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Quantum correlations in bound-soliton pairs and trains in fiber lasers
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Quantum correlations in pairs and arraysing of bound solitons modeled by the complex Ginzburg-
Landau equatioiCGLE) are calculated numerically, on the basis of linearized equations for quantum fluctua-
tions. We find strong correlations between the bound solitons, even though the system is dissipative. Some
degree of the correlation between the photon-number fluctuations of stable bound soliton pairs and trains is
attained and saturates after passing a certain distance. The saturation of the photon-number correlations is
explained by the action of nonconservative terms in the CGLE. Photon-number-correlated bound soliton trains
offer possibilities to produce multipartite entangled sources for quantum communication and computation.
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Solitons in optical fibers are well known for their remark- ) D _ .
able dynamical properties, at both classical and quantum lev- iU, + EUtt +|U[FU=ioU +i€U["U +ipUy
els. As concerns the latter, the solitons are macroscopic op- ) . .
tical fields that exhibit quadrature-field squeezing of +ip|U[*U - Uy, (1)

quantum fluctuations around the classical ddre3], as well

as amplitude squeezirig,5], and both intra- and interpulse WhereU is the Ioc_al amplitude_of the electromggnetic wave,
correlationg6]. Due to the Kerr nonlinearity of the fiber, the Z iS the propagation distanceis the retarded time, anD
quantum fluctuations about the temporal solitons gefCTesponds to anomalous dispersigd) or normal disper-
squeezed during the propagation, i.e., the variance of thelon (—1). Besides the group-velocity dispersig@VD) and
perturbed quadrature field operator around the soliton i&err effect, which are accounted for by conservative terms
smallerthan in the vacuum state. The nonlinear SchrodingeP" the left-hand side of Eq1), the equation also includes
equation(NLSE) is a commonly adopted model for the de- the quintic correction to the Kerr effect, through the coeffi-

scription of classical and quantum dynamics in optical fibers.Clent v, and nonconservative ternithe coefficientss, e, u,

Experimental investigations of quantum properties of tempof’mdﬂ account for the linear, cubic, and quintic loss or gain,

ral solitons have shown remarkable agreement with predic"Elnd spectral filtering, respectw?ly . .
In quantum-squeezing experiments, additional noises due

tions of the NLSE, provided that loss and higher-order ef-
fects are negligiblé4, 7—11. to the processes other than the GVD and Kerr effect, such as

In the NLSE, adjacent temporal solitons attract or repeIthe acoustic—waye Brillouin_ scattering, are ”Uwa”‘ed and
each other, depending on the phase shift between ffhém suppressed, using stab[e fiber lasg9% Accordingly, thg
In the cases when the potential interaction force between thgonconservative terms in the CGLE may t_:)e superficially
solitons can be balanced by additional effects, such as thoir?ns'de.red as _detrlme_ntal to the observation of gquantum
induced by small loss and gain terms in a perturbed cubi uctuations of fiber sollt_ons. _However, an accurate analys_|s
[13,14 or quintic NLSE [15-19 [which actually turns the of the quantum ﬂuctuanons_m.the CGLE- based model is
NLSE equation into a complex Ginzburg-Landau equ‘,:ltior{:ecessary, and has been missing thus far, to the best of our

o : ' nowledge.
fjcegcl_ri)]eldol;; Tﬁ engaJ;;ggoRlLséréjggu_rzeaofb'glueng p;;?elg I%IE " The objective of the present work is to calculate quantum

solitons have been predicted. Recently, formation of stabl%y?u?ﬂons aro_unfll b_our:d Statf;ugf Ifohtons |nt_the C(al]‘Edby
double-, triple-, and multisoliton bound statgsains, in the INt of & numerically Impiemen ck propagation metho

latter casghas been observed experimentally in various pas£27]' V\:ﬁ f|gd st(rjongl_tquangum—pterttl;]rb?tlotnthcordr_eIa_nortl_s be-
sively mode-locked fiber-ring laser systefi28—25, which V€N the bounc Soitons, desprte he Tact the dissipative ha-

offers potential applications to optical telecommunications.ture of the model will indeed prevent observation of the

; wanli o - s ; squeezing of the quantum fluctuations around the bound soli-
Eggr?a;:ggigtgdsotgt&%]cryﬂa'S in nonlinear fiber rings has " ihe fier-ring lasers described by the CGLE. Mulii-

Multiple-pulse generation in the passively mode-lock fi- mode quantum-correlation spectra of the bound-soliton pairs

ber lasers is quite accurately described by the quintic CGLEShIC.)tW pattefms stlgmﬂcgnttlg different frtpm lt\lhI_OSSE f\c/)\; tWIO'
(which is written here in a normalized foym soliton configurations in the conservative . We also

find a similarity in the photon-number correlations between
the stable bound-soliton pairs and multisoliton trains.

Following the known approach to the investigation of
*Electronic address: yclai@mail.nctu.edu.tw bound-soliton state§13,15,18, the corresponding solution
"Electronic address: malomed@eng.tau.ac.il to Eq. (1) is sought for in the form
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N

U(zt) = > Uglz t + Pj)eigj,
=1

where Uy is a single-soliton solution, ang; and ¢; are the
coordinateqtime delays and phasesf the individual soli-
tons. Through the balance between the gain and loss, in
phase and out-of-phase bound-soliton pairs may exist in the
anomalous-GVD regime, which is described by EQ. In -
the case of the normal dispersion, which correspondd to
=-1in Eq. (1), strongly chirped solitary pulsgsvhich dif-
fers them from the classical solitonand their bound states
are possible, too.

To evaluate the quantum fluctuations around the bounc
solitons, we replace the classical functibifz,t) in Eq. (1)

by the gquantum-field operator variabld(z,t), which satis-
fies the equal-coordinate Bosonic commutation relations.
Next we linearize the equation around the classical solution,
i.e., U(z,t)=Uy+{(z,t), for a state containing a very large
number of photons. Then, the above-mentioned back propa
gation method is used to calculate the perturbed quantun
fluctuations around the bound-soliton states in the full CGLE
model. The linearized equation for the perturbed field opera-

o

N
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tor G(z,t) is
d% U(z,t) = Pz )z 1) + Po(z, )T (1) +A(zt),  (2)

where P, and P, are two special operators defined as fol-
lows,

—_ D [92 H 2 2 &2
Py(z,t) = 'E? +2i|Ug|* + 8+ 2€|Ug|* + ,8?
+ 3u|Ug|* + 3ir|Ugl*,

Po(z,t) =iUZ+ U3+ 2uU3Ug + 2ivU3U,.
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To satisfy the Bosonic communication relations for the per- FIG. 1. (Color onling A typical pattern of the time-domain

turbed quantum field8(z,t) andii’(z,t), we also introduce a
zero-mean additional noise operafte,t) in Eq. (2), which
satisfies the following commutation relatiof7],

[A(z,t),A"(Z,t)]={= Py(z,ty) = P1(Z )}z = 2) Sty ~ to),

[A(zty),A(Z )] =[AT(zty),A"(Z 1] = 0.

To actually determine the correlation functionsif, t)
and f'(z,1), one has to consider their physical origins. In
generalj\(z,t)=3;0(z,t), with i(z,t) being the noise opera-
tor contributed by théth nonconservative term in the equa-
tion. The commutation relations f(z,t) and ﬁiT(z,t) are of
the same form as in the above equations fi¢z,t) and
Af(z,t), except that the differential operatof®(z,t) and

photon-number correlationsy;, for an out-of-phase two-soliton
state in the cubic NLSE modéh), after six normalized propagation
distance, and for an in-phase two-soliton bound state in the CGLE
model(b), after 0.5 normalized propagation distance.

equivalent to assuming that the reservoirs corresponding to
the loss terms are in the ground state and the population
inversions corresponding to the gain terms are in full inver-

sion. The magnitude of the noise level calculated with these
assumptions represents the minimum quantum noise that will
be introduced with the presence of the considered noncon-
servative terms. For real systems, the actual introduced
noises will always be larger and thus our calculation results
here only represent the lower bound limit required by the

P,(z,t) contain only the corresponding nonconservatives,ndamental quantum mechanics principles.
term. In our Calculations, we adopt the f0||OWIng aSSUmp' In Flg 1, we dlsplay the Comparison of thieme-domain

tions: <ﬁ?(z,t1)ﬁi(z’,t2)>=0 for loss terms and
(Ai(z,t)A! (2 ,1,))=0 for gain terms. With these additional
assumptions, the correlation functions for edtlte,t) as

well as for the total nois@(z,t) can be calculated from their

photon-number correlations for the two-soliton configuration
in the conservative cubic NLSE modgl), and an in-phase
two-soliton bound state in the CGLE mod#)). The corre-
lation coefficients,s;, are defined through the normally or-

commutation relations. Physically, these assumptions ardered covariance,
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= ARG o T
b anear2 o |
whereAn; is the photon-number fluctuation in thig slotAt; %
in the time domain, 50.3
[
~ ~ * ~ Q
An; = f difUy(z,t)0"(z,t) + Uy(z 1)Uz )] g

Here (i(z,t) and Uy(z,t) are the quantum-field perturbation
and classical unperturbed solutions, as defined above, an
the integral is taken over the given time slot. In the NLSE
model, there are two isolated patterns for the two-soliton
configuration, corresponding to tirgrapulse correlationof
individual solitons[see Fig. 1a)]. However, it is obvious
from Fig. 1(b) that there is a band of strong correlations
between the two bound solitons in the quantum CGLEQ. ¢
model. This strong-correlation band can be explained by the 1 >
interplay between the nonlinearity, GVD, gain, and loss in Normalized distance (z)
the model. The balance between these features not only sup-
ports the classical stable bound state of the soliton, but also FIG. 2. (Color onling The evolution of the photon-number cor-
causes strong correlations between their quantum fluctugelation parameteCy,, for two solitons bound in-phase. The com-
tions. putations were carried out for the following values of parameters in
In addition to the time-domain photon-number correlationthe CGLE:D=1, 6=-0.01,e=1.8,3=0.5,»=-0.05, andv=0. The
pattern, we have also calculated a photon-nunsbeelation inset iIIustrgtes the stability of the underlying classical solution for
parameterbetween the two bound solitons, which is definedthe two-soliton bound state, by means of contour plots.
as

r corre

0.1

hoton-numbe

pected, we find that soliton pairs with equal separations have

<3AN AN ) practically identical correlation coefficients, i.eGq5(2)
ClZ = % . = C23(Z) = C34(Z), a.nd C13(Z) = C24(Z). ObViOUSIy, When the
V(AN2)(AN3) interaction between the soliton trains is stronger, as the sepa-

- ) ration between them is smaller, the values of the correlation
Here, AN, ; are perturbations of the photon-number operayarameter are larger. Note that the correlation coefficient for

tors of the two solitons, which are number@d 2) according  the most separated pair in the traiy,, grows very slowly
to their position in the time domain.

Figure 2 shows the evolution of the photon-number cor- 02
relation parameter in the two-soliton bound state. Initially,
the classical laser statisti¢gsoherent stajeis assumed for
each soliton, without correlation between the@,~0. In 15 | C...C...C

. . A5 127 ™237 ™34
the course of the evolution, the photon-number correlauong N
between the two bound solitons gradually increases to posi2
tive values ofCy,, and eventually it saturates aboGy, s
=0.36. The intersoliton correlation is induced and supported® o1 |
by the interaction between the solitons. In a conservativeo
system, such as the NLSE model, nearly perfect photon-© -
number correlations can be established if the interaction dis-§
tance is long enougf28]. In a nonconservative system, such E 005
as in the CGLE model, the action of the filtering, linear and € Cis Cyy
nonlinear gain, and losses lead to the saturation of the§
photon-number correlation parameter. Thus, while the large B
quantum fluctuations in the output bound-soliton pair will & C.
eclipse any squeezing effect, the correlated fluctuations be NI AU USRI RPN RN
tween the bound soliton are predicted to be observable. a 0.2 NgrAmalizeg'gistanc%B(z) 1 1.2

The approach elaborated here for the study of the
quantum-noise correlations between two bound solitons can riG. 3. (Color onling The evolution of the photon-number cor-
be easily extended to multi-soliton bound statesliton relation parameters;;;, for a bound complextrain) of four in-
traing. Figure 3 shows the photon-number correlation pa-phase solitons in the CGLE model. The soliton’s nunie, 3, 4
rameters,Cy;, in a train of four equally separated in-phase runs from left to right. Parameters are the same as in the case shown
bound solitons. Again, the photon-number fluctuations arén Fig. 2. The inset demonstrates the stability of the underlying
initially uncorrelated between the solitons. As could be ex-classical solution for the four-soliton train.
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with z. Eventually, all of the curves df;;(2) saturate due to pair. While the dissipative effects in the CGLE model will
the dissipative effects in the CGLE model. totally suppress the generation of squeezed states from
In conclusion, in this paper we have extended the concepiound solitons, as one might expect, there still exists a cer-
of quantum fluctu_ations around classical optical solitons tgajn degree of correlations between photon-number fluctua-
the nonconservative model based on the CGEBMplex  {ions around the stable bound-soliton pairs and trains. Re-
i?;ni%;:g%g?ﬁ?iﬁgxitlggmrtgg(;a%i?ilg;lqmgiﬁogogI?r?efi:;n- cently, experimental progress in the study of various
' quantum properties of solitons in optical fibers has been re-

earized equations that govern the evolution of the fluctua- .
tions, we have numerically calculated the photon-numbePorted[29_33’ which opens the way to observe effects pre-

correlations and the effective correlation coefficient for pairsdicted here(especially, in soliton-generating fiber lasers

of bound solitons, as well as for multisoliton bound com- Besides that, the photon-number-correlated soliton pairs and
plexes(traing. We have demonstrated that, unlike the two-trains, predicted in this work, may offer new possibilities to
soliton configuration in the conservative NLSE model, theredenerate multipartite entangled sources for applications to
is a band of strong quantum correlation in the bound-solitorfluantum communications and computation.
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