Q levels with rows and

columns to generate points in each subspace. In this
test, and . OGA/Q generates individ-

uals and selects combinations having the best fit-
ness performance as the initial population. Therefore, OGA/Q
takes to generate an initial popula-
tion. The best solution among the initial population is 110.715.
OGA/Q uses an orthogonal crossover with quantization which
acts on two parents. The crossover operator quantizes the so-
lution space defined by these parents into a finite number of
points, and then applies orthogonal design to select a small, but
representative sample of points as the potential offspring. For
obtaining the optimum 121.598, OGA/Q using 1000 iterations

has a mean fitness value 121.594. OGA/Q
can obtain an accurate solution but a large number of fitness
evaluations are needed.

IEA obtains the best mean solution 120.890, compared with
all EAs. For evaluating the ability to obtain an optimal or near-
optimal solution, the chromosome length is increased to 1400.
Using the stopping condition that the global optimal solution
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Fig. 3. Comparisons of various GAs using dist(D) curves for functions f ; f ; . . ., and f in (a), (b), . . ., and (l), respectively.

121.598 is obtained, IEA averagely spends 58 156 fitness eval-
uations. The experiment shows that IEA can efficiently search
for a very good solution to the LPOP with low epistasis.

B. Test Functions With Various Dimensions
To evaluate the efficiency of IGC for solving optimization

problems with various dimensions, 12 benchmark functions
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Fig. 3. (Continued.) Comparisons of various GAs using dist(D) curves for functions f ; f ; . . ., and f in (a), (b), . . ., and (l), respectively.

gleaned from literature, including unimodal, and multimodal
functions, as well as continuous and discontinuous functions,
are tested in the experimental study. The test function, pa-
rameter domain, and global optimum for each function are
listed in Table IV. Each parameter is encoded using 10 bits
for all test functions except that functions and use

24 bits. The dimensions of the twelve test functions vary on
in the experiments. For all compared

EAs, , , , and . The
stopping condition uses .

To compare IGC with commonly used crossover operators
without heuristics, one-point, two-point, uniform, BLX-
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TABLE VII
PERFORMANCE COMPARISONS OF OGA/Q AND IEA

[32], and orthogonal [33] crossover operators are used. Due
to the long computation time, BOA is tested on the twelve
test functions with only. The compared EAs with
elitist strategy and the associated crossover are denoted as
(IEA, IGC), (OEGA, one-point), (TEGA, two-point), (UEGA,
uniform), (BLXGA, BLX- ), and (OGA, orthogonal).

OGA divides each parent string into parts, sample these
parts from parents based on the combinations in an
to produce binary strings, and then select of them to be the
offspring. In this experiment, we use the OA and .

The comparisons of average performance using 30 indepen-
dent runs for and are listed in Tables V and VI,
respectively. To illustrate the performance comparisons on var-
ious numbers of parameters, we use a distance function
for describing the mean distance between the optimal solution

and the obtained best solution for one param-
eter as follows:

(6)

The results of average performance for all test functions with
are shown in Fig. 3.

Table V reveals that BOA and OEGA have the best perfor-
mances with final ranks 1 and 2, respectively. However, BOA is
only slightly superior to OEGA according to the averaged rank,
but the computation time of BOA is much longer than that of
OEGA. On the other hand, IEA and OGA have the worst perfor-
mances with final ranks 6 and 7, respectively. The two OA-based
algorithms take more fitness evaluations for one recombination
operation than conventional EAs but cannot effectively take ad-
vantage of OA experiments in solving the small-scale optimiza-
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Fig. 4. Box plots based on the cover metric for multiobjective 0/1 knapsacks problems. The box plot relates to {(2, 250), (3, 250), (4, 250), (2, 500), (3, 500),
(4, 500), (2, 750), (3, 750), (4, 750)} (knapsack, item) problems from left to right. Each rectangle refers to algorithmA associated with the corresponding row and
algorithm B associated with the corresponding column and gives nine box plots representing the distribution of the cover metric C(A;B). The scale is 0 at the
bottom and 1 at the top per rectangle.

tion problems with . Note that IEA is superior to OGA
for most test functions. From the simulation results, it can be
found that SGA with elitist strategy using one-point crossover
(OEGA) performs well in solving small parameter optimization
problems.

Table VI reveals that IEA and OGA having the averaged ranks
1.00 and 2.00, respectively, outperform all other EAs. In fact,
it can be found from Fig. 3 that IEA and OGA have averaged
ranks 1.00 and 2.00 not only for , but also for

. These simulation results reveal the following.

1) The OA-based recombination operations of IEA and
OGA using sampling representative candidate solutions
perform well in solving optimization problems with a
large number of parameters.

2) IGC performs better than the orthogonal crossover of
OGA. It reveals that the reasoned combination using
factor analysis is effective in IGC.

3) The mean distance value of IEA slightly in-
creases, while increases from 10 to 100, compared
with other EAs. IEA can effectively solve LPOPs in a
reasonable among of computation time.

4) Fig. 3 reveals that the curves of OEGA, TEGA, and
UEGA form a group and the value obviously in-
creases, while increases. The performance of BLXGA
is similar to those of the three SGAs. It means that the
conventional SGA is impractical for solving LPOPs.

Fig. 5. Pareto fronts of the problem with two knapsacks and 750 items.

C. Comparisons With OGA/Q

In Section V-B, it has been shown that IEA is superior to
OGA with a randomly generated initial population. In this sec-
tion, IEA is compared with OGA/Q by examining the effective-
ness of IGC with an OA-based initial population. For compar-
ison with OGA/Q, the test functions are the same as those in [8].

The OA-based initial population of IEA is similar to that
of OGA/Q, described as follows. After generating points
in each subspace like the method of OGA/Q, we further use
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factor analysis of OED to estimate main effects of all param-
eters with levels and generate an additional point as an in-
dividual for each subspace using a reasoned combination of all
parameters with the best level. Therefore, IEA use
fitness evaluations in generating an initial population. IEA uses

, where for , , , , , and
for the others according to the domain size as those

of OGA/Q. A parameter is encoded using 14 bits. The stopping
condition is that when the given optimal value is reached or the
best solution cannot be effectively improved in successive 30
iterations. The performance comparisons of IEA and OGA/Q
using 50 independent runs are given in Table VII, where the re-
ported results of OGA/Q are obtained from [8].

Let and be the initial populations generated
using the methods of OGA/Q and IEA, respectively. Let be
an individual with an optimal solution. All test functions can be
categorized into four classes by carefully examining the simu-
lation results as follows:

1) Functions , , , , , : exists in both
and . Therefore, IEA and OGA/Q can ob-

tain the optimal solution with a zero standard deviation.
2) Functions , , : exists in but not in

. This means that IGC using factor analysis can
efficiently collect optimal values of individual parame-
ters, which are distributed in the population, to generate
an .

3) Functions , , : does not exist in either
or , and there exists no interaction among

parameters. IEA performs better than OGA/Q in terms
of both solution quality and computation cost.

4) Functions , , : does not exist in either
or , and there exists interactions among

parameters. IEA performs better than OGA/Q. For
reducing the degree of epistasis of , IEA replaces
the square operation with an absolute one using the
following fitness function such that IEA can easily
obtain the optimal solution to , where ,

, and :

(7)

VI. PERFORMANCE COMPARISONS OF IMOEA

The performance of IMOEA is evaluated by the multiob-
jective 0/1 knapsack problems and test functions. There are
several state-of-the-art methods in the MOEA literature [27],
[34]–[45]; we compared against the following subset of these:
SPEA [27], SPEA2 [34], NSGA [35], NSGA2 [36], NPGA
[37], and VEGA [38]. The cover metric of two nondominated
solution sets obtained by two algorithms and is used for
performance comparison [27]

the number of individuals in weakly dominated by
the number of individuals in

(8)

The value means that all individuals in are
weakly dominated by . On the contrary, de-
notes that none of individuals in is weakly dominated by .
Because the cover metric considers weak dominance relation-
ship between two sets of algorithms and , is not
necessarily equal to .

A. Multiobjective 0/1 Knapsack Problems

The multiobjective 0/1 knapsack problems have been fully
described in [27], and the comparison results demonstrated that
SPEA outperforms NSGA, VEGA, NPGA, HLGA [44], and
FFGA [45]. Generally, each investigated problem consists of

knapsacks, a set of items, weight and profit associated with
each item, and an upper bound for the capacity of each knap-
sack. The task of the multiobjective 0/1 knapsack problem is
to find a subset of items, which can maximize the profits of
knapsacks.

The multiobjective 0/1 knapsack problems are formulated as
follows. Given a set of knapsacks and a set of items, with
the following:

profit of item according to knapsack ;
weight of item according to knapsack ;
capacity of knapsack ;

find a vector , that

(9)

where and are random integers in the interval [10, 100],
and .

The test data sets are available from the authors [27]. The pa-
rameter settings of NSGA2 and SPEA2 are the same as those in
[27]. The parameter settings of IMOEA are listed in Table VIII.
The chromosomes of IMOEA are encoded uses a binary string
of bits, which are divided into gene segments. A
greedy repair method adopted in [27] is applied that the re-
pair algorithm removes items from the infeasible solutions step
by step until all capacity constraints are fulfilled. The order
in which the items are deleted is determined by the maximum
profit/weight ratio per item. Thirty independent runs of IMOEA
are performed per test problem using the same number as
that of SPEA. The test problems and reported results of SPEA
are directly gleaned from the authors’ website.

The direct comparisons of each independent run between
IMOEA and all compared EAs based on the cover metric from
30 runs are depicted using box plots, as shown in Fig. 4. A box
plot provides an excellent visual result of a distribution. The
box stretches from the lower hinge (defined as the 25th per-
centile) to the upper hinge (the 75th percentile) and, therefore,
contains the middle half of the scores in the distribution. The
median is shown as a line across the box. For a typical example,
Pareto fronts of the problem with two knapsacks and 750 items
merged from 30 runs for IMOEA, SPEA, SPEA2, and NSGA2
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TABLE VIII
PARAMETER SETTINGS OF MULTIOBJECTIVE EAS. FOR THE DETAIL PARAMETER SETTINGS

OF THE COMPARED EAS, PLEASE REFER TO [26] AND [27]

are shown in Fig. 5. Figs. 4 and 5 reveal the superiority of
IMOEA over the compared EAs in terms of robustness and
nondominated solution quality. The experimental results reveal
that IMOEA outperforms SPEA, SPEA2, and NSGA2, espe-
cially for problems with a large number of items (parameters).
IMOEA also performs well for various numbers of knapsacks
(objectives).

B. Test Functions With Various Problem Features

Deb [46] has identified several problem features that may
cause difficulties for multiobjective algorithms in converging to
the Pareto-optimal front and maintaining population diversity in
the current Pareto front. These features are multimodality, de-
ception, isolated optima and collateral noise, which also cause
difficulties in single-objective EAs. Following the guidelines,
Zitzler et al. [26] constructed six test problems involving these
features, and investigated the performance of various popular
multiobjective EAs. The empirical results demonstrated that
SPEA outperforms NSGA, VEGA, NPGA, HLGA, and FFGA
in small-scale problems.

Each of the test problems is structured in the same manner
and consists of three functions , , [41]

minimize

s.t.

where

(10)

where is a function consisted of the first decision variable
only, is a function of the remaining parameters, and
the two parameters of the function are the function values of

and . Six test problems can be retrieved
from [41].

There are parameters in each test problem. Each parameter
in chromosomes is represented by 30 bits, except the parameters

are represented by 5 bits for the deceptive problem
.

The experiments in Zitzler’s study indicate that the test
problems , , and cause difficulties to evolve
a well-distributed Pareto-optimal front. In their experiments,
the reports are absent about the test problems with a large
number of parameters. As a result, the extended test problems
with a large number of parameters are further tested
in order to compare the performance of various algorithms in
solving large MOOPs. Thirty independent runs were performed
using the same stopping criterion as that of SPEA, where

. The parameter settings of various algorithms
are listed in Table VIII. VEGA, NPGA, NSGA, SPEA, NSGA2,
and SPEA2 are the same as those in [26], summarized as fol-
lows: , , , , and

. The population size and the external population
size of SPEA are 80 and 20, respectively. For the test problem

, the sharing factor of NSGA is 34. The parameter
settings of IMOEA are: , , ,

, , and .
The nondominated solutions merged from 30 runs of VEGA,

NPGA, NSGA, NSGA2, SPEA, SPEA2, and IMOEA in the ob-
jective space are reported, as shown in Figs. 6–11, and the curve
in each figure is the Pareto-optimal front of each test problem ex-
cept . The direct comparisons of each independent run be-
tween IMOEA and all compared EAs based on the cover metric
for 30 runs are depicted in Fig. 12.

For test problems , , and , IMOEA,
SPEA2, and NSGA2 can obtain well-distributed Pareto fronts,
and the Pareto fronts of IMOEA for and are
very close to the Pareto-optimal fronts. For the multimodal test
problem , only IMOEA can obtain a better Pareto front
which is much closer to the Pareto-optimal front, compared
with the other algorithms. The well-distributed nondominated
solutions resulted from that IGC has well-distributed by-prod-
ucts which are nondominated solutions at that time. For ,
IMOEA, SPEA2, and NSGA2 obtained widely distributed
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Fig. 6. Convex test problem ZDT .

Fig. 7. Nonconvex test problem ZDT .

Fig. 8. Discrete test problem ZDT .

Pareto fronts, while VEGA failed. The comparisons for
indicate that IMOEA is the best algorithm; the next ones are
SPEA2, NSGA2, NSGA, and NPGA, while SPEA and VEGA
are the worst ones. For , IMOEA also obtained a widely
distributed front and IMOEA’s solutions dominate all the
solutions obtained by the other algorithms. Finally, it can be
observed from [26] and our experiments that when the number
of parameters increases, difficulties may arise in evolving a

Fig. 9. Multimodal test problem ZDT .

Fig. 10. Deceptive test problem ZDT .

Fig. 11. Nonuniform test problem ZDT .

well-distributed nondominated front. Moreover, it is observed
that VEGA obtained some excel solutions in the objective
in some runs of , , and , as shown in Fig. 12.
This phenomenon agrees with [8] and [47] that VEGA may
converge to individual champion solutions only.

As shown in Figs. 6–12, the quality of nondominated solu-
tions obtained by IMOEA is superior to those of all compared
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Fig. 12. Box plots based on the cover metric for multiobjective parametric problems. The leftmost box plot relates to ZDT1, the rightmost to ZDT6. Each rectangle
refers to algorithm A associated with the corresponding row and algorithm B associated with the corresponding column and gives six box plots representing the
distribution of the cover metric C(A;B). The scale is 0 at the bottom and 1 at the top per rectangle.

EAs in terms of the number of nondominated solutions, the
distance between the obtained Pareto front and Pareto-optimal
front, and the distribution of nondominated solutions. Fig. 12
reveals that the nondominated solutions obtained by IMOEA
dominate most of the nondominated solutions obtained by all
compared EAs. On the other hand, only few nondominated so-
lutions of IMOEA are dominated by the nondominated solutions
of all compared EAs.

VII. CONCLUSION

In this paper, we have proposed two intelligent evolutionary
algorithms IEA and IMOEA using a novel intelligent gene
collector IGC to solve large parameter optimization problems
(LPOPs) with single and multiobjective functions, respectively.
IGC uses a divide-and-conquer mechanism based on orthog-
onal experimental design (OED) to solve LPOPs. Since OED is
advantageous for the problems with weak interactions among
parameters and IEA/IMOEA works without using linkage
identification, it is essential to encode parameters into chro-
mosomes such that the degree of epistasis can be minimized.
Generally, the problem’s domain knowledge is necessarily
incorporated to effectively achieve this goal. Furthermore,
maintaining feasibility of all candidate solutions corresponding
to the conducted and reasoned combinations of OED can en-
hance the accuracy of factor analysis for constrained problems.
Modifying genetic operator and repairing strategies can be
conveniently used for maintaining feasibility. IMOEA works

well for efficiently finding a set of Pareto-optimal solutions
to a generalized multiobjective optimization problem with a
large number of parameters. IMOEA is powerful based on the
abilities of the proposed GPSIFF and IGC. We believe that
the auxiliary techniques, which can improve performance of
conventional EAs, can also improve performances of IEA and
IMOEA. It is shown empirically that IEA and IMOEA have
high performance in solving benchmark functions comprising
many parameters, as compared with some existing EAs. Due
to its simplicity, theoretical elegance, generality, and superi-
ority, IEA and IMOEA can be most widely used for solving
real-world applications of LPOPs.
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