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We performed path integral simulations of spin evolution controlled by the Rashba spin-orbit interaction in
the semiclassical regime for chaotic and regular quantum dots. The spin polarization dynamics have been
found to be strikingly different from the D’yakonov-Perel’(DP) spin relaxation in bulk systems. Also an
important distinction has been found between long time spin evolutions in classically chaotic and regular
systems. In the former case the spin polarization relaxes to zero within relaxation time much larger than the DP
relaxation, while in the latter case it evolves to a time independent residual value. The quantum mechanical
analysis of the spin evolution based on the exact solution of the Schrödinger equation with Rashba SOI has
confirmed the results of the classical simulations for the circular dot, which is expected to be valid in general
regular systems. In contrast, the spin relaxation down to zero in chaotic dots contradicts what has to be
expected from quantum mechanics. This signals on the importance of quantum effects missed in the semiclas-
sical simulations for long time spin dynamics.
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I. INTRODUCTION

Spin relaxation in semiconductors is an important physi-
cal phenomenon being actively studied recently in connec-
tion with various spintronics applications.1 In doped bulk
samples and quantum wells(QW) of III-V semiconductors at
low temperatures spin relaxation is mostly due to the
D’yakonov-Perel’(DP) mechanism.2 This mechanism does
not involve any inelastic processes, so that the exponential
decay of the spin polarization is determined entirely by the
spin-orbit interaction(SOI) and elastic scattering of electrons
on the impurities. However, in case of confined systems such
as quantum dots(QD) with atomiclike eigenstates, the SOI
has been incorporated into the structure of the wave func-
tions of the discrete energy levels. Without inelastic interac-
tions, an initial wave packet with a given spin polarization
will evolve in time as a coherent superposition of these dis-
crete eigenstates. Therefore, the corresponding expectation
value of the spin polarization will oscillate in time without
any decay. To obtain a polarization decay in the QD’s, extra
effects have to be introduced into the system, e.g., theinelas-
tic interactions between electrons and phonons mediated by
the spin-orbit3,4 and nuclear hyperfine effects.3,5,6 Accord-
ingly, a spin relaxation in QD’s induced by these effects is a
real dephasing process.

Unlike such an inelastic relaxation in QD’s, the DP spin
relaxation in unbounded systems seems to be quite a differ-
ent phenomenon, because the scattering on impurities is elas-
tic and there is no dephasing of the electron wave functions
in the systems. However, the spin polarization does decay in
time exponentially, as if it would be a true dephasing pro-
cess. To explain this phenomenon, let us consider an electron
moving diffusively through an unbounded system with ran-
dom elastic scatters. This electron is described by a wave

packet represented by a superposition ofcontinuumeigen-
states. During a DP relaxation process, the spin expectation
value expressed as a bilinear combination of these wave am-
plitudes will decay exponentially in time. This process can
be easily understood from the semiclassical Boltzmann or
Fokker-Planck approach.2 Indeed, keeping in mind that the
SOI has the forms ·hskd, where s is the vector, whose
components are the three Pauli matrices, andhskd is the
effective magnetic field, whose magnitude and direction de-
pend on the electron momentumk, one can envision spin
relaxation as the spin random walk on the surface of the unit
sphere, similar to that in Fig. 1(c). Starting at the north pole,
the spin precesses aroundhsk1d until the momentum direc-
tion is changed by a scattering on an impurity. Thereafter, the
magnetic field changes its direction tohsk2d and the spin
continues its precession around this direction. If the spin ro-
tation angle between successive scattering events is small,
the sequence of such rotations results in a diffusive spreading
of the initial polarization.

Returning to QD’s, a natural question emerges: What sort
of spin evolution can be generated by the DP mechanism in
a ballistic QD whose size is much larger than the electron
wavelength at the Fermi surface and where the mean spacing
between energy levels is much less than" /T, whereT is the
mean time between electron collisions with the boundary?
Similar to the example in Fig. 1, the spin evolution in this
semiclassical regime can be studied by tracking the spin
walk on the sphere, when particles move along the classical
trajectories inside the QD’s. Intuitively, one would expect the
spin evolution in this case to be similar to the spin random
walk governed by the impurity scattering in unbounded
samples. However, this expected analogy with the open sys-
tem is wrong. Indeed, in an unbounded system, the steps of
the random walk are uncorrelated. This results in a diffusive
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decay of the spin polarization down to zero for any nonzero
SOI. But in case of QD’s, the steps of the random walk on
the sphere are correlated due to the confinement of electron
trajectories within the dots. As we will show below, such
correlations not only lead to a spin relaxation much longer
than the DP relaxation in unbounded systems, but also to a
nonzero final polarization value at long time for certain
quantum dot geometries. Here, we do not take into account
the inelastic mechanisms3–6 which always drive the spin po-
larization to zero in long time. These mechanisms are as-
sumed to be absent, because they become inefficient at suf-
ficiently low temperatures. By this reason we will also
neglect spin relaxation associated with electron-electron col-
lisions in doped QW.7

It should be noted that a tendency for slowdown of the DP
relaxation in confined geometries has been also found out for
disordered quantum wires,8,9 diffusive two-dimensional(2D)
strips,10 near the edge of 2D gas,11 and in the recent study on
quantum dots.12 Therefore, the strong distinction of the DP
relaxation in QD from that in bulk systems confirms this
tendency.

In this paper, we carry out a semiclassical analysis of the
DP relaxation in two-dimensional QD’s of various geom-
etries, including a circular dot, a triangular dot, a generalized
Sinai billiard, and a circular dot with diffusive scattering on
the boundary. Note that although such 2D systems are called
QD’s, the confinement in the 2D plane does not lead to
strong quantization and the electronic motion can be studied
semiclassically. We focus on the case of the strong SOI, such

that the characteristic spin orbit lengthLso;vF /"hskFd is not
much larger than the dot sizeL. Such a regime can be real-
ized in the InAs based heterostructures forL,0.5−1mm.13

We found that in the short time scale,T the spin relaxation
dynamics in all geometries shares a common feature: After a
fast initial drop during the time interval,T, the spin polar-
ization continues to oscillate weakly around some value. For
weak SOI withLso@L, all residual values for different dot
geometries are quite close to one up to the cutoff time of our
numerical simulationss,103 Td. For stronger SOI withLso

ùL, the initial drop of the spin polarization is considerably
larger compared to the weak SOI regime. The spin evolution
after that drop depends on the dot geometry. In the case of
circular and triangular dots, which are examples of systems
with regular classical dynamics, the corresponding spin po-
larizations approach nonzero residual values. However, in
the case of chaotic and random systems(e.g., Sinai billiard
and circular dot with rough boundaries, respectively), the
spin polarizations slowly decrease to zero after that initial
drop. But this decreasing is much longer than the DP relax-
ation in an unbounded system, in which the mean impurity
scattering time is,T. For very strong SOI withLso,L, the
spin polarization after the initial drop reaches zero and later
on oscillates with a large amplitude.

These results clearly demonstrate that the spin evolution
in QD’s is qualitatively distinct from the DP spin relaxation
in unbounded systems. In order to elucidate the physical ori-
gin of this phenomenon, two investigations have been per-
formed. First, the spin evolution along a single electron tra-
jectory was studied in detail, which provided a clue for
understanding the above-mentioned polarization behavior.
Second, the residual polarization obtained from the classical
simulations for a circular quantum dot was compared with
that derived from the exact solution of the Schrödinger equa-
tion. A good agreement between the results from these two
approaches has been found. However, for QD’s with chaotic
and random electron dynamics, the general quantum me-
chanical analysis revealed a contradiction to the long time
spin evolution observed in our semiclassical simulations.

The paper is organized in the following way. In Sec. II,
the general expression of the polarization will be derived for
the spin evolution via classical path integrals. In Sec. III, the
results of the numerical simulations in different quantum
dots will be demonstrated. The quantum mechanical theory
for the spin polarization in the circular quantum dot will be
presented in Sec. IV, with the calculation in detail shown in
the Appendix. Discussion and conclusion will be given in
Sec. V.

II. PATH INTEGRALS FOR THE SPIN EVOLUTION

The Hamiltonian of the system

H = H0 + s ·hsk̂d, s1d

consists of the spin independent partH0, which is the elec-
tron kinetic energy plus the 2D confining potentialVsr d, and
the spin-orbit interaction. In III-V semiconductor hetero-

structures the effective “magnetic” fieldhsk̂d is given by the

FIG. 1. (Color online) (a) Electron motion inside a quantum dot.
The trajectory consists of three straight segmentsg1, g2, andg3. (b)
The corresponding spin evolution on thesxsy plane, which is pro-
jected from(c). (c) The spin evolution induced by the Rashba spin-
orbit interaction on the three-dimensional unit sphere.
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sum of the Bychkov and Rashba14 and the Dresselhaus15

terms. If thez axis is chosen perpendicular to the heterostruc-
ture interface, the magnetic fieldhR contributing to the

Rashba term has two componentsfhR
xsk̂d ,hR

ysk̂dg=saRk̂y,

−aRk̂xd, where"k̂=s"k̂x,"k̂yd is the momentum operator. In
the 2D confinement, the magnetic fieldhD contributing to the
Dresselhaus term contains both linear and cubic parts with

respect tok̂.16 In a [001] oriented QW the linear term has the

componentsfhD
x sk̂d ,hD

y sk̂dg=saDk̂x,−aDk̂yd. For heterostruc-
tures with a typical,10 nm confinement in thez direction,
the linear part ofhD is usually larger than the cubic part,
except the case of high doping concentration.17 The Rashba
term is not zero only in heterostructures with asymmetry in
their growth direction. This term can be much larger than the
Dresselhaus term in the narrow gap InAs based systems.12 In
this paper we will study the spin evolution induced by the
Rashba term. But, since the SOI Hamiltonians corresponding
to the Rashba and the linear Dresselhaus terms can be trans-
formed from one to the other by the unitary matrixssx

+syd /Î2, our results are also valid for systems in which the
linear Dresselhaus term dominates the SOI.

Let us supposeEn to be thenth quantized energy level
with the eigenfunctionwn, which is a two component spinor.
At zero magnetic field this quantum state is at least doubly
degenerate. Let

csr d = eik·rFsr − Rdx s2d

be the wave packet created at timet=0, centered at the point
R, and propagating with the 2D wave-vectork. The function
Fsr d is assumed to be slowly varying within the scale of the
electron wavelength 2p /k and normalized, so that the inte-
gral euFsr du2d2r over the QD volume is equal to 1. The ini-
tial spin polarizationPs0d=oabxa

* sabxb is the sum over the
two componentsxa of the spinorx, whereaP h1,2j. For t
.0, the wave packet evolves in time as

csr ,td = o
n

cnwnsr de−i Ent/", s3d

where

cn =E wn
†sr dcsr dd2r . s4d

In terms of csr ,td the time dependent spin polarization is
expressed as

Pstd = o
ab
E ca

* sr ,tdsabcbsr ,tdd2r , s5d

with three componentsPstd=fPxstd ,Pystd ,Pzstdg.
For further analysis it is convenient to introduce the re-

tarded and advanced Green’s functions

Gab
r st − t8,r ,r 8d = Gba

a* st8 − t,r 8,r d

=− io
n

wnasr dwnb
* sr 8de−iEnst−t8dQst − t8d,

s6d

which are 232 matrices acting on the SUs2d spin space,
where Qst− t8d is the Heaviside function. Using these
Green’s functions, the spin-spin correlation function can be
defined as

Kijsr ,r 8;t − t8d=E TrfsiGrst − t8,r 9,r ds jGast8

− t,r 8,r 9dgd2r9, s7d

where i , j P hx,y,zj. This definition together with Eqs.
(3)–(5) lead to the expression for the polarization evolution
in time

Pistd =
1

2
E Kijsr ,r 8;tdFsr − RdF*sr 8 − Rd

3 eiksr−r8dPjs0dd2rd2r8. s8d

For classical simulations below, the semiclassical approxi-
mation of Eq.(8) is required. It can be derived from a stan-
dard path integral formalism,18 by representing the retarded
Green’s function in Eq.(7) as the sum of products

Gab
r st − t8,r ,r 8d=E dr 1 ¯ dr n o

a1,a2,¯
kr ,aue−iHst−t1dur 1,a1l

3kr 1,a1ue−iHst1−t2dur 2,a2l ¯ kr n,anue−iHstn−t8d

3ur 8,bl s9d

of the evolution operatorse−iHsti−t jd within the infinitesimally
short time intervalssti − tjd. Thereafter, the Green’s function
can be expressed as the path integral ofT expf i

"Sst
− t8 ,r ,r 8dg, where the action

Sst − t8,r ,r 8d=E
t8

t Fm*

2
v2std − Vsr stdd − hRSm*vstd

"
DsGdt,

s10d

is a time integral of the particle Lagrangian evaluated along
a trajectory starting fromr 8 at time t8 and ending withr at
time t, wherevstd=dr /dt. In this Lagrangian, the constant
termm*aR

2 /2 is ignored, because it only gives a phase factor.
Since the SOI Lagrangians on different parts of the trajectory
do not commute, one has to keep different expf i

"Sst
− t8 ,r ,r 8dg in the order of the sequence in Eq.(9), which is
preserved by the time ordering operatorT.

By using the saddle point approximation, the path integral
in Eq. (9) can be reduced to a sum over all classical trajec-
toriesg,18
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Grst − t8,r ,r 8d=
1

2p
o

g

ÎJsr ,r 8de
i
"

S0st−t8,r ,r8dUst − t8,r ,r 8d,

s11d

with the spin independent monodromy matrixJsr ,r 8d
=dets]2S0/]r i ] r j8d and the spin independent classical action
S0st− t8 ,r ,r 8d along the classical trajectories. The spin de-
pendence part of the Green’s function is represented by the
unitary matrix

Ust − t8,r ,r 8d = Te−i/"e
t8
t

hRsm*vstd/"ds dt. s12d

Such a decoupling of the spatial and spin degrees of freedom
can be done under the assumption that the classical paths are
only weakly perturbed by SOI, which is reasonable, when
the SOI parameteraR is much less than the electron Fermi
velocity. Under this assumption, all quantitiesJ, S, andU are
evaluated on the unperturbed trajectories.

Inserting Eqs.(11) and (12) into Eqs. (7) and (8), we
obtain a semiclassical expression for the spin polarization.
This expression can be substantially simplified after integrat-
ing over coordinatesr and r 8 in Eq. (8). Indeed, let us con-
sider the integral in Eq.(8)

E ÎJsr 9,r dei/" S0st,r9,r dFsr − RdeikrUst,r 9,r dd2r . s13d

In the semiclassical limit, the exponential function
exp f i

" S0st ,r 9 ,r dg rapidly oscillates as a function ofr with a
period given by the Fermi wavelength. However,J, U, andF
are slowly varying functions ofr . The length scale ofJ’s
variation is given by the dot size. The spatial changes ofU
are controlled by the spin orbit lengthLso=" / sm*aRd, which
is assumed to be much larger than the Fermi wavelength.
Therefore, the influence of the SOI on the saddle-point posi-
tion can be ignored. The variation ofF also can be ignored,
because this function was assumed to change weakly within
the length scale equal to the electron wavelength. Under
these approximations, we obtain the saddle-point equation in
the form

] S0st,r 9,r d
] r

+ "k = 0. s14d

This equation is the classical equation of motion. It deter-
mines the trajectoryr =r 0fr 9std ,ps0dg which passes through
the given pointr 9std at the instantt, on condition that att
=0 the initial momentum wasps0d="k. Therefore, the
saddle-pointr is a particle coordinate att=0 belonging to
this trajectory. Since the integral overr 8 in Eq. (8) is taken
around this extremum, the valuer 8=r =r 0 are inserted into
all slowly varying functionsJ, U, andF.

Further, to calculate the integral overr in Eq. (13), the
actionS0st ,r 9 ,r d is expanded aroundr =r 0 up to the second
order

S0st,r 9,r d + "k = S0st,r 9,r 0d +
1

2

] S0st,r 9,r 0d
] r0

i ] r0
j sr − r0

i dsr − r0
j d.

s15d

The integration over r and r 8 in Eq. (8) gives
s2pd2/det s]S0st ,r 9 ,r 0d /]r0

i ] r0
j d. Combining this Jacobian

with Jsr 9 ,r 0d we obtain

detS ] S0st,r 9,r 0d
] r9i ] r0

j DFdetS ] S0st,r 9,r 0d
] r0

i ] r0
j DG−1

=detS ] r0
i

] r9 jD .

s16d

By using the identity

detS ] r0
i

] r9 jDd2r9 = d2r0, s17d

Eq. (7) can be integrated overr 0, instead ofr 9, which leads
to the expression of the semiclassical spin polarization

Pc
i std =

Pjs0d
2

E Rijsr ,r 8,tduFsr 8 − Rdu2d2r8, s18d

with

Rijsr ,r 8,td = TrfsiUst,r ,r 8ds jU†st,r ,r 8dg. s19d

Equation(18) describes the spin evolution of a particle ini-
tially distributed around the pointR with the probability den-
sity uFsr 8−Rdu2. This particle starts its classical motion from
the pointr 8 with the momentum"k at time zero and arrives
in the positionr at timet. In the following, we are interested
in the spin evolution averaged over an ensemble of electrons
with uniformly distributed coordinatesR and random direc-
tions of the initial momenta on the Fermi surface. After av-
eraging Eq.(18) overR and the angular coordinateuk of the
momentumk, we obtain the simple expression

Pc
i std =

Pjs0d
4p

E Rijsr ,r 8,tdd2r8duk . s20d

It should be noted that after the integration overR this ex-
pression does not depend on the initial wave packet envelope
Fsr −Rd. Therefore, the same Eq.(20) holds forF=const, so
that the initial state can be simply a plane wave.

III. NUMERICAL RESULTS

Equation (20) is the basic equation for our numerical
simulations of the spin polarization. Below we will restrict
ourselves to the case when the initial polarizationPs0d is
directed along thez axis, so thatPzs0d=1, and the polariza-
tion to be calculated at timet is also inz direction.

A. Spin evolution in ballistic quantum dots

Consider a free electron confined inside a quantum dot
and moving along the trajectoryg, which consists of the
successive straight segmentsg j of the lengths l j with j
=1,2, . . . ,n. The spin state along this trajectory can be de-
scribed by the evolution operatorUg=Ust ,r ,r 8d in Eq. (12)
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with t8=0. This operator can be represented as a product

Ug = Ugn
¯ Ug j

¯ Ug2
Ug1

, s21d

of the individual operators

Ug j
= exp f− ic j Jjg, s22d

with c j = l j /Lso, Jj =N j ·s. Thereby,N j =n j 3ez is the unit
vector parallel to the effective magnetic fieldhskd=aRsk
3ezd, wheren j =k / uk u is the unit vector along the trajectory
segmentj andez is the unit vector inz direction. SinceJj is
a vector in the space of the Pauli matrices, the individual
operator in Eq.(22) has a simple form

Ug j
= cossc jd1 − i sinsc jdJj , s23d

with the identity matrix1.
Let us assume thej th segmentg j to have the anglewj

with respect to thex axis. Accordingly, the vectorN j has the
angle wj −p /2, so that we get the explicit expressionJj
=sinswjdsx−cosswjdsy. In SUs2d representation, the operator
Ug j

can be expressed as the matrix

Ug j
= S cossc jd sinsc jde−iwj

− sinsc jdeiwj cossc jd
D , s24d

which acts on the spin state

x = Sx1

x2
D = Scossu/2deif1

sinsu/2deif2
D . s25d

In SOs3d representation, the operatorUg j
corresponds to a

spin rotation around the axisN j through the angle 2c j. The
three components of the spin expectation value are related to
the spinorx by

s= 1sx

sy

sz
2 = 12 Resx1

*x2d
2 Imsx1

*x2d
ux1u2 − ux2u2

2 . s26d

For convenience, we will call the vector projectionssi
P f−1,1g as spin components, although they are twice as
large as the corresponding values for the spin 1/2.

As an example of spin evolution induced by the Rashba
interaction, let us consider an electron confined inside a
quantum dot in Fig. 1(a), moving along the trajectoryg
which consists of three straight segmentsg1, g2, andg3 with
the respective lengthsl1, l2, l3, and the anglesw1=p /2, w2
=p, w3=3p /2. The initial spin state of this electron is po-
larized in thez direction, which is represented by an arrow in
Fig. 1(c). This arrow is projected down to the origins0,0d on
thesxsy plane in Fig. 1(b). When the electron starts its motion
from the initial pointp along the segmentg1 [Fig. 1(a)], its
spin rotates around the axisN1=s1,0,0d and circumscribes
an arc on the three-dimensional sphere in Fig. 1(c). This
curve is projected down onto a straight line on thesxsy plane.
This line is parallel tog1, but runs in a direction opposite to
g1, as shown in Fig. 1(b). After the first collision with the
boundary the electron further moves along the segmentg2,
while its spin rotates aroundN2=s0,1,0d and circumscribes
the second arc on the sphere in Fig. 1(c). The spin projection

in Fig. 1(b) now runs parallel tog2 in the direction opposite
to electron motion alongg2. It is easy to see that the spin
evolution on other segments follows the same rule: When an
electron passes through thej th segment in a certain direction,
the spin on the 3D unit sphere circumscribes an arc around
the axisN j. This arc, in its turn, is projected onto thesxsy
plane as a straight line parallel to the electron trajectory, but
oppositely directed to it.

Further, let us proceed from the spin evolution on indi-
vidual trajectories to the spin evolution averaged over an
ensemble of trajectories. We consider an ensemble of elec-
trons distributed uniformly within a bounded area of a two-
dimensional heterostructure. Att=0 these electrons have ran-
dom outgoing angles but the same spins polarized in thez
direction. Letsz

sidstd be thez component of the electron spin
at time t for the ith trajectory. Then, in our numerical simu-
lations the integral in Eq.(20) can be replaced by the sum

Pc
zstd =

1

n
o
i=1

n

sz
sidstd, s27d

where the sum runs overn individual trajectories. The so
averaged spin polarization will be calculated in the following
five systems:

(1) In two-dimensional bulk[Fig. 2(a)] with the elastic
collision length l distributed according to the Poisson law
Prob sld=e−l/lm/ lm, where lm is the mean free path. It is a
stochastic open system. This is just the system where the
conventional D’yakonov-Perel’ spin relaxation has to be ob-
served.

(2) In a ballistic circular quantum dot of radius 1 with the
smooth boundary in Fig. 2(b). Since the boundary is smooth,
the incident and reflection angles on the boundary are the
same. Since the system is ballistic, no scattering occurs in-
side the dot. It is an integrable system with a high spatial
symmetry.

(3) In a ballistic triangular quantum dot with the smooth

FIG. 2. (Color online) Electrons trajectories(solid lines) for
short time intervals:(a) in bulk, (b) circular quantum dot,(c) trian-
gular quantum dot, and(d) Sinai quantum dot.
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boundary in Fig. 2(c). It is an integrable system of lower
symmetry compared to the circular dot.

(4) In a generalized Sinai billiard with the smooth bound-
ary in Fig. 2(d). It is a deterministic but strongly chaotic
system. The boundary geometry generates an ergodic dy-
namics in the phase space.

(5) In a ballistic circular quantum dot like Fig. 2(b), but
with random reflections from the boundary. The reflection
angle takes random values between −p /2 andp /2 with re-
spect to the boundary normal. It is a stochastic closed system
and corresponds to a quantum dot whose boundary is not
perfect in the scale of the electron Fermi wavelength.

The mean free pathlm in bulk in Fig. 2(a) is set to 1. The
sizes of the triangular and Sinai dots, as shown in Figs. 2(c)
and 2(d), are chosen to be Î2p<2.5066 and
Î32p / s16−pd<2.7961, such that these dots have the same
areap as that of the circular dot in Fig. 2(b). We will use the
dimensionless time unit, such that during the time interval 1
a particle moving with the Fermi velocity travels a distance
of the length 1.

B. Results of the numerical simulations

In Fig. 3 the time dependences ofPc
zstd for 2124 electrons

in the open system[Fig. 2(a)] with Lso=10, 6, and 2 are
plotted by solid curvesC1, C2, andC3. One can see that the
relaxation time increases withLso. These curves can be fitted
by the well-known expression for the longitudinal DP
relaxation19

PDPstd = expS− 4tlm
Lso

2 D , s28d

which is shown by the dashed curves in Fig. 3. This expres-
sion was derived under the assumption of sufficiently large
Lso@ lm. For not so largeLso the fitting is not good, as it can
be seen for the curveC3 around its first drop att=4. In this

regime the spin rotates rather fast, so that most of the spins
sz

sidstd evolve to negative values before the electrons encoun-
ter their first collisions with impurities. Therefore,Pc

zstd can
evolve to a deep negative value within a short time interval.
But later onPc

zstd approaches to the asymptotic valuePc
z=0

(curveC3 in Fig. 3). These results from Monte Carlo simu-
lations confirm the well-known DP relaxation in unbounded
systems.

If electrons are confined inside the smooth circular dot
[Fig. 2(b)], the relaxation ofPc

zstd is considerably sup-
pressed, so that at largeLso the spin polarization remains
close to 1 at large times, as the curveC4 in Fig. 3 demon-
strates for the case ofLso=10. At this regime, the suppression
of relaxation takes place in all other quantum dots, like the
circular dot with the rough boundary(curveC6), the triangu-
lar dot (curveC7), and the Sinai billiard(curveC8) in Fig. 4.
In all of these curves thePc

zstd values fall into the range
between 0.97 and 0.98 at large times up tot=103.

On the other hand, the spin polarization evolves very fast
down to 0 ifLso is smaller than the dot size. The correspond-
ing time dependence ofPc

zstd is similar to that shown in Fig.

FIG. 5. (Color online) Time dependence ofPc
zstd for Lso=2 in

the smooth circular dot(curveC5), the circular dot with the rough
boundary(curve C6), the triangular dot(curve C7), and the Sinai
billiard (curveC8).

FIG. 3. Solid curvesC1, C2, andC3 represent the time depen-
dent polarizationPc

zstd for 2124 particles in an unbounded QW with
Lso=10, 6, 2, and the mean free pathlm=1. The particles were
initially placed inside a circular area of the radiusR=1 and polar-
ized in thez direction. The dashed curves depict the DP relaxation
calculated from Eq.(28). For comparison, curveC4 showsPc

zstd for
2124 particles confined inside a circular dot of the radiusR=1 and
Lso=10.

FIG. 4. (Color online) Time dependence ofPc
zstd for Lso=10 in

the smooth circular dot(curveC5), the circular dot with the rough
boundary(curve C6), the triangular dot(curve C7), and the Sinai
billiard (curveC8).
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3 (curve C3), with a sharp drop at the beginning followed by
oscillations around zero.

For an intermediateLso the spin relaxes according to dif-
ferent scenarios, depending on the quantum dot geometry. As
an example, Fig. 5 shows the functionPc

zstd for various dot
geometries atLso=2. After a fast initial drop, the polarization
further relaxes to 0 in the Sinai billiard(curveC8) and in the
circular dot with the rough boundary(curveC6). However, in
the smooth circular(curveC5) and triangular(curveC7) dots
this function oscillates around a constant value at large times.
It should be noted that in the former two examples the spin
polarization relaxes to zero at much longer times than the DP
relaxation time in the unbounded system(Fig. 3), although
the mean elastic scattering length there is comparable to the
dot size. The relaxation times forC6 and C8 in Fig. 5 in-
crease rapidly with higherLso. Thus, atLso=10 we could not
detect any systematic decrease of the spin polarization in the
Sinai billiard and rough circular dot, up tot=103, which is
by an order of magnitude larger than the range plotted in Fig.
4.

An interesting feature ofPc
zstd in the regular systems, like

the triangular and smooth circular dots, is the apparent oscil-
lation of the polarization. It can be seen in Figs. 4 and 5,
although the oscillations in the latter figure are more pro-
found for the case of the circular dot, compared to almost
vanishing ripples in the triangle. These oscillations do not
disappear at large times and their amplitudes increase with
the strength of SOI. We cannot say much about their nature.
Probably, they are associated with the role of periodic trajec-
tories in regular systems. A special study is required to un-
derstand the origin and characteristics of these oscillations.

At long time the spin polarizations in both regular quan-
tum dots(triangle and smooth circle) in Figs. 4 and 5 oscil-
late around certain nonzero residual values. These residual
polarizationsPc

z areLso dependent, as plotted in Fig. 6 for the
circular dot.

C. Spin evolution along individual trajectories

The existence of the nonzero residual polarization in regu-
lar quantum dots and long spin relaxation time in chaotic

systems are fundamentally distinct from the DP spin relax-
ation in the boundless QW. Such a distinction is surprising,
because at first sight the spin walks on the sphere in Fig. 1(c)
should be randomized by scattering of particles from dot
boundaries, similar to randomization by impurity scattering
in unbounded systems. However, this simple point of view is
wrong, because there is an important difference between the
impurity scattering and the boundary scattering. For conve-
nience, let us define the scattering with a direction change
smaller thanp /2 as a “forward” scattering and that larger
thanp /2 as a “backward” scattering. If the particles are iso-
tropically scattered by an impurity, half of them continue to
move “forward.” However, if the particles are scattered by a
smooth boundary, the particles with incident angles between
−p /4 to p /4 with respect to the boundary normal will be
reflected “backward.” Since statistically more particles hit
the boundary within this range of angles, the “backward”
scattering prevails in DQ’s. This property of particle scatter-
ing can also be extended to QD’s with rough boundaries.
Further, according to Fig. 1, a “backward” particle motion is
mapped onto a “backward” spin walk. Hence, if the spin
moves away from the north pole in Fig. 1, after a boundary
scattering the spin is more likely bounced back toward the
north pole. Such a non-Markovian statistic of the spin walks
gives a clue for understanding the numerical results in Sec.
III B.

In order to make this argument more clear it is instructive
to study in detail the spin evolution along a single trajectory.
As described in Fig. 1, the spin motion on the unit sphere can
be projected onto thesxsy plane. After a long time the spin
path on the sphere will cover a region and produce a certain
pattern on thesxsy plane. In the circular dot this pattern looks
rather ordered. If the electron moves along a triangular peri-
odic trajectory[Fig. 7(a)], the pattern is a rounded triangle

FIG. 7. Electron trajectories on thexy plane [(a)–(h)] and re-
spective spin evolution patterns on thesxsy plane [(i)–(p)] for Lso

=5. (a), (b), and (c) periodic triangular, hexahedral, and starlike
trajectories in the smooth circular dot.(d) A nonperiodic trajectory
in the smooth circular dot.(e) A stochastic trajectory in the rough
circular dot.(f) and (g) Two periodic trajectories in the triangular
dot. (h) A nonperiodic trajectory in the triangular dot.

FIG. 6. The residual polarizationPc
z vs the spin rotation length

Lso for a smooth circular dot.
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[Fig. 7(i)]. If the trajectories are hexahedral and starlike
[Figs. 7(b) and 7(c)], the corresponding patterns are a
rounded hexagon and a rounded star[Figs. 7(j) and 7(k)]. If
the trajectories are nonperiodic, e.g., Fig. 7(d), the pattern is
a disc[Fig. 7(l)]. A common feature of these patterns is that
they have the same size, which is less than 1 in the case of
Lso=5. These patterns are highly stable up to the observation
time t=104. It implies that the spin on the unit sphere cannot
move far away from the north pole, so thatsz

sidstd cannot take
negative values. Our analysis of various trajectories with
various initial conditions has confirmed this general feature
of the spin evolution in the circular dot. Hence, a nonzeroPc

z

in Fig. 6 at infinitely long time is obviously expected.
In the triangular dot, two periodic and one nonperiodic

trajectories are shown in Figs. 7(f)–7(h). The corresponding
spin patterns[Figs. 7(n)–7(p)] are less symmetric and have
less predictable sizes than those in the circular dot. For the
trajectory in Fig. 7(g) the pattern in Fig. 7(o) touches the
circular border. Nevertheless, our investigation shows that
the patterns of most other trajectories are quite stable up to
the observation time 104 and do not touch the border. On this
reason the spin polarization being averaged over trajectories
is expected to relax to a positive residual value, although this
value is smaller than that in the smooth circular dot.

In the circular dot with a rough boundary, the reflection
angles are stochastic, as shown in Fig. 7(e). Within the ob-
servation timet=103 the corresponding spin pattern on the
sxsy plane has spread out to a much larger area[Fig. 7(m)]
than those in the smooth circular dot[Figs. 7(i)–7(l)]. Fur-
thermore, the pattern in Fig. 7(m) is still expanding. The
corresponding spin state on the 3D sphere can penetrate into
the lower hemisphere aftert=103. However, it can return
back to the north sphere again. Therefore, thez component
of this spin state oscillates between negative and positive
values. When averaged over many trajectories, such oscilla-
tions sum up to a relaxation curve, similar toC6 in Fig. 5.

In the Sinai billiard, thesxsy pattern resembles that in the
rough circular dot. Consequently, the spin relaxation dynam-
ics in both cases have similar characteristics(curvesC6 and
C8 in Fig. 5).

A general trend seen from Fig. 7 is that the confinement of
the particle motion in QD’s makes the spin to be also con-
fined within the upper hemisphere, ifLso is larger than the
size of the QD’s. For a smooth circular dot, this trend can be
easily understood from the “backward” scattering effect de-
scribed at the beginning of this subsection. Since all trajec-
tories in this case have a simple geometry, one can easily see
that particles are more frequently scattered from the bound-
ary in a “backward” direction. But although this argument
holds for general bounded systems, it is less evident for other
QD’s besides the smooth circular dot. In a general case, the
trend toward the spin confinement can be argued in a differ-
ent way: As seen from Fig. 1, the projected spin path on the
sxsy plane in Fig. 1(b) is more or less a rescaled curve of its
particle trajectory in Fig. 1(a). But in reality the mapping
from a trajectory to the corresponding spin path is not simply
a rescaling, because the spin rotations on the sphere are non-
commutative. For example, a closed particle trajectory is in
general mapped onto an open spin path. However, ifLso is
large, the spin path is restricted to a small part of the sphere.

According to Eqs.(21) and (22), a closed particle trajectory
produces an open spin path of the linear size,1/Lso, while
the distance between the initial and the end points of the path
is only ,1/Lso

2 . The mapping between the trajectories and
the spin paths is then similar to a mapping between two
Euclidean spaces. Therefore, with the accuracy 1/Lso

2 , the
spin paths are the rescaled particle trajectories and those
paths are confined because the particle trajectories are con-
fined. It should be noted that such a tendency for the spin
confinement turns out to be strong even for not so largeLso,
as one can see from the spin dynamics shown in Fig. 5 for
Lso=2.

The above argument about the spin confinement does not
take into account a long time evolution. Even at largeLso,
small corrections due to noncommutativity of spin walks will
accumulate in time. As a result, the spin can slowly drift
toward the lower hemisphere. The expanding pattern in Fig.
7(m) of the rough circular dot is an example of such a long
time behavior. However, in contrast to that unstable pattern,
the patterns from regular systems[Figs. 7(i)–7(p) besides
7(m)] remain stable in time. This difference between the
single trajectories of random and regular systems is consis-
tent with the spin relaxation curves shown in Fig. 5.

Such a distinction between regular and chaotic systems
follows from fundamental properties of regular and chaotic
systems. It can be understood from consideration of periodic
orbits. After a particle runs along a periodic orbitg and com-
pletes a period, its initial spin statex will evolve to Ugx with
Ug=expf−iVRsg, which represents a rotation around the
axis R through the angle 2V. Both R andV are determined
entirely by the geometry ofg and by the value ofLso. After
the particle repeatsw periods, all spin positionssUgdwx, cor-
responding to the end points of all periodsw=1,2, . . ., are
located on a closed circle. This circle can be obtained by
rotating the north pole aroundR, if the initial x is related to
the spin polarized in the north pole direction. The other
points on the periodic orbit are mapped onto spin states
around this circle. Taking many periodic orbits into account,
one obtains a set of different axesR and consequently a set
of circles passing through the north pole. Hence, when aver-
aged over all periodic orbits, spin spends more time in the
upper hemisphere. This means that at least the family of the
periodic orbits contributes to a nonzero residual polarization.
How significant is this contribution to the whole residual
value depends on the amount of the periodic orbits in a sys-
tem, which is quite different in regular and chaotic systems.
In a regular system the family of periodic orbits has a finitely
positive measure and a bundle of adjacent nearly periodic
orbits. These adjacent trajectories behave like periodic orbits
if the time is not too large, because their linear deviation in
time from the periodic orbits is small. On the contrary, the
periodic orbits in chaotic systems are of zero measure.20 Fur-
thermore, their adjacent trajectories deviate from them expo-
nentially fast. Therefore, with increasing time, the weight of
the periodic orbits and their adjacent trajectories becomes
exponentially small in chaotic systems, while it is a nonzero
value in regular systems. Hence, as long as we consider only
periodic orbits, the residual spin polarization has to be a
positive number for regular systems and zero for chaotic sys-
tems.
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The individual trajectory study in a larger time scale car-
ried out in this section helps us to understand some of the
results in Sec. III B. However, although the indication of the
nonzero residual polarizationPc

z from Figs. 3–6 is strong,
one might still suspect thatPc

z will decay to zero within a
much larger time scale, since the numerical simulations in all
these figures are truncated at a finite time. This suspicion can
be tested by calculating the exact spin polarization quantum
mechanically, if the analytical solutions of the Schrödinger
equation are available in the systems. Indeed, this exact re-
sidual polarization value is nonzero in the smooth circular
dot, as shown in the next section.

IV. QUANTUM MECHANICAL POLARIZATION IN THE
CIRCULAR QUANTUM DOT

Due to the time reversal symmetry, the quantized energy
levelsEn of the HamiltonianH in Eq. (1) are, at least, two-
fold degenerate with the corresponding spinor eigenfunctions
wna, where aP h±j is the degeneracy index. In the basis of
these states a normalized wave functioncsr ,td can be ex-
panded as

csr ,td = o
na

cnawnasr de−iEnt/", s29d

with the coefficient

cna =E wna
† sr dcsr dd2r . s30d

The expression ofcsr ,td in Eq. (29) differs from Eq. (3)
only by the degeneracy index a, which is explicitly written
here for convenience of our further analysis. Taking the no-
tation

cnasr ,td = cnawnasr de−iEnt/", s31d

and cnasr d=cnasr ,0d, the z component of the quantum me-
chanical polarization in Eq.(5) can be expressed as

Pzstd = kcsr ,tduszucsr ,tdl=o
nab
E cna

† sr dszcnbsr dd2r

+ o
nÞm,ab

E cna
† sr dszcmbsr deisEn−Emdt/"d2r . s32d

The first sum in this equation is time independent, while
the second sum oscillates in time, so that its average over a
sufficiently long time interval turns to zero. It is interesting
to find out whether the former term coincides with the re-
sidual polarization in Fig. 6. Such a coincidence is not evi-
dent because the time dependent sum can give rise to large
variations ofPzstd after long timet. Moreover, the semiclas-
sical theory employed in the previous section cannot be valid
for times larger than the mean distance between energy lev-
els near the Fermi energy. We can check such a coincidence
at least for the simple case of a circular dot with the smooth
boundary, by calculating the residual polarization

Pz = o
naa8

E cna
† sr dszcna8sr dd2r , s33d

because the analytic solution of the Schrödinger equation
with the arbitrarily strong Rashba interaction is available.21

In this section only the key steps of the calculation are pre-
sented, while the calculation in detail is shown in the Appen-
dix.

Let us consider a circular quantum dot of radiusR with
the confining potential

Vsrd = H0 for 0 ø r ø R

` for R. r
, s34d

written as a function of the polar coordinatesr =r sr ,fd. The
eigenfunctions of thenth eigenvalueEn are21

wn+sr d = S einffnsrd
eisn+1dfgn+1srd

D s35d

and

wn−sr d = Se−isn+1dfgn+1
* srd

− e−inffn
*srd

D , s36d

where the function

S fnsjd
gnsjd

D = dS− anJnsk+jd + Jnsk−jd
an−1Jnsk+jd + Jnsk−jd

D , s37d

contains thenth order Bessel functions of the first kindJnsjd,
the normalization constantd, the parameters

an =
Jnsk−d
Jnsk+d

= −
Jn+1sk−d
Jn+1sk+d

, s38d

the wave-numbers

k± =
Îb2 + 4« 7 b

2
, s39d

and the index

n = l − 3/2 with l = 1,2,¯ , . s40d

Therein, the dimensionless parametersj=r /R, «
=2m*ER2/"2, and b=2aRm*R/"2 have been used. The
wave-numbersk± are quantized because the energy levels«
are determined by the zeros of the function

Zns«d: = Jnsk−dJn+1sk+d + Jnsk+dJn+1sk−d. s41d

We chose the plane-wave

csr d = S1

0
Deikr s42d

as the initial state. After insertingwn+sr d from Eq. (35) and
wn−sr d from Eq.(36) together with Eq.(31) into Eq.(33) and
averaging over directions of the vectork we obtain

Pz = 2po
n

sucn+u2 − ucn−u2dsFn − Gnd, s43d

with
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Fn = d2fan
2 In

s1d − 2an In
s2d + In

s3dg

Gn = d2fan
2 In+1

s1d + 2an In+1
s2d + In+1

s3d g, s44d

where the coefficientsIn
s1d, In

s2d, and In
s3d are presented in Eq.

(A18). The coefficientsucn±u2 in Eq. (43) can be written as

ucn+u2 = 4p2 d2s− an In
s4d + In

s5dd2

ucn−u2 = 4p2 d2san In+1
s4d + In+1

s5d d2, s45d

with the coefficientsIn
s4d and In

s5d given by Eq.(A21). Using
the dimensionless units, one has the radiusR=1, the cou-
pling constantb=2/Lso, and the wave-numberk=2pR/l,
wherel is the electron wavelength. Hence the semiclassical
range of parameters corresponds tok@1.

The residual polarization calculated from Eq.(43) is
shown in Fig. 8. ThePz curves fork=20, 30, and 40 are very
close to each other and merge into the dashed curve. This
curve coincides with the residual polarization obtained from
the semiclassical simulations in the previous section(Fig. 6).
For k=5, 1, and 0.1, the curves are plotted in the dotted,
solid, and dash-dotted curves, respectively. All the curves, as
expected, have the common asymptotic value 1 in the case of
the weak spin-orbit couplingLso→`. In the opposite limit,
Lso→0, the behavior ofPz is nonanalytic and not much re-
vealing. The strong oscillations in this limit increase with
smaller wave numbers and signal about the appearance of
large quantum beats inPzstd. This regime ofLso is not inter-
esting from the practical point of view because it implies
unphysically large values ofaR for the typical dot radiusR
=500 nm. In the practically important regime ofLsoù1 we
note an apparent dependence ofPz on k at kø5. This is a
quantum effect which is not observed in our semiclassical
simulations. In semiclassics the particle velocity determines
the speed with whichPzstd approaches to the residual value
Pz, but not this value itself.

V. DISCUSSION

Summarizing the above results of the semiclassical Monte
Carlo simulations and quantum mechanical calculations we
can draw the following picture of the spin evolution in semi-
classical quantum dots. In the dots with regular classical dy-
namics the spin polarization does not decay to zero at long
time and its residual value coincides with the quantum me-
chanical spin polarization averaged over an infinitely long
time interval. At least, we were able to check such a coinci-
dence for the circular dot. On the other hand, in dots with
chaotic or random dynamics the spin polarization relaxes to
zero with the relaxation time much larger than the DP relax-
ation time in unbounded quantum wells. Such a decay down
to zero cannot be understood from the general quantum me-
chanical expression in Eq.(32) , because it implies that the
average ofPzstd over an asymptotically long time interval is
zero. However, Eq.(32) predicts that this average is given by
the first term in Eq.(32), which is nonzero in general. Obvi-
ously, this contradiction is associated with quantum mechani-
cal effects, which indicates that the semiclassical approxima-
tion is insufficient for analysis of the long time polarization
evolution. Indeed, studies of electron transport in chaotic and
disordered QD’s have shown that the quasiclassical method
is valid only at sufficiently short times.22–25 An important
crossover time is the Ehrenfest timeTE. This time is con-
trolled by the Lyapunov exponent describing the divergence
of close trajectories in chaotic systems. WithinTE two tra-
jectories initially located at a distance of the order of the de
Broglie wavelength will diverge up to a distance comparable
to the size of the QD. The importance of quantum effects at
times larger thanTE has been demonstrated for Andreev bil-
liards in Refs. 22–24. Another characteristic time is given by
TD=" /D, whereD is the mean distance between energy lev-
els in the QD. In disordered mesoscopic systems the statis-
tics of their energy spectrum together with the weak local-
ization effects give rise to the so-called quantum dynamical
echo att.TD. This phenomenon was investigated for the
time evolution of the electron density in a noninteracting
electron system.25 It was found that due to the quantum ef-
fects the density profile at large time is inhomogeneous
throughout the QD and preserves the memory about the ini-
tial density distribution up to the dephasing time. One can
expect a similar memory effect for the spin polarization. At
least for an unbounded 2D gas the weak localization correc-
tion to the DP relaxation was shown to produce a nonexpo-
nential 1 /t tail in the spin polarization evolution at large
times.26 This problem is outside the method of the present
work and needs further study.

The predicted spin evolution can be measured experimen-
tally. For an InAs dot doped up to 1011 cm−2, the time unit in
Figs. 3–5 is about 1 ps if the dot size isL=0.5 mm. Hence,
the spin polarization saturates to its residual value during
first 20 ps and forLso=1 mm the difference in the long time
evolution between chaotic and regular dots can be observed
in the nanosecond range. In order to suppress all inelastic
spin relaxation mechanisms,3–6 the measurement must be
done at sufficiently low temperatures. The Rashba spin-orbit
interaction can be strong in InAs based heterostructures, with
Lso down to several hundreds nm. Moreover, it can be tuned

FIG. 8. (Color online) The residual spin polarizationPz vs Lso

with k=20, 30, 40,(dashed), k=5 (dotted), k=1 (solid), and k
=0.1 (dash-dotted). The dashed curve coincides with the curve from
Fig. 6.
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in a wide interval by varying the gate voltage.12

In conclusion, we performed path integral semiclassical
simulations of spin evolution controlled by the Rashba spin-
orbit interaction in quantum dots of various shapes. Our cal-
culations revealed that the spin polarization dynamics in
QD’s is quite different from the D’yakonov-Perel’ spin relax-
ation in bulk 2D systems. Such a distinction is not expected
from the simple picture of the spin random walk, in particu-
lar when the rate of electron elastic scattering on impurities
in bulk is equal to the mean frequency of electron scattering
from the dot boundaries. We have also found an important
distinction between long time spin evolutions in classically
chaotic and regular systems. In the former case the spin po-
larization relaxes to zero within relaxation time much larger
than the DP relaxation, while in the latter case it evolves to a
time independent residual value. This value decreases with
the stronger spin orbit interaction. We also analyzed the gen-
eral quantum mechanical expression for the time dependent
spin polarization. Using the exact solutions of the
Schrödinger equation with Rashba SOI for a circular dot, we
calculated the average of the spin polarization over an infi-
nitely long time interval and compared the result with the
residual polarization from the Monte Carlo simulations. We
found that the residual values from these two approaches
coincide, which confirms the results from the semiclassical
simulations. On this basis, we conjecture that the nonzero
residual value is a general property of regular systems. On
the other hand, the spin relaxation down to zero in the Sinai
billiard and circular dot with the rough boundary contradicts
what has to be expected from quantum mechanics. The long
time memory due to the mesoscopic spin echo is assumed to
be responsible for this contradiction.
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APPENDIX

This Appendix demonstrates a quantum mechanical cal-
culation of the residual polarizationPz, as it is defined in Eq.
(33). The calculation of the exact eigenfunctions of the
Hamiltonian in Eq.(1) for the circular quantum dot can be
found in Ref. 21, which is summarized in the following Eqs.
(A1)–(A5).

In order to calculate the residual polarization(33), the
wave-functioncnasr d is expanded in the basis of the eigen-
functions given by Eqs.(35) and (36). We note that for a
symmetric presentation, the functionsfn andgn have differ-
ent definitions from those in Ref. 21. Inserting Eqs.(35) and
(36) into the corresponding Schrödinger equation we obtain
the equation forfn and gn in terms of the dimensionless
parametersj ,«, andb defined in the previous section

fnn + «gfnsjd − b ¹−sn+1d gn+1sjd = 0,

fnn+1 + «ggn+1sjd − b ¹+n fnsjd = 0, sA1d

with the Laplacian

nn =
1

j

d

dj
Sj

d

dj
D −

n2

j2 sA2d

and the nabla operator

¹±n = ± S d

dj
D −

n

j
. sA3d

The solutionsffnsjd ,gnsjdg of these equations are

S fnsjd
gnsjd

D = dS− anJnsk+jd + Jnsk−jd
an−1Jnsk+jd + Jnsk−jd

D , sA4d

with the normalization constantd, the factorsan given by Eq.
(38), and the wave-vectorsk± from Eq. (39). These wave
vectors obey the relations

k+k− = «, k+ − k− = − b,

andk+ + k− = Îb2 + 4«. sA5d

The quantized dimensionless energies« are determined
by the zeros of the function in Eq.(41) . This function stems
from the determinant of the equation system in Eq.(A1) with
the boundary conditionsfnsjd=gnsjd=0 atj=1. Given a cou-
pling constant b, the nth quantized value«n with n
=nsl ,md is determined by themth zero ofZns«d, wheren and
l are related by Eq.(40). The allowed wave-numbersk± are
given by Eq.(39) with «=«n. They correspond to the two
degenerate eigenstates of thenth energy level. The first root
of the functionZns«d is zero for n=1/2,3/2, . . ., and is a
positive value forn=−1/2 (see Fig. 9). The larger the value
of b, the larger the second root ofZns«d.

Substituting the wave functions in Eqs.(35) and(36) into
Eq. (33) we obtain the residual polarization in the form

Pz = o
n
E

0

1 E
0

2p

fsucn+u2 − ucn−u2dffn
2sjd − gn+1

2 sjdg

+ 2cn+
* cn−fnsjdgn+1sjde−is2n+1df

+ 2cn−
* cn+fnsjdgn+1sjdeis2n+1dfg df j dj. sA6d

For the initial wave function given by Eq.(42) , the con-
stantscn+ can be expressed as

FIG. 9. The functionZns«d for n=−1/2, 1/2, and 3/2. This
function is singular at«=0 for n=−1/2.
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cn+ =E Swn+
s1dsr d

wn+
s2dsr d

D†S1

0
Deikr d2r =E wn+

s1d*sr deikr d 2r

=E
0

2p E
0

1

eifkj cossf−ud−nfgfnsjdj dj df, sA7d

wheref and u stand for the angles of the vectorsr and k
with respect to the positivex axis andk= uk u. After the shift
of the angular variable fromf−u to f the above integral
transforms to

cn+ = e−inuE
0

2p E
0

1

eifkj cossfd−nfgfnsjdj dj df. sA8d

Substitutingt=f+p /2 andm=n into the integral represen-
tation of the Bessel function,27

Jmszd =
1

2p
E

−p

p

eifz sinstd−mtg dt, sA9d

we obtain

2p einp/2Jnszd =E
0

2p

eifz cossfd−nfgdf. sA10d

By using this identity, Eq.(A8) can be written as

cn+ = 2p einsp/2−udE
0

1

Jnskjdfnsjdj dj. sA11d

By analogy, one has

cn− = 2p eisn+1dsp/2−udE
0

1

Jn+1skjdgn+1sjdj dj. sA12d

After integrating Eq.(A6) overf and the directionu of k
[integration overu is similar to that overuk in Eq. (20) ], the
second and third terms in Eq.(A6) vanish and only the first
term remains. Introducing the parameters

Fn =E
0

1

fn
2sjdj dj and Gn =E

0

1

gn+1
2 sjdj dj,

sA13d

the final expression for the residual polarization can be writ-
ten as

Pz =
on

sucn+u2 − ucn−u2dsFn − Gnd

on
sucn+u2 + ucn−u2dsFn + Gnd

. sA14d

For numerical calculations we explicitly wrote the norm of
the normalized wave functioncsr ,td in the denominator. In
this form the expression in Eq.(A14) is also valid for non-
normalized wave functions, because the normalization con-
stantsd in the numerator and denominator are canceled with
each other.

The polarizationPz in Eq. (A14) is determined by the four
integralscn±, Fn, andGn. They can be calculated by using the
formula28

E
0

l

j Jnsl jdJnsk jddj

=
lfkJnsl ldJn+1sk ld − lJnsk ldJn+1sl ldg

k2 − l2 . sA15d

Consequently, the integrals in Eq.(A13) can be written in the
closed form

Fn = d2f an
2 In

s1d − 2an In
s2d + In

s3dg, sA16d

Gn = d2fan
2 In+1

s1d + 2an In+1
s2d + In+1

s3d g, sA17d

with

In
s1d =

Jnsk+d2 + Jn+1sk+d2

2
−

nJnsk+dJn+1sk+d
k+

,

In
s2d =

k−Jnsk+dJn+1sk−d − k+Jnsk−dJn+1sk+d
k−

2 − k+
2 ,

In
s3d =

Jnsk−d2 + Jn+1sk−d2

2
−

nJnsk−dJn+1sk−d
k−

. sA18d

By analogy, calculating the integrals in Eqs.(A11) and
(A12) we obtain

ucn+u2 = 4p2 d2s− an In
s4d + In

s5d d2, sA19d

ucn−u2 = 4p2 d2san In+1
s4d + In+1

s5d d2, sA20d

with

In
s4d =

k+JnskdJn+1sk+d − kJnsk+dJn+1skd
k+

2 − k2 ,

In
s5d =

k−JnskdJn+1sk−d − kJnsk−dJn+1skd
k−

2 − k2 . sA21d

For smallb the spin polarization approaches toPz=1, as it
must be in the absence of the spin-orbit interaction. It fol-
lows from the relationk−−k+=b<0 in Eq. (A5), which re-
sults in fnsjd<0, according to the definition in Eq.(A4).
Hence, the two quantitiesucn+u andFn, which containfnsjd,
vanish inPz. Therefore, the sums in the numerator and de-
nominator ofPz become the same, which gives rise toPz

=1.
For largeb, we havePz→0, which is due to the large

difference betweenk+ andk−, namely,k−−k+=b@1. Accord-
ing to the asymptotic behavior28

Jnsxd =Î 2

px
cosFx −

p

2
Sn +

1

2
DG + OS1

x
D sA22d

of the Bessel function at largex, the magnitude of the oscil-
lating functionJnsk+d is much larger thanJnsk−d by the order
of Îk−/k+. Therefore, the leading terms ofIn

s4d andIn
s5d in Eq.

(A21) behave like
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In
s4d ,

Jnsk+dJn+1skd
k

,

In
s5d ,

JnskdJn+1sk−d
k−

. sA23d

The first term is much larger than the second one. Conse-
quently, bothcn+ andcn− are dominated byIn

s4d and have the
same limit for largeb. By analogy,Fn andGn also have the
same limit. Therefore, bothucn+u2− ucn−u2 and Fn−Gn in the
numerator of Eq.(A14) become small and hencePz=0 for
b→`.
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