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The dynamics of the moving vortex lattice is considered in the framework of the time-dependent Ginzburg-
Landau equation neglecting the effects of pinning. At high flux velocities the pinning dominated dynamics is
expected to crossover into the interactions dominated dynamics for very clean materials recently studied
experimentally. The stationary lattice structure and orientation depend on the flux flow velocity. For relatively
velocities V,Vc=Î8pB/F0/g, whereg is the inverse diffusion constant in the time-dependent Ginzburg-
Landau equation, and the vortex lattice has a different orientation than forV.Vc. The two orientations can be
desribed as motion “in channels” and motion of “lines of vortices perpendicular to the direction of motion.”
Although we start from the lowest Landau level approximation, corrections to conductivity and the vortex
lattice energy dissipation from higher Landau levels are systematically calculated and compared to a recent
experiment.
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I. INTRODUCTION

The static Abrikosov flux lattice has been experimentally
observed since the 1960s by a great variety of techniques and
lateral correlations have been clearly observed recently up to
tens of thousands of lattice spacings.1 The remarkable ad-
vances in decoration, small-angle neutron scattering, and
muon spin rotation techniques allowed a recently direct
glimpse into the structure of the moving Abrikosov vortex
systems.2–5 It shows that at small flux flow velocities vortices
move in channels as predicted in Ref. 7. When the flux flow
velocity increases beyond the one corresponding to the criti-
cal current, one observes a relatively well correlated hexago-
nal lattice. The channels and the plastic flow at relatively low
velocities are explained by the influence of pinning on the
basis of theoretical arguments8 and confirmed by numerous
simulations.8–12 At high velocity of the moving lattice(cor-
responding to the high electric field), the influence of disor-
der is expected to diminish and a “moving Bragg glass”
appears.8,13 Indeed Bragg peaks roughly at positions of the
hexagonal lattice were observed5 recently.

Since the theoretical prediction of the moving Bragg glass
exhibiting the transverse peak effect,13 much effort has been
put into the simulation of the high driving force phase of the
moving vortex system.10–12 In particular it was found10 that
as the driving force increases(or disorder decreases) the vor-
tex lattice suddenly changes orientation for a period of time
and then returns to a “regular” drift mode. The main empha-
sis in these studies mentioned above is still the effects of
pinning on the moving lattice.

Experiments at a low(below 100 G) magnetic field and
slow flux moving velocity(of ordermm/s) showed that the
orientation of the moving vortex lattice is tied to the direc-
tion of motion, namely, when a nearly hexagonal lattice is
observed, one always observes the orientation depicted in
Fig. 1(a), never the “rotated” one of Fig. 1(b).4 Here the

effect of pinning cannot be ignored and plays an important
role in the orientation of the vortex lattice. However, the
most recent small-angle neutron scattering and muon spin

FIG. 1. Two possible orientations of the(approximately) hex-
agonal vortex lattice.(a) The direction of the flux lines is the same
as the nearest neighbors lattice orientation.(b) The direction of the
flux lines is perpendicular to the nearest neighbors lattice
orientation.
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rotation experiment can probe the moving lattice at much
higher velocities of order cm/s or even higher. The results
about the orientation of the moving lattice obtained in Ref. 5
seem to be different from the case at a low magnetic field
and slow flux moving velocity.

The effect of pinning is expected to be smaller at higher
velocities. Alternatively one can ask what happens in very
clean materials. A recent experiment in Pn- In seems to be-
long to this category.5 As the pinning influence diminishes
with increasing flux velocity, it is natural to ask what would
happen in the limit of the highest possible flux velocity(of
course, eventually the electric field destroys superconductiv-
ity, so that the mathematical limit of the infinite driving force
is unphysical) disregarding pinning altogether.

The question of the orientation of the vortex lattice usu-
ally does not arise in the static case. Without an external
electric field singling out a particular direction one has a
complete degeneracy of possible orientations of the hexago-
nal vortex lattice. This is not surprising for a sufficiently
symmetric material(like NbSe2 frequently used in experi-
ments belongs to this category): the rotational symmetry en-
sures that the free energy is independent of the hexagonal
lattice orientation. The rotational symmetry is broken by the
motion of fluxons as was confirmed experimentally.4,6 Natu-
rally one could ask whether the particular lattice orientation
observed for example in Ref. 4 is necessarily tied to pinning
or might appear in clean superconductors as well. Further-
more, the lattice also can be deformed though the deforma-
tion apparently is very small[see Figs. 1(c) and 1(d) in Ref.
4]. Is there a deformation even before pinning centers disor-
der the lattice?

It would be difficult to address the question of the moving
vortex lattice structure using phenomenological models like
the elastic medium13 (in which individual vortices are simply
not “seen”) or approximating vortices in the London ap-
proximation by interacting lines or pointsr i in two dimen-
sions (2D).12 To give an example of the problems in the
London limit, let us consider equations of motion for vorti-
ces. The driving forceF is the Lorentz force and the dynam-
ics is assumed overdamped:

h
dr i

dt
= − o

jÞi

= Usr i − r jd + F, s1d

where Usr i −r jd is the intervortex repulsive potential. The
solution of these equations in the absence of pinning is ob-
vious: the “boosted” hexagonal lattice of any orientation ir-
respective of the direction ofF. Thus the orientation of the
lattice depends solely on initial conditions, at least in the
clean case. Therefore the approximations made in the above
phenomenological approaches are too strong.

In this paper we use the time-dependent Ginzburg-Landau
(TDGL) model to study the vortex motion and structure. The
TDGL approach has been remarkably successful in describ-
ing various thermodynamical and transport properties.14

Progress in obtaining the theoretical results from the model
can be achieved only when certain additional assumptions
are made. One of the often made additional assumption is
that only the lowest Landau level(LLL ) significantly con-

tributes to physical quantities of interest. The LLL approxi-
mation is valid forH.Hc2sTd /13 in the static limit.15 Al-
though most of the experiments concerning a moving lattice
were performed at a field far below the staticHc2sTd, it has
been shown a long time ago16,17 that in the presence of elec-
tric field E the effectiveHc2sT,Ed=Hc2sTd−g2V2F0/ s8pd
whereV=cE/B is the velocity of fluxons andg is the inverse
diffusion constant setting the time scale in the TDGL ap-
proach. This fieldHc2sT,Ed could be much smaller at not
very small fluxon velocities(electric field suppresses super-
conductivity even more effectively than the magnetic field).
Therefore effectively one can move into the region of valid-
ity of the LLL approximation at sufficiently large currents.
Moreover, one expects that, even beyond the region of va-
lidity of the LLL approximation, physics is qualitatively the
same.

We solve TDGL equations for a moving vortex solid with-
out disorder and find the vortex structure to which the mov-
ing lattice relaxes irrespective of initial conditions.16–18 It
turns out that the preferred lattice is rhombic. The distortion
is velocity dependent. Remarkably the orientation is the
same as in Fig. 1(a); namely, it agrees with experiments only
at velocities exceeding the critical one(of order of cm/s for
superconducting type II lowTc metals). Below it the orien-
tation is rotated by 30°.

The paper is organized as follows. The model is de-
scribed, symmetries analyzed, and the perturbative mean
field solution developed in Sec. II. The general formalism is
developed to treat the non-Hermitian part of the equation.
The shape and the orientation of the vortex lattice and the
reorientation transition are described in Sec. III. Then in Sec.
IV we calculate corrections due to higher Landau levels and
derive a general expression for conductivity. It is compared
with a recent experiment. Section V is a summary.

II. MODEL AND ITS PERTURBATIVE FLUX FLOW
SOLUTION

A. Time-dependent GL model

Our starting point is the TDGL equation,19

"2g

2mab
S ]

]t
+

ie*

"
FDc = −

d

dc*
F. s2d

The static GL free energy is

F =E d3xS "2

2mab
US¹W +

ie*

"c
AWDcU2

+
"2

2mc
u]zcu2 − asTc − Td

3ucu2 +
b8

2
ucu4D , s3d

wherea and b8 are phenomenological parameters,g is the
inverse diffusion constant which controls the scale of dy-
namical processes via dissipation. As usual the magnetic in-

duction isBW=¹W ÃAW and electric fieldEW=−¹W F−s] /]tdAW . It
should be supplemented by Ampere’s law17,18
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¹W Ã BW = snEW + JWs, s4d

where the first term is the contribution of the normal liquid in
the framework of the two liquid model and the second term
is the supercurrent

JWs = −
i"e*

2m
c * S¹W +

ie*

"c
AWDc + c.c. s5d

Tensorsn is the normal state conductivity. We assume that
the coefficient of the covariant time derivative termg in Eq.
(2) is real although a small imaginary(Hall) part is always
present.18 The general case will be discussed in Sec. V.

We make several approximations(identical to those made
in Ref. 20 and major parts of Ref. 17) so that the problem
becomes manageable. The physical conditions allowing
those approximations are the following. Temperatures and
magnetic fields are close “enough” toHc2sTd. Under this
assumption the order parameterc is suppressed compared to
its Meissner value. In this paper we will also assume strongly
type II superconductivityk=l /j@1 [j2="2/ s2mabaTcd, l2

=c2m* b8 /4pe*2aTc]. The magnetic field is very homoge-
neous since the vortices overlap. The characteristic length
describing the inhomogeneity of the electric field was iden-
tified in Ref. 17:z2=s4psn/gdl2 and since typicallysn.g,
thus z@j and the electric field is assumed homogeneous.
Therefore the Maxwell type equations for the electromag-
netic field are not considered. The time-independent vector

potential will be taken in Landau gaugeAW =sBy,0 ,0d and
describes a nonfluctuating magnetic field in the direction −ẑ.
The scalar potential is also independent of timeA0=Ey and
describes the electric field oriented along the negativey axis.
The vortices are therefore moving along thex direction. We
neglect thermal fluctuations and disorder on the mesoscopic
scale.

Throughout most of the paper we will use the following
physical units. The unit of length is the coherence lengthj,
the unit of the magnetic field isHc2=F0/2pj2, l
=sc/e* dÎmabb8 /4paTc, and the unit of energy(temperature)
is Tc. In these units the magnetic field is denoted byb
;B/Hc2. The asymmetry of masses between thez direction
and the x-y plane can be removed by rescaling coordi-
nates and time:x→jx/Îb, y→jy/Îb, z→jz/Îbmc/mab,
t→ sgj2/2bdt. The TDGL equations, after the order param-
eter field is rescaled as wellc→Î2aTcb/b8c, are

0 = Lc + cucu2,

s6d
L ; Dt − 1

2fDx
2 + ]y

2 + ]z
2g − a,

where a;s1−T/Tc/2bd, v=scgE/2BdÎ"c/e* B is scaled
vortex velocity(in units of 2Î2pB/F0/g), and covariant de-
rivatives are defined byDx=] /]x− iy and Dt=] /]t+ ivy.
Since]z

2 commutes withL, the equations are invariant under
the z translations, thez dependence of the solutions de-
couples and is generally a plane wave. It is easy to see that
the relevant solution does not break this symmetry and is
therefore constant with respect toz. Consequently we con-
sider the problem as a 2+1-dimensional one[note, however,
that if the three-dimensional(3D) disorder or thermal fluc-

tuations are included one cannot ignore thez coordinate as
the configuration of disorder can destroy the translational
symmetry along thez direction].

B. Expansion of a nontrivial solution around dynamical phase
transition point

The line in parameter spacesa,vd, which separates the
normal region in which the only solution isc=0 from the
flux flow nontrivial solution region, has been found by Hu
and Thompson.17 We will construct a perturbative solution of
the TDGL equations near the mixed state–normal phase tran-
sition line analogous to the one in statics.21 The range of
applicability and precision of the LLL approximation at large
k in statics was explored recently.15 The main difficulty in
the dynamical case is that the linear part of the equationL is
not Hermitian due to the dissipation termDt.

A general idea of the expansion around a bifurcation point
of a nonlinear equation is as follows. One looks for a set of
eigenfunctions of the linear part of Eq.(6):

LNpvf = QNpvfNpv. s7d

The operatorL consists of two parts: the usual Hermitian
Hamiltonian of a particle in magnetic field −1

2fDx
2+]y

2g and
the anti-Hermitian covariant time derivativeDt. The com-
plete set of eigenfunctions with “quantum” numbersN and
px;p is

fNpv =
1

Îp2NN!

3expfispx− vtdgHNsy − p + ivd

3expF−
1

2
sy − p + ivd2G ,

s8d

QNpv = − a + N +
1

2
+

v2

2
− isv − vpd,

whereHN are Hermitian polynomials. Unlike the usual case
of a Hermitian operator, eigenfunctions and eigenvalues of
the Hermitian conjugate of the operatorL† are different:

L†fNpv = QNpvfNpv,

f̄Npv =
1

Îp2NN!
expf− ispx− vtdgHNsy − p + ivd

3expF−
1

2
sy − p + ivd2G ,

s9d

Q̄Npv = − a + N +
1

2
+

v2

2
+ isv − vpd.

Note thatf̄ is not a complex conjugate off. The orthogo-
nality relations in the dynamical case involve bothfNpv and
f̄Npv:
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E
x,y,t

f̄Npvsx,y,tdfN8p8v8sx,y,td

= s2pd2dNN8dsp − p8d

3dsv − v8d, s10d

kf̄Npvsx,y,tdfNpvsx,y,tdlx,y,t = 1,

where the averaging over space and time is denoted by
k¯lx,y,t.

The bifurcation(in this case the dynamical transition) oc-
curs when there exists a set of eigenfunctions ofL8 with zero
eigenvaluesQNpv=0:

abifsvd = N +
1

2
+

v2

2
, s11d

v = vp. s12d

It is clear that solutions withN.0 are unstable as in the
static case.19 Equation(11) with N=0 gives the phase tran-
sition line of Ref. 17, while Eq.(12) selects the “zero mani-
fold” in the space of functions. We define the “distance”
from the transition line

ahsvd ; a − abifsvd = a −
1

2
−

v2

2
. s13d

Whenahsvd.0, the nonlinear TDGL equation,

Lc + cucu2 ; Lshc − ahsvdc + cucu2 = 0, s14d

Lsh= L + ahsvd,

is solved perturbatively inah with a nonanalytic prefactor, as
in the static case:

F = fahsvdg1/2fF0 + ahF1 + ¯ g. s15d

To orderfahg1/2, the equation linearizes

LshF
0 = 0. s16d

ThereforeF0 belongs to the “zero manifold” and thereby can
be expanded,

F0 = o
p

cpfN=0,p,v=vp ; o
p

cpfp, s17d

with coefficientscp determined by the next order equation.
As a result, since all thefpsx,y,td depend only on the com-
bination px−vt=psx−vtd rather than separately onx and t,
vortices move in the direction perpendicular to both the elec-
tric and the magnetic field with constant velocityv. To order
fahg3/2, one obtains

LshF
1 = F0 − F0uF0u2.

Multiplying this equation byf̄p and integrating oversx,y,td
using the orthogonality relation, Eq.(10), one obtains the
following infinite set of nonlinear algebraic equations:

o
p1,p2,r

cp1
cp2

cr
*kf̄pfr

*fp1
fp2

lx,y,t = cp. s18d

We will study the solution of this set in the next section.

III. SHAPE AND ORIENTATION OF THE MOVING
LATTICE

A. Symmetry and energetics considerations

It is well known in the static case that there is a solution
of GL equations for any lattice symmetry. The same is true in
the dynamical case as well, but the symmetries should take
into account the motion of vortices. We define the covariant
derivatives in a matrix 2+1-dimensional form(a summation
over repeated indices assumed),

Am = bmnxn, Dm = ]m − iAm, s19d

and the Landau gauge

s20d

is used in our paper. All indices run over spacem=1sxd, 2syd,
and 3std. The electromagnetic translation operators satisfying
fTd,Dmg=0 are

Td = eid·P = expF− iS1

2
dmbmndn + xnbnmdmDGeid·p, s21d

where generators arePm=−is]m− ibnmxnd (note a transpose in
the matrixbmn). Operatorspm=−i]m are usual(not “electro-
magnetic”) translation operators. The following commutation
relations:

fPm,Png = isbmn − bnmd, s22d

can be verified. Thus we will havefid1·P, id2·Pg
=−id1ad2bsbab−bbad. Using the Haussdorf formula one
checks that the electromagnetic translation operators obey
eid1·Peid2·P=eid2·Peid1·Pefid1·P, id2·Pg. (See Fig. 2.) If d1 andd2
are the lattice vectors which preserve the symmetry of the
system (when one translates the system byd1 or d2, the
system will be unchanged), one shall requireeid1·Pc
=eid2·Pc and it will lead to

FIG. 2. The flux lattice geometry:ds1d, ds2d are the translational
symmetry vectors which determines the primitive cell of the flux
lattice. The angle between these two vectors isu.
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eid1·Peid2·Pc = eid2·Peid1·Pefid1·P, id2·Pgc = efid1·P, id2·Pgc = c.

Therefore we should demand

fid1 ·P, id2 ·Pg = i2p 3 integer.

This requirement is satisfied by the following basic transla-
tion symmetry vectors:

ds1d = aDS1

2
,0,−

1

2v
D ,

ds2d = aDS r

2
,r8,−

r

2v
D , s23d

ds0d = tsv,0,1d.

HereaD is the lattice spacing along the direction of motion,t
is arbitrary (a continuous translational symmetry). The flux
quantization(one flux quantum per unit cell assumed) deter-
mines r8: r8aD

2 =2p. The ds1d translation symmetry leads to
the discrete parameter

p =
2p

aD

l ; gl,

in Eq. (17), and the set of equations, Eq.(18), will take a
form

cn =Î1

2
g2o

l1,l2

cl1+ncl2+ncl1+l2+n
*

3expH−
1

2
fsgl1 + ivd2 + sgl2 + ivd2 − v2gJ . s24d

It can be solved as in the static case by an Ansatz

cl =Î g
ÎpbAsvd

e−iprl sl+1d,

with the Abrikosov function

bAsvd =
g

Î2p
o
l1,l2

3exph2pirl 1l2j

3expH−
1

2
fsgl1 + ivd2 + sgl2 + ivd2 − v2gJ .

s25d

Consequently,

F0sx,y,zd =
1

ÎbAsvd
wsx,yd, s26d

where

wsx,yd ;Î g
Îp

o
l

exphil fgsx − vtd − prsl + 1dgj

3expF−
1

2
sy − gl − ivd2G s27d

is normalized bykuwu2lx,y=1.

In the static case a solution which has minimal free en-
ergy is physically realized. The free energy is proportional to
−fahs0dg2/ f2bAs0dg which therefore should be minimized.
This means that one should minimizebAs0d. The minimal
bAs0d=1.16 is obtained for the hexagonal lattice. Similar
reasoning cannot be applied to the moving lattice solution of
the TDGL equation since the friction force is nonconserva-
tive. Under these circumstances Ketterson and Song22 calcu-
lated the work made by the friction force:

S;
d

dt
S= 2gkuDtcu2lx,y. s28d

The preferred lattice structure in the steady state corresponds

to a state with largestṠ. For the lattice solution of the TDGL
equation one obtains to leading order inah,

Ṡ~
guahsvdu
bAsvd KUol

S ]

]t
+ ivyDexphil fgsx − vtd

− prsl + 1dgjexpF−
1

2
sy − gl − ivd2GU2L

x,y

=
v2uahsvdu
2bAsvd

ev2
. s29d

We therefore shall minimizebA as function ofr andaD. This
is consistent with the static case.

B. The stationary orientation of the flux lattice. The
reorientation transition at high flux flow velocity

We found that the minimum ofbAsvd always appears
when r =1/2, namely for rhombic lattices. Therefore from
now on we consider these lattices only. As a function of an
angle of the rhombic lattice tanu=4p /aD

2 (see Fig. 1 for a
definition of u) it generally has two minima; see Fig. 3. In
the static case the two minima are degenerate withu=60°,
30° corresponding to perpendicular orientations of the hex-
agonal lattice, while for nonzero velocity the degeneracy is
lifted. Note that originally16,17 it was assumed that the lattice
is hexagonal also in the dynamical case. Generally the shape
is not strongly distorted for physically realizable velocities.
For velocities smaller thanvc=0.95 angleu close to 60°[the
orientation of Fig. 1(b)] is preferred over the one close to 30°
[the orientation of Fig. 1(a)]; see Fig. 3(c). The dependence
of the angleu on velocity can be very well fitted in the whole
rangev,0.5 by

u = 30 − 0.4v − 24v2. s30d

The Abrikosov function also depends on velocity increasing
according to

bAsvd = bAs0ds1 + 1.25v2d, s31d

wherebAs0d=1.1596 is the static value for a hexagonal lat-
tice. As the critical velocity is approached the two minima
coincide; see Fig. 3(b). Beyond that point the preferred struc-
ture is just the opposite; Fig. 3(a). The transition is first order
and the coexistence region should exist.

We now make a few comments about the orientation of
the lattice. The reader might have noticed that the orientation
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of the lattice is not completely arbitrary since the direction of
the vectord1 coincides with the direction of the vortex mo-
tion. The most generalbAsvd is given by Eq.(25) with arbi-
trary r. We minimized numerically the Abrikosovb function
and found that the solution with the largest dissipation is
always of the more symmetric typer =1/2. One can argue
that despite the fact that the electric field breaks the continu-
ous rotational symmetry, it still preserves a discrete transfor-
mation y→−y, c→c*. The solution r =1/2 preserves this
discrete symmetry. This symmetry is unlikely to be sponta-
neously broken. Indeed the symmetry was observed in the
experiments(for example, in Ref. 4).

IV. NONLINEAR CONDUCTIVITY AND BREAKDOWN OF
THE LLL SCALING IN TRANSPORT

In this section we first calculate the leading higher Landau
level corrections to the solution of the TDGL equation, Eq.
(6). Then we use it to derive the correction to the LLL scal-
ing of conductivity.18,20,23

A. Higher orders in ah correction to the moving lattice
solution

Using the same symmetry arguments as for the leading
order, the second term in Eq.(15) can be expanded as

F1 = o
N=0

CN
1wN,

s32d

wN =Î g
Îp2NN!

o
l

exphil fgsx − vtd − prsl + 1dgj

3HNsy − gl − ivdexpF−
1

2
sy − Gl − ivd2G .

Multiplying Eq. (14) by w̄N for N.0, one obtains

NCN
1 = − bA

−3/2kw̄Nw * wwl. s33d

To find C0
1 we need in addition also the orderah

5/2 equation:

LshF
2 = F1 − s2F1uF0u2 + F1pF0F0d. s34d

The inner product withw gives

NC0
1 = − bA

−5/2o
N=1

`

f2kw̄Nw * wwlkw̄w * wNwl + kw̄N
* w * w * wl

3kw̄wN
* wwlg. s35d

Note that for the hexagonal lattice,kw̄Nw* wwlÞ0 only when
N=6j , where j is an integer. This is due to hexagonal sym-
metry of the vortex lattice.21 In staticsbN=kw̄Nw* wwl de-
creases very fast withj : b6=−0.2787,b12=0.0249.15 Be-
cause of this the coefficient of the next to leading order is
very small(also an additional factor of 6 in the denominator
helps the convergency).

B. The LLL scaling in nonlinear conductivity

In the flux flow regime, in addition to the normal state
conductivity, there is a large contribution from the Cooper
pairs represented by the order parameter field. It was noted in
Refs. 18, 20, and 23 that the LLL contribution to nonlinear
conductivity,

s = −
i"e*

2mE
c * S¹W +

ie*

"c
AWDc, s36d

is proportional to the superfluid density. The scaled dimen-
sionless conductivity is defined assscaled;s4pk2/c2gds and
sscaled in the LLL approximation is

sLLL =
i

2v
kCLLL

* ]yCLLL − CLLL]yCLLL
* l = kuCLLLu2l.

s37d

The last equality is due to the general property of the LLL
functions; see Eq.(8). It follows the naive expectation of a
“Drude”-like formula19 with uCLLLu2 playing a role of
“charge carriers” density(meaning here Cooper pairs).

To leading order inah using the results of Sec. II one gets

sLLL =
iahsvd

2bAsvdv
kw * ]yw − w]yw * l =

ahsvd
bAsvd

ev2
, s38d

whereahsvd=s1−tGL−b−v2d / s2bd. At finite v there is an ex-
ponential factor coming from the nonorthogonality of eigen-
functions of a non-Hermitian operator and, in addition, simi-
lar dependence inbA and quadratic inah. In the limit v→0
one recovers the Ohmic expression(see Ref. 18) returning to
standard units,

FIG. 3. The dependence of the Abrikosovb parameter on ori-
entation and shape of the vortex lattice moving with scaled veloci-
tiesv=0.5,0.95,1.1. The angleu is defined as an angle between the
direction of motion and a crystallographic axis in the direction of
the symmetry transformationd2. The minimum favors the smaller
angle close to 30° corresponding to the structure of Fig. 1(a) for
v,vc, while the other local minimum corresponding to Fig. 1(b)
(angles close to 60°) is preferred forv.vc.
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sLLL
s1d = s0

1 − tGL − b

2bbAs0d
, s0 ;

c2g

4pk2 , s39d

while the leading nonlinear(cubic) correction is, using Eq.
(31),

sLLL
s3d = s0

tGL + b − 5

8bbAs0d
v2, s40d

wherev=scgE/2BdÎ"c/e* B.

C. Leading correction to the LLL scaling

Generally to all orders inah one can write C
=oNCNsahdwN,

s = s0
i

2vo
NM

CN
* sahdCMsahdkwN

* ]ywM − wM]ywN
* l

; s0o
NM

CN
* sahdCMsahdsNM. s41d

For N.M andN−M even integer,

sNM = −Î2N−MM!

N!
s− v2dsN−Md/2Fv2LM−1

N−M+1s− 2v2d

+
M + 1

2
LM+1

N−M−1s− 2v2dGev2
, s42d

where Lsyd are Laguerre polynomials. This contribution is
always sub-OhmicsNM,vN−M at smallv. If N−M is odd,
the contribution vanishes. The diagonal contributions are
simpler,

sNN = fLN−1
1 s− 2v2d + LN

1s− 2v2dgev2
, s43d

and have an Ohmic part,

sNN = 2N + 1.

The first term, proportional to Landau orbital numberN, is
responsible for the breaking of the naive Drude-like expec-
tation that conductivity is proportional touCu2.19 One ob-
serves that higher Landau levels contribute to conductivity
more than touCu2. One can interpret this as an “increased
charge movers density.”

Thus the Ohmic conductivity has two contributions,

ss1d = s0o
N

s2N + 1duCNsahdu2 = s1 + s2, s44d

s1 = s0kuCu2l, s2 = 2s0o
N=1

NuCNsahdu2, s45d

the first proportional to the superfluid density, while the sec-
ond, the HLL part, is not and is of orderah

3 only. Substituting
expressions forC0 from the previous section, we obtain for
the Ohmic conductivity to orderah

2,

s1 = s0F ah

bA
+ 3

ah
2

bA
3 o

N=1

bN
2

N G , s46d

where all the quantities are taken in the limitv→0. The sum
rapidly converges in the static(or low velocity) case:
oNsbN

2 /Nd=0.0131.

D. Comparison with experiment

In Fig. 4 we compare the results with recent experiments
at high currents(electric fields) of Ref. 24 on Nb in which
vortex velocities are as high as 105 cm/s. We used the same
values of the Ginzburg-Landau parameterk=9.4 and the
inverse diffusion constantg=1.17 s/cm2 to fit all three
curves corresponding to magnetic fieldsH=80 mT, 100 mT,
and 120 mT for a “cold” sample withTc=8.6 K. We
used the measured(inset in Fig. 2 of Ref. 24) Hc2
;TcufdHc2sTd /dTguT=Tc

=4.4 T. The temperature wasT
=7.8 K close enough toTc so that theah

2 correction was
always below 10%. The value of parameterg is in good
agreement the measured normal state resistivity of
9.9 mV cm. The results agree well with the flux flow Ohmic
conductivity data at relatively low currents(still well above
the critical current) exhibiting the 1/H behavior presented in
Fig. 2 of Ref. 24.

One observes that the full expression(solid lines) is closer
to the experiment at very high electric fields. Several curves
for the magnetic field are given. The smallest is clearly off
the LLL approach range.

V. CONCLUSION

To summarize, we have considered the dynamics of the
vortex lattice, neglecting the effects of pinning. We studied
the time-dependent Ginzburg-Landau equation in the lowest
Landau level approximation. For the validity region of the
LLL approximation, as in the static case, we requireah
=s1/2BdfHc2sTd−B−sc2g2F0E

2/4pB2dg!6, the factor 6

FIG. 4. Current-voltage curves at high flux flow velocities. The
data of Ref. 24 on Nb films atT=7.8 K (symbols represent different
magnetic fields) are compared with theory combining the linear
(Ohmic) contribution Eq.(46), and the cubic correction, Eq.(40).
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coming from cancellations of the higher Landau level effects
due to hexagonal symmetry(even the hexagonal symmetry is
approximate in the moving lattice). We systematically calcu-
lated higher Landau level corrections to conductivity and the
vortex lattice energy dissipation. The stationary lattice struc-
ture depends on the flux flow velocity. While for small ve-
locities V,2vc

Î2pB/F0/g, the vc=0.95 vortex lattice is
oriented as in Fig. 1(b), while beyond this velocity orients as
in Fig. 1(a). We emphasize that in our calculation the pinning
effect was disregarded. Of course, as was firmly established
in numerous theoretical and experimental investigations, pin-
ning significantly can modify the picture for low velocities.
Pinning generally “prefers” the configuration of Fig. 1(a) and
this is a possible reason why the experimental observed ori-
entation is depicted as in Fig. 1(a). However one can expect
that for higher velocities and very clean samples the pinning
dominated dynamics crosses over into the interactions domi-
nated dynamics considered in the present work. The high
velocity of order cm/s is unlikely to be seen in decoration

experiments. However other techniques like SANS and
muon spin rotation5 and possibly Lorentz microscopy25 are
able to detect the lattice structure even at such relatively high
velocities. At very high velocities the results for nonlinear
conductivity agree with recent experiments24.
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