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Quantum correlations in pairs and arrays(trains) of bound solitons modeled by the complex Ginzburg-
Landau equation(CGLE) are calculated numerically, on the basis of linearized equations for quantum fluctua-
tions. We find strong correlations between the bound solitons, even though the system is dissipative. Some
degree of the correlation between the photon-number fluctuations of stable bound soliton pairs and trains is
attained and saturates after passing a certain distance. The saturation of the photon-number correlations is
explained by the action of nonconservative terms in the CGLE. Photon-number-correlated bound soliton trains
offer possibilities to produce multipartite entangled sources for quantum communication and computation.
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Solitons in optical fibers are well known for their remark-
able dynamical properties, at both classical and quantum lev-
els. As concerns the latter, the solitons are macroscopic op-
tical fields that exhibit quadrature-field squeezing of
quantum fluctuations around the classical core[1–3], as well
as amplitude squeezing[4,5], and both intra- and interpulse
correlations[6]. Due to the Kerr nonlinearity of the fiber, the
quantum fluctuations about the temporal solitons get
squeezed during the propagation, i.e., the variance of the
perturbed quadrature field operator around the soliton is
smallerthan in the vacuum state. The nonlinear Schrödinger
equation(NLSE) is a commonly adopted model for the de-
scription of classical and quantum dynamics in optical fibers.
Experimental investigations of quantum properties of tempo-
ral solitons have shown remarkable agreement with predic-
tions of the NLSE, provided that loss and higher-order ef-
fects are negligible[4,7–11].

In the NLSE, adjacent temporal solitons attract or repel
each other, depending on the phase shift between them[12].
In the cases when the potential interaction force between the
solitons can be balanced by additional effects, such as those
induced by small loss and gain terms in a perturbed cubic
[13,14] or quintic NLSE [15–19] [which actually turns the
NLSE equation into a complex Ginzburg-Landau equation
(CGLE)], or the polarization structure of the optical field,
described by the coupled NLSEs[20–22], bound states of
solitons have been predicted. Recently, formation of stable
double-, triple-, and multisoliton bound states(trains, in the
latter case) has been observed experimentally in various pas-
sively mode-locked fiber-ring laser systems[23–25], which
offers potential applications to optical telecommunications.
Formation of “soliton crystals” in nonlinear fiber rings has
been predicted, too[26].

Multiple-pulse generation in the passively mode-lock fi-
ber lasers is quite accurately described by the quintic CGLE
(which is written here in a normalized form),

iUz +
D

2
Utt + uUu2U = idU + ieuUu2U + ibUtt

+ imuUu4U − nuUu4U, s1d

whereU is the local amplitude of the electromagnetic wave,
z is the propagation distance,t is the retarded time, andD
corresponds to anomalous dispersions+1d or normal disper-
sion s−1d. Besides the group-velocity dispersion(GVD) and
Kerr effect, which are accounted for by conservative terms
on the left-hand side of Eq.(1), the equation also includes
the quintic correction to the Kerr effect, through the coeffi-
cient n, and nonconservative terms(the coefficientsd, e, m,
andb account for the linear, cubic, and quintic loss or gain,
and spectral filtering, respectively).

In quantum-squeezing experiments, additional noises due
to the processes other than the GVD and Kerr effect, such as
the acoustic-wave Brillouin scattering, are unwanted and
suppressed, using stable fiber lasers[9]. Accordingly, the
nonconservative terms in the CGLE may be superficially
considered as detrimental to the observation of quantum
fluctuations of fiber solitons. However, an accurate analysis
of the quantum fluctuations in the CGLE- based model is
necessary, and has been missing thus far, to the best of our
knowledge.

The objective of the present work is to calculate quantum
fluctuations around bound states of solitons in the CGLE by
dint of a numerically implementedback propagation method
[27]. We find strong quantum-perturbation correlations be-
tween the bound solitons, despite the fact the dissipative na-
ture of the model will indeed prevent observation of the
squeezing of the quantum fluctuations around the bound soli-
tons in the fiber-ring lasers described by the CGLE. Multi-
mode quantum-correlation spectra of the bound-soliton pairs
show patterns significantly different from those for two-
soliton configurations in the conservative NLSE. We also
find a similarity in the photon-number correlations between
the stable bound-soliton pairs and multisoliton trains.

Following the known approach to the investigation of
bound-soliton states[13,15,18], the corresponding solution
to Eq. (1) is sought for in the form
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Usz,td = o
j=1

N

U0sz,t + r jdeiu j ,

whereU0 is a single-soliton solution, andr j and u j are the
coordinates(time delays and phases) of the individual soli-
tons. Through the balance between the gain and loss, in-
phase and out-of-phase bound-soliton pairs may exist in the
anomalous-GVD regime, which is described by Eq.(1). In
the case of the normal dispersion, which corresponds toD
=−1 in Eq. (1), strongly chirped solitary pulses(which dif-
fers them from the classical solitons) and their bound states
are possible, too.

To evaluate the quantum fluctuations around the bound
solitons, we replace the classical functionUsz,td in Eq. (1)

by the quantum-field operator variable,Ûsz,td, which satis-
fies the equal-coordinate Bosonic commutation relations.
Next we linearize the equation around the classical solution,

i.e., Ûsz,td=U0+ ûsz,td, for a state containing a very large
number of photons. Then, the above-mentioned back propa-
gation method is used to calculate the perturbed quantum
fluctuations around the bound-soliton states in the full CGLE
model. The linearized equation for the perturbed field opera-
tor ûsz,td is

d

dz
ûsz,td = P1sz,tdûsz,td + P2sz,tdû†sz,td + n̂sz,td, s2d

whereP1 and P2 are two special operators defined as fol-
lows,

P1sz,td = i
D

2

]2

]t2
+ 2i uU0u2 + d + 2euU0u2 + b

]2

]t2

+ 3muU0u4 + 3inuU0u4,

P2sz,td = iU0
2 + eU0

2 + 2mU0
3U0

* + 2inU0
3U0

* .

To satisfy the Bosonic communication relations for the per-
turbed quantum fieldsûsz,td andû†sz,td, we also introduce a
zero-mean additional noise operatorn̂sz,td in Eq. (2), which
satisfies the following commutation relations[27],

fn̂sz,t1d,n̂†sz8,t2dg = h− P1sz,t1d − P1
*sz8,t2djdsz− z8ddst1 − t2d,

fn̂sz,t1d,n̂sz8,t2dg = fn̂†sz,t1d,n̂†sz8,t2dg = 0.

To actually determine the correlation functions ofn̂sz,td
and n̂†sz,td, one has to consider their physical origins. In
general,n̂sz,td=oin̂isz,td, with n̂isz,td being the noise opera-
tor contributed by theith nonconservative term in the equa-
tion. The commutation relations ofn̂isz,td and n̂i

†sz,td are of
the same form as in the above equations forn̂sz,td and
n̂†sz,td, except that the differential operatorsP1sz,td and
P2sz,td contain only the corresponding nonconservative
term. In our calculations, we adopt the following assump-
tions: kn̂i

†sz,t1dn̂isz8 ,t2dl=0 for loss terms and
kn̂isz,t1dn̂i

†sz8 ,t2dl=0 for gain terms. With these additional
assumptions, the correlation functions for eachn̂isz,td as
well as for the total noisen̂sz,td can be calculated from their
commutation relations. Physically, these assumptions are

equivalent to assuming that the reservoirs corresponding to
the loss terms are in the ground state and the population
inversions corresponding to the gain terms are in full inver-
sion. The magnitude of the noise level calculated with these
assumptions represents the minimum quantum noise that will
be introduced with the presence of the considered noncon-
servative terms. For real systems, the actual introduced
noises will always be larger and thus our calculation results
here only represent the lower bound limit required by the
fundamental quantum mechanics principles.

In Fig. 1, we display the comparison of thetime-domain
photon-number correlations for the two-soliton configuration
in the conservative cubic NLSE model(a), and an in-phase
two-soliton bound state in the CGLE model(b). The corre-
lation coefficients,hi j , are defined through the normally or-
dered covariance,

FIG. 1. (Color online) A typical pattern of the time-domain
photon-number correlations,hi j , for an out-of-phase two-soliton
state in the cubic NLSE model(a), after six normalized propagation
distance, and for an in-phase two-soliton bound state in the CGLE
model (b), after 0.5 normalized propagation distance.
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hi j ;
k:Dn̂iDn̂j:l
ÎDn̂i

2Dn̂j
2

, s3d

whereDn̂j is the photon-number fluctuation in thej th slotDtj
in the time domain,

Dn̂j =E
Dt j

dtfU0sz,tdû†sz,td + U0
*sz,tdûsz,tdg.

Here ûsz,td and U0sz,td are the quantum-field perturbation
and classical unperturbed solutions, as defined above, and
the integral is taken over the given time slot. In the NLSE
model, there are two isolated patterns for the two-soliton
configuration, corresponding to theintrapulse correlationsof
individual solitons[see Fig. 1(a)]. However, it is obvious
from Fig. 1(b) that there is a band of strong correlations
between the two bound solitons in the quantum CGLE
model. This strong-correlation band can be explained by the
interplay between the nonlinearity, GVD, gain, and loss in
the model. The balance between these features not only sup-
ports the classical stable bound state of the soliton, but also
causes strong correlations between their quantum fluctua-
tions.

In addition to the time-domain photon-number correlation
pattern, we have also calculated a photon-numbercorrelation
parameterbetween the two bound solitons, which is defined
as

C12 =
k:DN̂1DN̂2:l
ÎkDN̂1

2lkDN̂2
2l

.

Here, DN̂1,2 are perturbations of the photon-number opera-
tors of the two solitons, which are numbered(1, 2) according
to their position in the time domain.

Figure 2 shows the evolution of the photon-number cor-
relation parameter in the two-soliton bound state. Initially,
the classical laser statistics(coherent state) is assumed for
each soliton, without correlation between them,C12<0. In
the course of the evolution, the photon-number correlation
between the two bound solitons gradually increases to posi-
tive values of C12, and eventually it saturates aboutC12
=0.36. The intersoliton correlation is induced and supported
by the interaction between the solitons. In a conservative
system, such as the NLSE model, nearly perfect photon-
number correlations can be established if the interaction dis-
tance is long enough[28]. In a nonconservative system, such
as in the CGLE model, the action of the filtering, linear and
nonlinear gain, and losses lead to the saturation of the
photon-number correlation parameter. Thus, while the large
quantum fluctuations in the output bound-soliton pair will
eclipse any squeezing effect, the correlated fluctuations be-
tween the bound soliton are predicted to be observable.

The approach elaborated here for the study of the
quantum-noise correlations between two bound solitons can
be easily extended to multi-soliton bound states(soliton
trains). Figure 3 shows the photon-number correlation pa-
rameters,Cij , in a train of four equally separated in-phase
bound solitons. Again, the photon-number fluctuations are
initially uncorrelated between the solitons. As could be ex-

pected, we find that soliton pairs with equal separations have
practically identical correlation coefficients, i.e.,C12szd
<C23szd<C34szd, andC13szd<C24szd. Obviously, when the
interaction between the soliton trains is stronger, as the sepa-
ration between them is smaller, the values of the correlation
parameter are larger. Note that the correlation coefficient for
the most separated pair in the train,C14, grows very slowly

FIG. 2. (Color online) The evolution of the photon-number cor-
relation parameter,C12, for two solitons bound in-phase. The com-
putations were carried out for the following values of parameters in
the CGLE:D=1, d=−0.01,e=1.8,b=0.5,m=−0.05, andn=0. The
inset illustrates the stability of the underlying classical solution for
the two-soliton bound state, by means of contour plots.

FIG. 3. (Color online) The evolution of the photon-number cor-
relation parameters,Cij , for a bound complex(train) of four in-
phase solitons in the CGLE model. The soliton’s number(1, 2, 3, 4)
runs from left to right. Parameters are the same as in the case shown
in Fig. 2. The inset demonstrates the stability of the underlying
classical solution for the four-soliton train.
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with z. Eventually, all of the curves ofCijszd saturate due to
the dissipative effects in the CGLE model.

In conclusion, in this paper we have extended the concept
of quantum fluctuations around classical optical solitons to
the nonconservative model based on the CGLE(complex
Ginzburg-Landau equation) with the cubic-quintic nonlinear-
ity. Applying the known backpropagation method to the lin-
earized equations that govern the evolution of the fluctua-
tions, we have numerically calculated the photon-number
correlations and the effective correlation coefficient for pairs
of bound solitons, as well as for multisoliton bound com-
plexes(trains). We have demonstrated that, unlike the two-
soliton configuration in the conservative NLSE model, there
is a band of strong quantum correlation in the bound-soliton

pair. While the dissipative effects in the CGLE model will
totally suppress the generation of squeezed states from
bound solitons, as one might expect, there still exists a cer-
tain degree of correlations between photon-number fluctua-
tions around the stable bound-soliton pairs and trains. Re-
cently, experimental progress in the study of various
quantum properties of solitons in optical fibers has been re-
ported[29–32], which opens the way to observe effects pre-
dicted here(especially, in soliton-generating fiber lasers).
Besides that, the photon-number-correlated soliton pairs and
trains, predicted in this work, may offer new possibilities to
generate multipartite entangled sources for applications to
quantum communications and computation.
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