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We performed path integral simulations of spin evolution controlled by the Rashba spin-orbit interaction in
the semiclassical regime for chaotic and regular quantum dots. The spin polarization dynamics have been
found to be strikingly different from the D’yakonov-PeréDP) spin relaxation in bulk systems. Also an
important distinction has been found between long time spin evolutions in classically chaotic and regular
systems. In the former case the spin polarization relaxes to zero within relaxation time much larger than the DP
relaxation, while in the latter case it evolves to a time independent residual value. The quantum mechanical
analysis of the spin evolution based on the exact solution of the Schrédinger equation with Rashba SOI has
confirmed the results of the classical simulations for the circular dot, which is expected to be valid in general
regular systems. In contrast, the spin relaxation down to zero in chaotic dots contradicts what has to be
expected from quantum mechanics. This signals on the importance of quantum effects missed in the semiclas-
sical simulations for long time spin dynamics.
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[. INTRODUCTION packet represented by a superpositioncohtinuumeigen-
states. During a DP relaxation process, the spin expectation
Spin relaxation in semiconductors is an important physi-value expressed as a bilinear combination of these wave am-
cal phenomenon being actively studied recently in connecplitudes will decay exponentially in time. This process can
tion with various spintronics applicatiofsln doped bulk be easily understood from the semiclassical Boltzmann or
samples and quantum well®W) of I1I-V semiconductors at  Fokker-Planck approachindeed, keeping in mind that the
low temperatures spin relaxation is mostly due to theSOIl has the forme-h(k), where o is the vector, whose
D’yakonov-Perel'(DP) mechanisn?. This mechanism does components are the three Pauli matrices, atkl) is the
not involve any inelastic processes, so that the exponentiaffective magnetic field, whose magnitude and direction de-
decay of the spin polarization is determined entirely by thepend on the electron momentuky one can envision spin
spin-orbit interactiofSOI) and elastic scattering of electrons relaxation as the spin random walk on the surface of the unit
on the impurities. However, in case of confined systems suchphere, similar to that in Fig.(4). Starting at the north pole,
as quantum dot§QD) with atomiclike eigenstates, the SOI the spin precesses arouh¢k;) until the momentum direc-
has been incorporated into the structure of the wave function is changed by a scattering on an impurity. Thereafter, the
tions of the discrete energy levels. Without inelastic interacimagnetic field changes its direction ktk,) and the spin
tions, an initial wave packet with a given spin polarization continues its precession around this direction. If the spin ro-
will evolve in time as a coherent superposition of these distation angle between successive scattering events is small,
crete eigenstates. Therefore, the corresponding expectatioine sequence of such rotations results in a diffusive spreading
value of the spin polarization will oscillate in time without of the initial polarization.
any decay. To obtain a polarization decay in the QD’s, extra Returning to QD’s, a natural question emerges: What sort
effects have to be introduced into the system, e.g.in@l@s-  of spin evolution can be generated by the DP mechanism in
tic interactions between electrons and phonons mediated by ballistic QD whose size is much larger than the electron
the spin-orbit* and nuclear hyperfine effect8:® Accord-  wavelength at the Fermi surface and where the mean spacing
ingly, a spin relaxation in QD’s induced by these effects is abetween energy levels is much less thd, whereT is the
real dephasing process. mean time between electron collisions with the boundary?
Unlike such an inelastic relaxation in QD’s, the DP spin Similar to the example in Fig. 1, the spin evolution in this
relaxation in unbounded systems seems to be quite a diffesemiclassical regime can be studied by tracking the spin
ent phenomenon, because the scattering on impurities is elasalk on the sphere, when particles move along the classical
tic and there is no dephasing of the electron wave functiongrajectories inside the QD’s. Intuitively, one would expect the
in the systems. However, the spin polarization does decay ispin evolution in this case to be similar to the spin random
time exponentially, as if it would be a true dephasing pro-walk governed by the impurity scattering in unbounded
cess. To explain this phenomenon, let us consider an electraamples. However, this expected analogy with the open sys-
moving diffusively through an unbounded system with ran-tem is wrong. Indeed, in an unbounded system, the steps of
dom elastic scatters. This electron is described by a wavehe random walk are uncorrelated. This results in a diffusive
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(@ N (b) that the characteristic spin orbit lendth,=vg/fh(kg) is not
1 much larger than the dot size Such a regime can be real-

ized in the InAs based heterostructures fer 0.5-1 um 3
We found that in the short time scaleT the spin relaxation
dynamics in all geometries shares a common feature: After a
fast initial drop during the time interval T, the spin polar-
ization continues to oscillate weakly around some value. For
weak SOI withLg,>L, all residual values for different dot
geometries are quite close to one up to the cutoff time of our
numerical simulationg~10® T). For stronger SOI with_,
=L, the initial drop of the spin polarization is considerably
larger compared to the weak SOI regime. The spin evolution
after that drop depends on the dot geometry. In the case of
circular and triangular dots, which are examples of systems
with regular classical dynamics, the corresponding spin po-
larizations approach nonzero residual values. However, in
the case of chaotic and random systgmg., Sinai billiard
and circular dot with rough boundaries, respectiyethe
spin polarizations slowly decrease to zero after that initial
drop. But this decreasing is much longer than the DP relax-
ation in an unbounded system, in which the mean impurity
scattering time is-T. For very strong SOI with.;,<L, the
spin polarization after the initial drop reaches zero and later
on oscillates with a large amplitude.

FIG. 1. (Color onling (a) Electron motion inside a quantum dot. ~ These results clearly demonstrate that the spin evolution
The trajectory consists of three straight segmenisy,, andys. (b) in QD’s is qualitatively distinct from the DP spin relaxation
The corresponding spin evolution on the, plane, which is pro-  in unbounded systems. In order to elucidate the physical ori-
jected from(c). (c) The spin evolution induced by the Rashba spin-gin of this phenomenon, two investigations have been per-
orbit interaction on the three-dimensional unit sphere. formed. First, the spin evolution along a single electron tra-

jectory was studied in detail, which provided a clue for
decay of the spin polarization down to zero for any nonzerd!nderstanding the above-mentioned polarization behavior.
SOI. But in case of QD’s, the steps of the random walk onSecond, the residual polarization obtained from the classical
the sphere are correlated due to the confinement of electrgfimulations for a circular quantum dot was compared with
trajectories within the dots. As we will show below, such that derived from the exact solution of the Schrodinger equa-
correlations not only lead to a spin relaxation much longettion. A good agreement between the results from these two
than the DP relaxation in unbounded systems, but also to @pproaches has been found. However, for QD’s with chaotic
nonzero final polarization value at long time for certainand random electron dynamics, the general quantum me-
quantum dot geometries. Here, we do not take into accourthanical analysis revealed a contradiction to the long time
the inelastic mechanis#i§ which always drive the spin po- Spin evolution observed in our semiclassical simulations.
larization to zero in long time. These mechanisms are as- The paper is organized in the following way. In Sec. II,
sumed to be absent, because they become inefficient at stifle general expression of the polarization will be derived for
ficiently low temperatures. By this reason we will also the spin evolution via classical path integrals. In Sec. Ill, the
neglect spin relaxation associated with electron-electron colesults of the numerical simulations in different quantum
lisions in doped QW. dots will be demonstrated. The quantum mechanical theory

It should be noted that a tendency for slowdown of the DPfor the spin polarization in the circular quantum dot will be
relaxation in confined geometries has been also found out fdresented in Sec. IV, with the calculation in detail shown in
disordered quantum wirés, diffusive two-dimensiona(2D)  the Appendix. Discussion and conclusion will be given in
strips1? near the edge of 2D gd$and in the recent study on Sec. V.
qguantum doté? Therefore, the strong distinction of the DP
relaxation in QD from that in bulk systems confirms this
tendency. Il. PATH INTEGRALS FOR THE SPIN EVOLUTION

In this paper, we carry out a semiclassical analysis of the The Hamiltonian of the system
DP relaxation in two-dimensional QD’s of various geom-
etries, including a circular dot, a triangular dot, a generalized H=Hy+ o - h(ﬁ), (1)
Sinai billiard, and a circular dot with diffusive scattering on ) o o
the boundary. Note that although such 2D systems are callégPnSists of the spin independent phig, which is the elec-
QD’s, the confinement in the 2D plane does not lead tdfon kinetic energy plus the 2D confining potentidf), and
strong quantization and the electronic motion can be studief!® spin-orbit interaction. In Ill-V semiconductor hetero-
semiclassically. We focus on the case of the strong SOI, sucstructures the effective “magnetic” fieldk) is given by the
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sum of the Bychkov and Rashiaand the Dresselhatfs Graﬁ(t—t’,r,r’):Ga*a(t’—t,r’,r)

terms. If thez axis is chosen perpendicular to the heterostruc- . . _ ,

ture interface, the magnetic fieldg contributing to the == 02 @na(N)eng(r e =IOt~ 1),
Rashba term has two componerjisy(k), h&(k)]=(agky, "

—aRﬁx), Whereﬁlzz(ﬁﬁx,ﬁﬁy) is the momentum operator. In 6
the 2D confinement, the magnetic fidld contributing to the

Dresselhaus term contains both linear and cubic parts witl/Nich are 2<2 matrices acting on the $P) spin space,
where O(t—-t') is the Heaviside function. Using these

16
respect td . In a[001] oriented QW the linear term has the Green’s functions, the spin-spin correlation function can be
componentg % (k), hl, (k) 1= (apk,, aDk) For heterostruc- gefined as
tures with a typicak~10 nm confinement in the direction,
the linear part ofhy is usually larger than the cubic part,

except the case of high doping concentrafibithe Rashba Kii(r,r’;t—t’):f TG (t=t',r",r) e GX(t’
term is not zero only in heterostructures with asymmetry in
their growth direction. This term can be much larger than the —t,r’,r")]d%", (7)

Dresselhaus term in the narrow gap InAs based systéims.
this paper we will study the spin evolution induced by the,,ara ,jelx,y,z. This definition together with Egs.

Rashba term. But, since the SOI Hamiltonians correspondin
! g 5) lead to the expression for the polarization evolution
to the Rashba and the linear Dresselhaus terms can be trar?g);(m)e P P

formed from one to the other by the unitary matiit,

+0y)/2, our results are also valid for systems in which the

. . _ 1 - .

linear Dresselhaus term dominates the SOI. P(t)== f Ki(r,r";)®(r —=R)®"(r' = R)

Let us supposé&, to be thenth quantized energy level 2

with the eigenfunctiorp,, which is a two component spinor. iK(r=r") pij 2 12

At zero magnetic field this quantum state is at least doubly xe PIO)d*rd"r" ®)

degenerate. Let For classical simulations below, the semiclassical approxi-
mation of Eq.(8) is required. It can be derived from a stan-

U(r)=<Td(r —-R)y ) dard path intggra_l formalisi?, by representing the retarded

Green'’s function in Eq(7) as the sum of products

be the wave packet created at tiwe0, centered at the point

R, an_d propagating with the 2D wave-ve_:ct_orThe function aﬁ(t tr,r')= fdfl dr, <r aleMEW|r @)
d(r) is assumed to be slowly varying within the scale of the ay iy
electron wavelength 2/k and normalized, so that the inte- iH(t-ty) (-t
gral [|®(r)|2d’r over the QD volume is equal to 1. The ini- X(rq, €02y, a0) -+ (ry, e
tial spin polarizatiorP(O):Eaﬁ){;aaﬁxﬁ is the sum over the x|r’, B) (9)
two componentsy,, of the spinory, wherea €{1,2}. Fort
>0, the wave packet evolves in time as of the evolution operators (=t within the infinitesimally
short time intervaldt;—t;). Thereafter, the Green’s function
Pr )= crpn(r)e Bl (3) can be expressed as the path integral 'Ibfexp{ St
n —t’,r,r’)] where the action
where Hm m'v(7)
S(t—t’,r,r’):J ?UZ(T)—V(T(T))—hR W o |dT,
t!
= f ol (P (r)dr. (4) (10)

is a time integral of the particle Lagrangian evaluated along
In terms of y(r ,t) the time dependent spin polarization is a trajectory starting fromn’ at timet’ and ending withr at
expressed as time t, wherev(7)=dr/dr. In this Lagrangian, the constant
termm’ a§/2 is ignored, because it only gives a phase factor.
Since the SOI Lagrangians on different parts of the trajectory
P(t) =2 | (1,00 ,z,(r,0d%r, (5) do not commute, one has to keep different [ehit
aB -t',r ,r’)] in the order of the sequence in E®), which is
preserved by the time ordering operafar

with three componentB(t)=[PX(t), P¥(t),, P4(t)]. By using the saddle point approximation, the path integral
For further analysis it is convenient to introduce the re-in Eq. (9) can be reduced to a sum over all classical trajec-
tarded and advanced Green'’s functions tories y,18
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1 i ’ ’ 1& t,l’",l’ H H
G'(t—t/,r,r')=—> \J(r,r ’)e%so(t‘t LU=t So(t,r”,r) + Ak = S(t,r",ro) + —SO(i—.O)(r =ro)(r=rb).
271- Y 2 (9"0(9"]0
(11 (15)

_ o ) The integration overr and r’ in Eqg. (8) gives
with the spin independent monodromy matriXr.,r’)  (2m)2/det(aSy(t,r",ro)/drharl). Combining this Jacobian
=de(a280/ariarj’) and the spin independent classical actionwith J(r”,r) we obtain
S(t-t',r,r’) along the classical trajectories. The spin de- ,
pendence part of the Green’s function is represented by the det(ﬂso(t,f",ro)){det<03)(tyr",ro)>}_1:de<a—rlo)

unitary matrix gr" f”{) (9rioo’!r}, ar'
o (16)
Ult-tr,r) = Te ety &, (12 By using the identity
Such a decoupling of the spatial and spin degrees of freedom &rio P
can be done under the assumption that the classical paths are de<ﬁ>d =dro, (17)

only weakly perturbed by SOI, which is reasonable, when
the SOI parametery is much less than the electron Fermi EQ. (7) can be integrated ovep, instead ofr”, which leads
velocity. Under this assumption, all quantitisS, andU are  to the expression of the semiclassical spin polarization
evaluated on the unperturbed trajectories. _ Pi(0)

Inserting Eqgs.(11) and (12) into Egs.(7) and (8), we PL(t):—f Ri(r,r' 0)|d(r’ - R)|2d?r’, (18)
obtain a semiclassical expression for the spin polarization. 2
This expression can be substantially simplified after integraty iy,
ing over coordinates andr’ in Eq. (8). Indeed, let us con- - _ .
sider the integral in Eq(8) Ri(r,r",t)=TrdU,r,r")adUT(t,r,r")]. (19

Equation(18) describes the spin evolution of a particle ini-
tially distributed around the poifR with the probability den-

sity |®(r’ —R)|2. This particle starts its classical motion from
the pointr’ with the momentunfik at time zero and arrives

in the positionr at timet. In the following, we are interested

in the spin evolution averaged over an ensemble of electrons
with uniformly distributed coordinateR and random direc-
tions of the initial momenta on the Fermi surface. After av-
eraging Eq(18) overR and the angular coordinat® of the
momentumk, we obtain the simple expression

f VI(r”,r)et St O — RyeKTU(, r”, r)d?r.  (13)

In the semiclassical limit, the exponential function
exp[,'; So(t,r”,r)] rapidly oscillates as a function ofwith a
period given by the Fermi wavelength. HoweuwgriJ, and®
are slowly varying functions of. The length scale of’'s
variation is given by the dot size. The spatial changedl of
are controlled by the spin orbit length,=%/(m"ag), which

is assumed to be much larger than the Fermi wavelength. : Pi(0) . )

Therefore, the influence of the SOI on the saddle-point posi- Pt = ?J Ri(r,r’,t)dr’dé. (20)

tion can be ignored. The variation @f also can be ignored,

because this function was assumed to change weakly withilt should be noted that after the integration o®ethis ex-

the length scale equal to the electron wavelength. Undepression does not depend on the initial wave packet envelope
these approximations, we obtain the saddle-point equation i (r —R). Therefore, the same EO0) holds ford=const, so

the form that the initial state can be simply a plane wave.

I S(t,r",r) K= ll. NUMERICAL RESULTS
9

0. (14
Equation (20) is the basic equation for our numerical
) o . . . simulations of the spin polarization. Below we will restrict
This equation is the classical equation of motion. It deter selves to the case when the initial polarizati(®) is
mines the trajectory =ro[r"(t),p(0)] which passes through jrected along the axis, so thaP%(0)=1, and the polariza-
the given pointr”(t) at the instant, on condition that at 5, 1o pe calculated at timeis also inz direction.
=0 the initial momentum wa(0)=7%k. Therefore, the
saddle-pointr is a particle coordinate at=0 belonging to
this trajectory. Since the integral ovef in Eq. (8) is taken
around this extremum, the valué=r =r, are inserted into Consider a free electron confined inside a quantum dot
all slowly varying functionsJ, U, and®. and moving along the trajectory, which consists of the
Further, to calculate the integral overin Eq. (13), the  successive straight segmenjs of the lengthsl; with ]
actionSy(t,r”,r) is expanded around=rg up to the second =1,2,...n. The spin state along this trajectory can be de-
order scribed by the evolution operatar,=U(t,r,r’) in Eq. (12

A. Spin evolution in ballistic quantum dots
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with t"=0. This operator can be represented as a product
U,=U, --Uy U, U, (21)
of the individual operators
U, =exp[-iy; 3], (22)

with ¢;=1;/Lss, J;=N;-o. Thereby,N;=n;Xe, is the unit
vector parallel to the effective magnetic fieldk)=ag(k
X e,), wheren;=k/|k| is the unit vector along the trajectory
segmeny ande, is the unit vector ire direction. SinceJ; is

a vector in the space of the Pauli matrices, the individual

operator in Eq(22) has a simple form
ij =cog ¢y 1—i sin(y)d;,

with the identity matrix1.

Let us assume thgth segmenty; to have the anglav;
with respect to thex axis. Accordingly, the vectoN; has the
angle w;—-m/2, so that we get the explicit expressidn
=sin(w;) ox—cogw;)o,. In SU(2) representation, the operator
ij can be expressed as the matrix

(23)

cod¢) sin(,/,j)e—iwj)
Un= ' , 24
K (—Sin(%-)éwi cos i) (24)
which acts on the spin state
_(x1)_ COS(6’/2)ei¢1>
_(X2>_<sin(0/2)e“/’2 : (25

In SO(3) representation, the operatbt corresponds to a
spin rotation around the axi¥; through 'the angle &. The
three components of the spln expectation value are related
the spinory by

s\ [2Rexx)
s=|s, |=| 2 Im(xxo) (26)
s/ \bal*=Ix2?

For convenience, we will call the vector projectioss
e [-1,1] as spin components, although they are twice as
large as the corresponding values for the spin 1/2.

As an example of spin evolution induced by the Rashba
let us consider an electron confined inside a

interaction,
guantum dot in Fig. @), moving along the trajectoryy
which consists of three straight segmemts y,, and y; with
the respective lengthls, I,, I3, and the anglesv,=m/2, w,
=, wz=37/2. The initial spin state of this electron is po-
larized in thez direction, which is represented by an arrow in
Fig. 1(c). This arrow is projected down to the origi@, 0) on
thess, plane in Fig. 1b). When the electron starts its motion
from the initial pointp along the segmeny; [Fig. (@], its
spin rotates around the axié;=(1,0,0 and circumscribes
an arc on the three-dimensional sphere in Fig).1This
curve is projected down onto a straight line on § plane.
This line is parallel toy,, but runs in a direction opposite to
v1, as shown in Fig. (b). After the first collision with the
boundary the electron further moves along the segment
while its spin rotates around,=(0,1,0 and circumscribes
the second arc on the sphere in Fi¢c)1The spin projection

PHYSICAL REVIEW B 70, 245309(2004)

1.4
X

1 2.5 2.8

X
FIG. 2. (Color onling Electrons trajectoriegsolid lineg for

short time intervals(a) in bulk, (b) circular quantum dotc) trian-
gular quantum dot, angl) Sinai quantum dot.

in Fig. 1(b) now runs parallel toy, in the direction opposite

to electron motion alongy,. It is easy to see that the spin
evolution on other segments follows the same rule: When an
electron passes through tft segment in a certain direction,
the spin on the 3D unit sphere circumscribes an arc around
the axisN;. This arc, in its turn, is projected onto tlsgs,
plane as a straight line parallel to the electron trajectory, but
oppositely directed to it.

Further, let us proceed from the spin evolution on indi-
tadual trajectories to the spin evolution averaged over an
ensemble of trajectories. We consider an ensemble of elec-
trons distributed uniformly within a bounded area of a two-
dimensional heterostructure. &t0 these electrons have ran-
dom outgomg angles but the same spins polarized inzthe
direction. Lets (t) be thez component of the electron spin
at timet for thelth trajectory. Then, in our numerical simu-
lations the integral in Eq:20) can be replaced by the sum

n
=23 o), (27)
Ni=y
where the sum runs ovar individual trajectories. The so
averaged spin polarization will be calculated in the following
five systems:

(1) In two-dimensional bulfFig. 2(a)] with the elastic
collision lengthl distributed according to the Poisson law
Prob (I)=e™m/|, wherel,, is the mean free path. It is a
stochastic open system. This is just the system where the
conventional D’yakonov-Perel’ spin relaxation has to be ob-
served.

(2) In a ballistic circular quantum dot of radius 1 with the
smooth boundary in Fig.(B). Since the boundary is smooth,
the incident and reflection angles on the boundary are the
same. Since the system is ballistic, no scattering occurs in-
side the dot. It is an integrable system with a high spatial
symmetry.

(3) In a ballistic triangular quantum dot with the smooth
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0.99

PA()
P2()

0.98

0.971

0 20 40 60 80 100
Time t

FIG. 3. Solid curveC;, C,, and C; represent the time depen- FIG. 4. (Color onling Time dependence d?(t) for Ls,=10 in
dent polarizatiorP(t) for 2124 particles in an unbounded QW with the smooth circular dacurve Cs), the circular dot with the rough
Lsx=10, 6, 2, and the mean free path=1. The particles were boundary(curve Cg), the triangular do{curve C;), and the Sinai
initially placed inside a circular area of the radiBs 1 and polar-  billiard (curve Cg).
ized in thez direction. The dashed curves depict the DP relaxation
calculated from Eq(28). For comparison, curv€, showsPZ(t) for regime the spin rotates rather fast, so that most of the spins
2124 particles confined inside a circular dot of the rad®asl and S(ZI)(t) evolve to negative values before the electrons encoun-
Lso=10. ter their first collisions with impurities. Therefor®Z(t) can

evolve to a deep negative value within a short time interval.
boundary in Fig. &). It is an integrable system of lower But later onPZ(t) approaches to the asymptotic valBg=0
symmetry compared to the circular dot. (curve Cs in Fig. 3). These results from Monte Carlo simu-

(4) In a generalized Sinai billiard with the smooth bound- |ations confirm the well-known DP relaxation in unbounded
ary in Fig. 2d). It is a deterministic but strongly chaotic systems.
system. The boundary geometry generates an ergodic dy- If electrons are confined inside the smooth circular dot
namics in the phase space. [Fig. 2b)], the relaxation ofPi(t) is considerably sup-

(5) In a ballistic circular quantum dot like Fig(i), but  pressed, so that at larde,, the spin polarization remains
with random reflections from the boundary. The reflectiongose to 1 at large times, as the cui@g in Fig. 3 demon-
angle takes random values betweem/2 and /2 with re-  strates for the case tf,=10. At this regime, the suppression
spect to the boundary normal. It is a stochastic closed systegy relaxation takes place in all other quantum dots, like the
and corresponds to a quantum dot whose boundary is n@jrcular dot with the rough boundargurve Cg), the triangu-
perfect in the scale of the electron Fermi wavelength. lar dot(curveC;), and the Sinai billiardcurve Cg) in Fig. 4.

The mean free path, in bulk in Fig. 2a) is setto 1. The |n all of these curves th@X(t) values fall into the range
sizes of the triangular and Sinai dots, as shown in Fig9. 2 petween 0.97 and 0.98 at large times up$d.C".
and 2d), are chosen to be y27~2.5066 and On the other hand, the spin polarization evolves very fast
V32m/(16-m)~2.7961, such that these dots have the sam@jown to 0 ifL, is smaller than the dot size. The correspond-

arear as that of the circular dot in Fig(B). We will use the  ing time dependence &¥4(t) is similar to that shown in Fig.
dimensionless time unit, such that during the time interval 1

a particle moving with the Fermi velocity travels a distance 1
of the length 1.
0.8
B. Results of the numerical simulations “ G
In Fig. 3 the time dependences ®f(t) for 2124 electrons 0~6
in the open systeniFig. 2(@)] with Ly,=10, 6, and 2 are »fo "‘,,“ ¢,
plotted by solid curve€;, C,, andCs. One can see that the o4l Y
relaxation time increases with,, These curves can be fitted Cq
by the well-known expression for the longitudinal DP il c
relaxatiort® * d
Ppp(t) = exp( 42“’“), (28) % 200 200 500 005000
LS Time t

which is shown by the dashed curves in Fig. 3. This expres- FIG. 5. (Color onling Time dependence dPA(t) for Lg,=2 in
sion was derived under the assumption of sufficiently largehe smooth circular datcurve Cs), the circular dot with the rough
Lso> 1. For not so largé g, the fitting is not good, as it can boundary(curve Cg), the triangular do{curve C;), and the Sinai
be seen for the curv€; around its first drop at=4. In this  billiard (curve Cy).
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11— : r - r 1[(a) 1[{0) 1(e 1[(m
0.9F > o> > o
0.8
- -1 -1 -1
0.7t
1{B 25 1
‘o o6k ( 1[0) ® n
b
0.5 > w = @
0.4t -1 -1 0 -
0.3} 1f(c 1K 2.5[g) 110
0.1} -1 -1 0 -1
o— . . . .
0 08 2 4 6 8 10 1[d 1 2,5[Th) 1P}
Lso .
> w>~ o= n
FIG. 6. The residual polarizatioR? vs the spin rotation length 1 A 0 »
Ls, for a smooth circular dot. - x 1 4 8 A 0 x 25 -1 § 1

3 (curve G), with a sharp drop at the beginning followed by ~ FIG. 7. Electron trajectories on they plane[(2)(h)] and re-

oscillations around zero. spective spin evolution patterns on tgg, plane[(i)«(p)] for Lg,
For an intermediaté, the spin relaxes according to dif- =°- (&, (b), and(c) periodic triangular, hexahedral, and starlike

ferent scenarios, depending on the quantum dot geometry. Aw@jectories in the smooth circular d@tl) A nonperiodic trajectory

an example, Fig. 5 shows the functi@@(t) for various dot in the smooth circular dote) A stochastic trajectory in the rough

geometries alt_ _'2 After a fast initial drop, the polarization circular dot.(f) and (g) Two periodic trajectories in the triangular

so— e ’ : dot. (h) A iodic trajectory in the tri lar dot.
further relaxes to 0 in the Sinai billiar@urve Cg) and in the ot. (h) A nonperiodiic trajectory in the triangular do

circular dot with the rough boundargurveCq). However, in  systems are fundamentally distinct from the DP spin relax-
the smooth circulafcurveCs) and triangula(curveC;) dots  ation in the boundless QW. Such a distinction is surprising,
this function oscillates around a constant value at large timegecause at first sight the spin walks on the sphere in Fiy. 1
It should be noted that in the former two examples the spishould be randomized by scattering of particles from dot
polarization relaxes to zero at much longer times than the DBoundaries, similar to randomization by impurity scattering
relaxation time in the unbounded systeRig. 3), although i unbounded systems. However, this simple point of view is
the mean elastic scattering length there is comparable to thgrong, because there is an important difference between the
dot size. The relaxation times fdZs and Cg in Fig. 5 in-  impurity scattering and the boundary scattering. For conve-
crease rapidly with highdrg, Thus, atls,=10 we could not  nience, let us define the scattering with a direction change
deteCt any SyStematiC decrease Of the Spin pOlarization in trﬁfna”er thanﬂ-/z as a “forward” Scattering and that |arger
Sinai billiard and rough circular dot, up t=10% which is  than /2 as a “backward” scattering. If the particles are iso-
by an order of magnitude larger than the range plotted in Figropically scattered by an impurity, half of them continue to
4. move “forward.” However, if the particles are scattered by a
An interesting feature oP¢(t) in the regular systems, like smooth boundary, the particles with incident angles between
the triangular and smooth circular dots, is the apparent oscil- /4 to 7/4 with respect to the boundary normal will be
lation of the polarization. It can be seen in Figs. 4 and Syreflected “backward.” Since statistically more particles hit
although the oscillations in the latter figure are more prothe boundary within this range of angles, the “backward”
found for the case of the circular dot, compared to almostcattering prevails in DQ’s. This property of particle scatter-
vanishing ripples in the triangle. These oscillations do nofing can also be extended to QD’'s with rough boundaries.
disappear at large times and their amplitudes increase withyrther, according to Fig. 1, a “backward” particle motion is
the strength of SOI. We cannot say much about their naturenapped onto a “backward” spin walk. Hence, if the spin
Probably, they are associated with the role of periodic trajecmoves away from the north pole in Fig. 1, after a boundary
tories in regular systems. A special study is required to unscattering the spin is more likely bounced back toward the
derstand the origin and characteristics of these oscillationsnorth pole. Such a non-Markovian statistic of the spin walks

At long time the spin polarizations in both regular quan-gives a clue for understanding the numerical results in Sec.
tum dots(triangle and smooth circjen Figs. 4 and 5 oscil- ||| B.

late around certain nonzero residual values. These residual |n order to make this argument more clear it is instructive
polarizationsP; arelL, dependent, as plotted in Fig. 6 for the to study in detail the spin evolution along a single trajectory.
circular dot. As described in Fig. 1, the spin motion on the unit sphere can
be projected onto the,s, plane. After a long time the spin
path on the sphere will cover a region and produce a certain
pattern on thes,s, plane. In the circular dot this pattern looks
The existence of the nonzero residual polarization in regurather ordered. If the electron moves along a triangular peri-
lar quantum dots and long spin relaxation time in chaoticodic trajectory[Fig. 7(a)], the pattern is a rounded triangle

C. Spin evolution along individual trajectories
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[Fig. 7(i)]. If the trajectories are hexahedral and starlikeAccording to Egs(21) and(22), a closed particle trajectory
[Figs. 1b) and 7c)], the corresponding patterns are aproduces an open spin path of the linear size/L, while
rounded hexagon and a rounded gfgs. 1j) and 1k)]. If the distance between the initial and the end points of the path
the trajectories are nonperiodic, e.g., Figd)7 the pattern is is only ~1/L§O. The mapping between the trajectories and
a disc[Fig. 7(1)]. A common feature of these patterns is thatthe spin paths is then similar to a mapping between two
they have the same size, which is less than 1 in the case &uclidean spaces. Therefore, with the accuracygt;l,/the
Ls,=5. These patterns are highly stable up to the observatiospin paths are the rescaled particle trajectories and those
time t=10" It implies that the spin on the unit sphere cannotpaths are confined because the particle trajectories are con-
move far away from the north pole, so th&(t) cannot take fined. It should be noted that such a tendency for the spin
negative values. Our analysis of various trajectories withconfinement turns out to be strong even for not so large
various initial conditions has confirmed this general featureas one can see from the spin dynamics shown in Fig. 5 for
of the spin evolution in the circular dot. Hence, a nonZéfo  Lso=2.
in Fig. 6 at infinitely long time is obviously expected. The above argument about the spin confinement does not
In the triangular dot, two periodic and one nonperiodictake into account a long time evolution. Even at latgg
trajectories are shown in Figs(fY-7(h). The corresponding small corrections due to noncommutativity of spin walks will
spin patterngFigs. 1n)-7(p)] are less symmetric and have accumulate in time. As a result, the spin can slowly drift
less predictable sizes than those in the circular dot. For theoward the lower hemisphere. The expanding pattern in Fig.
trajectory in Fig. 7g) the pattern in Fig. (®) touches the 7(m) of the rough circular dot is an example of such a long
circular border. Nevertheless, our investigation shows thatime behavior. However, in contrast to that unstable pattern,
the patterns of most other trajectories are quite stable up the patterns from regular systeriigs. 1i)-7(p) besides
the observation time ftand do not touch the border. On this 7(m)] remain stable in time. This difference between the
reason the spin polarization being averaged over trajectoriegingle trajectories of random and regular systems is consis-
is expected to relax to a positive residual value, although thigent with the spin relaxation curves shown in Fig. 5.
value is smaller than that in the smooth circular dot. Such a distinction between regular and chaotic systems
In the circular dot with a rough boundary, the reflectionfollows from fundamental properties of regular and chaotic
angles are stochastic, as shown in Fige)7Within the ob-  systems. It can be understood from consideration of periodic
servation timet=1C° the corresponding spin pattern on the orbits. After a particle runs along a periodic orbiand com-
sy plane has spread out to a much larger gigg. 7(m)] pletes a period, its initial spin stagewill evolve toU x with
than those in the smooth circular dgtigs. 1i)-7(1)]. Fur-  U,=exgd-iQRe], which represents a rotation around the
thermore, the pattern in Fig.(m) is still expanding. The axisR through the angle Q. Both R and(} are determined
corresponding spin state on the 3D sphere can penetrate inémtirely by the geometry oy and by the value ok, After
the lower hemisphere after=10°. However, it can return the particle repeat& periods, all spin positiongJ.)", cor-
back to the north sphere again. Therefore, Ztmomponent responding to the end points of all periods1,2,..., are
of this spin state oscillates between negative and positivebocated on a closed circle. This circle can be obtained by
values. When averaged over many trajectories, such oscillaetating the north pole arouri, if the initial y is related to
tions sum up to a relaxation curve, similar@g in Fig. 5. the spin polarized in the north pole direction. The other
In the Sinai billiard, thes,s, pattern resembles that in the points on the periodic orbit are mapped onto spin states
rough circular dot. Consequently, the spin relaxation dynamaround this circle. Taking many periodic orbits into account,
ics in both cases have similar characteristmsrvesCg and  one obtains a set of different axBsand consequently a set
Cg in Fig. 5). of circles passing through the north pole. Hence, when aver-
A general trend seen from Fig. 7 is that the confinement ofged over all periodic orbits, spin spends more time in the
the particle motion in QD’s makes the spin to be also con-upper hemisphere. This means that at least the family of the
fined within the upper hemisphere, lif, is larger than the periodic orbits contributes to a nonzero residual polarization.
size of the QD’s. For a smooth circular dot, this trend can beHow significant is this contribution to the whole residual
easily understood from the “backward” scattering effect devalue depends on the amount of the periodic orbits in a sys-
scribed at the beginning of this subsection. Since all trajectem, which is quite different in regular and chaotic systems.
tories in this case have a simple geometry, one can easily sée a regular system the family of periodic orbits has a finitely
that particles are more frequently scattered from the boundpositive measure and a bundle of adjacent nearly periodic
ary in a “backward” direction. But although this argument orbits. These adjacent trajectories behave like periodic orbits
holds for general bounded systems, it is less evident for othaf the time is not too large, because their linear deviation in
QD'’s besides the smooth circular dot. In a general case, thiéme from the periodic orbits is small. On the contrary, the
trend toward the spin confinement can be argued in a differperiodic orbits in chaotic systems are of zero meadtFeur-
ent way: As seen from Fig. 1, the projected spin path on théhermore, their adjacent trajectories deviate from them expo-
Sy plane in Fig. 1b) is more or less a rescaled curve of its nentially fast. Therefore, with increasing time, the weight of
particle trajectory in Fig. ). But in reality the mapping the periodic orbits and their adjacent trajectories becomes
from a trajectory to the corresponding spin path is not simplyexponentially small in chaotic systems, while it is a nonzero
a rescaling, because the spin rotations on the sphere are narglue in regular systems. Hence, as long as we consider only
commutative. For example, a closed particle trajectory is irperiodic orbits, the residual spin polarization has to be a
general mapped onto an open spin path. Howevdrgjfis  positive number for regular systems and zero for chaotic sys-
large, the spin path is restricted to a small part of the sphereaems.
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The individual trajectory study in a larger time scale car- , . 5
ried out in this section helps us to understand some of the P2=2 | Ya(r) o (P, (33
results in Sec. Il B. However, although the indication of the nag

nonzero residual polarlzanozﬁi from Figs. 3-6 is strong, pecause the analytic solution of the Schrédinger equation
one might still suspect tha; will decay to zero within @ it the arbitrarily strong Rashba interaction is availale.
much larger time scale, since the numerical simulations in alf, his section only the key steps of the calculation are pre-
these figures are truncated at a finite time. This suspicion Cafbnted, while the calculation in detail is shown in the Appen-
be tested by calculating the exact spin polarization quanturgiy_

mechanically, if the analytical solutions of the Schrédinger | et us consider a circular quantum dot of radRisvith
equation are available in the systems. Indeed, this exact rgpe confining potential

sidual polarization value is nonzero in the smooth circular

dot, as shown in the next section. 0 forO<p=<R
V(p) = : (34)

forR>p
IV. QUANTUM MECHANICAL POLARIZATION IN THE

written as a function of the polar coordinatesr(p, ¢). The
CIRCULAR QUANTUM DOT

eigenfunctions of theth eigenvalues, are?

Due to the time reversal symmetry, the quantized energy &% (p)

levelsE,, of the HamiltonianH in Eq. (1) are, at least, two- ene(r) = (ei(v+1>¢ " ) (35
fold degenerate with the corresponding spinor eigenfunctions 9u+1(p)

¢ona Where as {t} is the degeneracy index. In the basis of gnd

these states a normalized wave functigm ,t) can be ex- e (o)

e
panded as on(r) :( . f’i*l d ) (36)
. -e""f.(p)
YT = 2 Cragna(r)e 0, (29 Wwhere the function
na
with the coefficient (f”(g) ) = d(_ aduld) +J, (0 ) : (37)
9,(8) a,-1J,(k.§) +J,(k-&)

Cna:f @Ea(r)lﬂ(f)dzf- (30) contains th_ezth_ order Bessel functions of the first kidg(¢),
the normalization constaut, the parameters

The expression of)(r,t) in Eq. (29) differs from Eq.(3) g = Ik _ _ dpak) 39)
only by the degeneracy index a, which is explicitly written "3k J(ky)’
here for convenience of our further analysis. Taking the no-
tati the wave-numbers
ation
; Vb?+4e T b
Una(T 1) = Cragna(r e Bt (31) ki = — (39)
and Yna(r) = Yna(r ,0), the z component of the quantum me- 5nd the index
chanical polarization in Eq5) can be expressed as
v=N-3/2 withn=1,2,---,. (40
PX(t) = (g )| oZ it 1))= Y ) o (P d2r Therein, the dimensionless parameter§=p/R, ¢
(= ¢pr.0lo’]gtr. ) %b V1)1 =2m ER/#?, and b=2agm'R/#? have been used. The

wave-numberk, are quantized because the energy lewvels
+ Z l/; (r)a,zwmb(r)ei(En—Eth/her (32) are determined by the zeros of the function
na "

remeo Z,(8): = 3,(k)Jpua(k) + 3, (k) 3,a(k).  (41)

The first sum in this equation is time independent, while
the second sum oscillates in time, so that its average over
sufficiently long time interval turns to zero. It is interesting 1\
to find out whether the former term coincides with the re- y(r) = 0 e (42
sidual polarization in Fig. 6. Such a coincidence is not evi-
dent because the time dependent sum can give rise to largs the initial state. After inserting,.(r) from Eq. (35) and
variations ofP%(t) after long timet. Moreover, the semiclas- ¢,-(r) from Eq.(36) together with Eq(31) into Eq.(33) and
sical theory employed in the previous section cannot be vali@veraging over directions of the vectorwe obtain
for times larger than the mean distance between energy lev- L ) )
els near the Fermi energy. We can check such a coincidence P?= 272 (|Cpal? = [Ch I (Fn = Gy, (43
at least for the simple case of a circular dot with the smooth "
boundary, by calculating the residual polarization with

\é\l/e chose the plane-wave
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R V. DISCUSSION

Summarizing the above results of the semiclassical Monte
1 Carlo simulations and quantum mechanical calculations we
% can draw the following picture of the spin evolution in semi-
classical quantum dots. In the dots with regular classical dy-
namics the spin polarization does not decay to zero at long
time and its residual value coincides with the quantum me-
chanical spin polarization averaged over an infinitely long
time interval. At least, we were able to check such a coinci-
dence for the circular dot. On the other hand, in dots with
chaotic or random dynamics the spin polarization relaxes to
. ‘ . zero with the relaxation time much larger than the DP relax-
4 6 8 10 ation time in unbounded quantum wells. Such a decay down
leo to zero cannot be understood from the general quantum me-
chanical expression in E@32) , because it implies that the
_ FIG. 8. (Color onling The residual spin polarizatif)liiZ Vs L, average ofP4(t) over an asymptotically long time interval is
with k=20, 30, 40,(dashegi k=5 (dotted, k=1 (solid,, andk a5 However, Eq32) predicts that this average is given by
'—:g].lédash-dotte;i The dashed curve coincides with the curve from the first term in Eq(32), which is nonzero in general. Obvi-
T ously, this contradiction is associated with quantum mechani-
cal effects, which indicates that the semiclassical approxima-
Fo=d¥a2 1!V - 2a,1? +13] tion is insufficient for analysis of the long time polarization
evolution. Indeed, studies of electron transport in chaotic and
o2 @ 3 disordered QD’s have shown that the quasiclassical method
Gn=dTa; I, +2a, 13 + 17, (44 is valid only at sufficiently short time&-25 An important
0 @ @ . crossover time is the Ehrenfest tinfe. This time is con-
where the coefficients ~, |5 , andl” are presented in Eq. trolled by the Lyapunov exponent describing the divergence
(A18). The coefficientsc,.|? in Eq. (43) can be written as  of close trajectories in chaotic systems. WitHig two tra-
jectories initially located at a distance of the order of the de
|Cne|2= 472 d¥(—a, 1D +1(9)2 Broglie wavelength will diverge up to a distance comparable
to the size of the QD. The importance of quantum effects at
- ) @ .52 times larger thafz has been demonstrated for Andreev bil-
|Cn 7= 47 d(a, 1501 + 17007, (45 Jiards in Refs. 22-24. Another characteristic time is given by
Ty=h/A, whereA is the mean distance between energy lev-
with the coefficients'” and1'® given by Eq.(A21). Using els in the QD. In disordered mesoscopic systems the statis-
the dimensionless units, one has the radissl, the cou- tics of their energy spectrum together with the weak local-

pling constantb=2/Lg, and the wave-numbek=2mR/\, ization effects give rise to the so-called quantum dynamical
where\ is the electron wavelength. Hence the semiclassicaécho att>T,. This phenomenon was investigated for the
range of parameters correspondkte 1. time evolution of the electron density in a noninteracting

The residual polarization calculated from E@3) is  electron syster?® It was found that due to the quantum ef-
shown in Fig. 8. Thé>* curves fork=20, 30, and 40 are very fects the density profile at large time is inhomogeneous
close to each other and merge into the dashed curve. Thifroughout the QD and preserves the memory about the ini-
curve coincides with the residual polarization obtained fromtial density distribution up to the dephasing time. One can
the semiclassical simulations in the previous sectféig. 6).  expect a similar memory effect for the spin polarization. At
For k=5, 1, and 0.1, the curves are plotted in the dottedjeast for an unbounded 2D gas the weak localization correc-
solid, and dash-dotted curves, respectively. All the curves, agon to the DP relaxation was shown to produce a nonexpo-
expected, have the common asymptotic value 1 in the case @kntial 14 tail in the spin polarization evolution at large
the weak spin-orbit couplings,— . In the opposite limit, times?® This problem is outside the method of the present
Lso— 0, the behavior oP? is nonanalytic and not much re- work and needs further study.
vealing. The strong oscillations in this limit increase with  The predicted spin evolution can be measured experimen-
smaller wave numbers and signal about the appearance glly. For an InAs dot doped up to ¥cm 2, the time unit in
large quantum beats iR%(t). This regime ofLs, is not inter-  Figs. 3-5 is about 1 ps if the dot sizelis 0.5 um. Hence,
esting from the practical point of view because it impliesthe spin polarization saturates to its residual value during
unphysically large values afy for the typical dot radiufR first 20 ps and fot.s,=1 um the difference in the long time
=500 nm. In the practically important regime bf;=1 we  evolution between chaotic and regular dots can be observed
note an apparent dependenceRsfon k at k<5. This is a  in the nanosecond range. In order to suppress all inelastic
quantum effect which is not observed in our semiclassicabpin relaxation mechanisms? the measurement must be
simulations. In semiclassics the particle velocity determinegione at sufficiently low temperatures. The Rashba spin-orbit
the speed with whicliP*(t) approaches to the residual value interaction can be strong in InAs based heterostructures, with
P?, but not this value itself. Lso down to several hundreds nm. Moreover, it can be tuned
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in a wide interval by varying the gate voltadfe. 06

In conclusion, we performed path integral semiclassical O\ v=—1/2 (solid), 1/2 (dashed), 3/2 (dotted)
simulations of spin evolution controlled by the Rashba spin- 03 ;‘\
orbit interaction in quantum dots of various shapes. Our cal- & 1 VN e o
culations revealed that the spin polarization dynamics in V’ R B
QD’s is quite different from the D’yakonov-Perel spin relax- 03 . . . . .
ation in bulk 2D systems. Such a distinction is not expected °© » 4 & & 100 12

from the simple picture of the spin random walk, in particu-

lar when the rate of electron elastic scattering on impurities FIG. 9. The functionZ,(e) for »=-1/2, 1/2, and 3/2. This
in bulk is equal to the mean frequency of electron scatteringunction is singular at=0 for »=-1/2.

from the dot boundaries. We have also found an important

distinc_:tion between long time spin evolutions in classigally [A,q+elg,q(-bV,, f(8=0, (A1)
chaotic and regular systems. In the former case the spin po-

larization relaxes to zero within relaxation time much largerwith the Laplacian

than the DP relaxation, while in the latter case it evolves to a 5

time independent residual value. This value decreases with A = }E<gﬂ> v (A2)
the stronger spin orbit interaction. We also analyzed the gen- YooEdE\Tde) &

eral quantum mechanical expression for the time dependent

spin polarization. Using the exact solutions of theand the nabla operator

Schrédinger equation with Rashba SOl for a circular dot, we

calculated the average of the spin polarization over an infi- V. =+ (E) _r (A3)
nitely long time interval and compared the result with the o \de) &

residual polarization from the Monte Carlo simulations. We

found that the residual values from these two approacheghe solutiondf,(§),g,(£)] of these equations are
coincide, which confirms the results from the semiclassical

simulations. On this basis, we conjecture that the nonzero (fy(S) ) _d(—ay-]y(hf) +JV(K§)>
residual value is a general property of regular systems. On 0,8/ \a, Jd(kd+I,kd)
the other hand, the spin relaxation down to zero in the Sinai

billiard and circular dot with the rough boundary contradictswith the normalization constant; the factorsa, given by Eq.
what has to be expected from quantum mechanics. The lon@8), and the wave-vectork, from Eg. (39). These wave
time memory due to the mesoscopic spin echo is assumed ugctors obey the relations

be responsible for this contradiction.

(A4)

kik-=¢, ki—-k =-b,
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pling constantb, the nth quantized valuee, with n
=n(\, w) is determined by th@th zero ofZ, (&), wherev and
APPENDIX \ are related by Eq40). The allowed wave-numbets are
This Appendix demonstrates a quantum mechanical ca@iven by Eq.(39) with e=s,. They correspond to the two
culation of the residual polarizatid®?, as it is defined in Eq. degenerate eigenstates of tfitt energy level. The first root
(33). The calculation of the exact eigenfunctions of the©f the functionZ,(e) is zero for»=1/2,3/2,..., and is a
Hamiltonian in Eq.(1) for the circular quantum dot can be Positive value forr=-1/2 (see Fig. 9. The larger the value
found in Ref. 21, which is summarized in the following Egs. Of b, the larger the second root @f(z).
(A1)«A5). Substituting the wave functions in Eq85) and(36) into
In order to calculate the residual polarizatiodd), the  Ed.(33) we obtain the residual polarization in the form
wave-functiony,,(r) is expanded in the basis of the eigen- 1 o
functions given by Eqs(35) and (36). We note that for a z_ 2_ 2520 &) _ 2
symmetric presentation, the functiohsandg, have differ- P En fo fo [{len "= len-FIFLE) = G1sa()]

andk, + k.= b+ 4e. (A5)

ent definitions from those in Ref. 21. Inserting E(R5) and . “i2r )b
(36) into the corresponding Schrodinger equation we obtain +2¢.C0-f.()9,1(H)€
the equation forf, and g, in terms of the dimensionless +2C;_Cn+fV(f)gy+1(§)ei(2"+1)"’] de & de. (AB)

parameters, e, andb defined in the previous section
For the initial wave function given by E@42) , the con-

[A,+e]f(§) =b V_(41) 9,42(6) =0, stantsc,, can be expressed as
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(1) t [
¢n+(r) 1) r _ * ikr
cn+=J (goﬁﬁ)(r)) (O)e'k dzr—f e (r)e r d % JO £JN §J,(k dE
2w 1 -
:f j gllké c08(</>‘0)—v¢]fv(§)§ dé dep, (A7) - I[&J, (N 1)J,ea(x Iz) ;\Z\Ju(K J,1(N I)] (A15)
0 0 K=

where ¢ and 6 stand for the angles of the vectarsand k Consequently, the integrals in Eg\13) can be written in the
with respect to the positive axis andk=|k|. After the shift ~ closed form
of the angular variable fronp— 6 to ¢ the above integral

transforms to Fo=df &1 - 2a, 117 +11%], (A16)
2 1
emet| [ asorit o dg g (a0 Gu=dal 18 +2a,1%,+1%,  (AL7)
o e with
Substitutingt=¢+ /2 andm=v into the integral represen- 5 5
tation of the Bessel functiofY, O = 3, (K)7+ Jpa(k)” v, (K)Jpea(ks)
1 (" ! 2 ke |
In2) = f glz sn0-mt g, (A9)
2w)_.

|@ = k., (k) dpeq(ke) = ki (ko)J,ea(ky)
we obtain v 2o kf

2w
27 @72) (7) = f allz codg)-veldp (A10) @ _ k) +3,00)*  13,(k)J,a(k)
0 - - .

B , n (A18)
By using this identity, Eq(A8) can be written as By analogy, calculating the integrals in Eq#é11) and
1 (A12) we obtain
Crs =2 eiv(wfz—@f J,(ko)f dé. Al1
n T o y( g) V(§)§ g ( ) |Cn+|2:4772 d2(— a, |(1/4)+ IE,S) )2, (A19)
P anelogy. one hes o = 4 e, 1+ 120 (A20
1
Gy = 27 (270 f 31(kOG,en(HE dé. (A12)  with
0
KJ,(K)J,e1(ky) = kJ, (k) 41 (K
After integrating Eq(A6) over ¢ and the directiorg of k I(V4)= (el 2)_ 2 (k)dya ),
[integration ovem is similar to that ove, in Eq.(20) ], the K
second and third terms in EGAG6) vanish and only the first
term remains. Introducing the parameters & _ KJu(K)Jpra(k) —kJ,(k)Jdp4a(K)
1, = 212 . (A21)
1 1
— 2 — 2
Fn= Jo fi(9¢de and G,= JO g€ &, For smallb the spin polarization approachesRé&=1, as it

must be in the absence of the spin-orbit interaction. It fol-
(A13)  |ows from the relatiork_—k,=b~0 in Eq. (A5), which re-
tsults in f,(§)=~0, according to the definition in EqA4).

the final expression for the residual polarization can be wri ” : X
Hence, the two quantitieg,,| andF,,, which containf (&),

ten as
vanish inP% Therefore, the sums in the numerator and de-
Z En (162 = oD (F = Gr) Ao nciminator of P? become the same, which gives rise Ré
= . Al4 =1
2 (e +len P (Fa+ Gy For largeb, we haveP?— 0, which is due to the large

difference betweeh, andk_, namelyk_-k,=b>1. Accord-

For numerical calculations we explicitly wrote the norm of ing to the asymptotic behavitr
the normalized wave functiori(r ,t) in the denominator. In
this form the expressio'n in E¢A14) is also valid for non- 3,00 = lico{x— 7_T<V+ })} + O(}) (A22)
normalized wave functions, because the normalization con- X 2 2 X
stantsd in the numerator and denominator are canceled with
each other. of the Bessel function at large the magnitude of the oscil-

The polarizatiorP?in Eq. (A14) is determined by the four lating functionJ,(k,) is much larger thad,(k-) by the order
integralsc,., F,, andG,,. They can be calculated by using the of Vk_/k,. Therefore, the leading terms Bf) andl(f) in Eq.
formula?® (A21) behave like
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o k)3
v k '
Jv(k)JV+1(K)

|(5) ~
v k_

(A23)
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The first term is much larger than the second one. Conse-
quently, bothc,,, andc,_ are dominated by(f) and have the
same limit for largeb. By analogy,F, andG,, also have the
same limit. Therefore, botfc,,|>~|c,_|> and F,—G, in the
numerator of Eq(Al4) become small and hend®=0 for
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