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ABSTRACT We developed a technique to com-
pute structural entropy directly from protein se-
quences. We explored the possibility of using struc-
tural entropy to identify residues involved in
thermal stabilization of various protein families.
Examples include methanococcal adenylate kinase,
Ribonuclease HI and holocytochrome c551. Our re-
sults show that the positions of the largest struc-
tural entropy differences between wild type and
mutant usually coincide with the residues relevant
to thermostability. We also observed a good linear
relationship between the average structural en-
tropy and the melting temperatures for adenylate
kinase and its chimeric constructs. To validate this
linear relationship, we compiled a large dataset com-
prised of 1153 sequences and found that most protein
families still display similar linear relationships. Our
results suggest that the multitude of interactions
involved in thermal stabilization may be generalized
into the tendency of proteins to maintain local struc-
tural conservation. The linear relationship between
structural entropy and protein thermostability should
be useful in the study of protein thermal stabilization.
Proteins 2004;57:684–691. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

Protein thermal stabilization has been the focus of many
experimental and theoretical research works,1–23 but the
molecular basis of thermal stability appears to be of
diverse origin. Although thermophilic proteins and their
mesophilic homologues share a high degree of similarity in
both sequence and three-dimensional structure, thermo-
philic proteins are intrinsically more stable than their
mesophilic homologues. Structural analysis has revealed
various structural features that characterize the thermal
stability of proteins. Thermophilic proteins tend to have
stronger electrostatic interactions (more surface charged
residues, surface salt bridges, hydrogen bonds, dipole–
dipole interactions or cation-� interactions), more disul-
fide bridges, higher degrees of hydrophobic packing in the
core regions, more pronounced bias in amino acid content
on the exposed regions, shorter loop structures, higher
conformational rigidity and more secondary structural

elements such as �-helices and �-sheets. However, despite
these many structural features, no single outstanding
feature can adequately account for the thermal stabiliza-
tion of proteins. This is because net thermal stability may
result from a multitude of weakly stabilizing interactions,
and different protein families may adopt different struc-
tural devices for stabilization. Another difficult issue fac-
ing the structural analysis of thermal stability is the
insufficient amount of structural data available for compre-
hensive comparison of different thermophilic proteins and
their mesophilic homologues. Given that there are far
more sequences than structures available, elucidating the
relationship between sequences and protein thermal stabil-
ity should be useful in the study of protein thermostabiliza-
tion.

MATERIALS AND METHODS
Structural Profiles

A sequence pattern a of length l is denoted by a �
(a1,a2,…,ai), where ai � {20 types of amino acids}. The
structural profile of the sequence pattern a is written in
the form of a matrix Ma:

Ma � �p1
a,p2

a,. . .pi
a�.

Here the structural profile vector pi
a � (�1i

a,�2i
a,…,�ni

a ) is
the probability distribution of n structural descriptors at
ai, where �ji

a is the observed probability of the jth struc-
tural descriptor at ai. The probability �ji

a is computed using

�ji
a �

cji
a

ci
a (1)

where cji
a is the occurrences of the jth structural descriptor

for ai, and ci
a � �

j�1

n cji
a.

In principle, structural descriptors can be any structure-
related properties, such as secondary structural elements,
backbone torsion angles and accessible solvent areas (ASA).
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However, the backbone torsion angles (� and �) are not
ideal structural discriminators. The distribution of � val-
ues for most �-helices, �-sheets and coils lie in the same
range of 	30° to 	180°. The distributions of � are distinct
for ideal �-helices (0–	60°) and �-sheets (120–180°).
However, the distributions of � for realistic helical, sheet
and coil structures are considerably overlapped with each
other in the Ramanchandran plot. In the case of ASA, the
prediction error using neural networks increases as the
residues become more exposed. For example, for residues
with less than 10% exposure, the prediction error is within
12%; however, for residues with 70–80% exposure, the
prediction error increases to 40%.24 It has been shown that
the exposed residues depend more on surrounding resi-
dues than on neighboring sequences.24,25 This means that
local sequences contain uneven distributions of the infor-
mation content of ASA. Consequently, this makes ASA a
less desirable structure descriptor. Secondary structural
elements such as �-helices contain explicit information
about local interactions (i.e. hydrogen bonds between i and
i 
 4 amino acids), and �-sheets contain implicit informa-
tion about long-range interactions (i.e. one strand implies
the existence of another strand hydrogen-bonded to the
former). Hence, in this work the structural descriptors
were characterized by eight secondary structure types
defined by DSSP,26 �-bridges, extended �-sheets, 310-
helices, �-helices, �-helices, bends, turns and others. The
number of structural descriptors is n � 8. For patterns
with lower occurrence, the Bayesian prediction method27

was used to estimate the probabilities. Introducing a
pseudocount Bi

a, we rewrite eq. (1) as

�ji
a �

cji
a � Bi

a�ji
0

ci
a � Bi

a (2)

where �ji
0 is the background probability of the jth struc-

tural descriptor at position i and Bi
a � �ci

a.

Structural Entropy Profile

Given the structural profile of the sequence fragment a,
we compute its structural entropy Si

a using the following
equation:

Si
a � � �

j�1

n�8

�ji
a ln�ji

a (3)

The value of Si
a is 0 for a perfectly structure-conserved

position, and the value is �2.08 for a completely structure-
random position. In practice, we compute the structural
entropy of a specific residue by averaging over l successive
sequence windows along the protein sequence. We illus-
trate the computational procedure with an example: Given
a sequence “…CRLPGTPEAICATYTGCII…,” imagine we
are interested in computing the structural entropy at the
“I” position for this sequence. If l � 4, there are four
sequence windows covering this particular residue I, whose
structural profile vectors are given by p4

PEAI, p3
EAIC, p2

AICA

and p1
ICAT, respectively (see Fig. 1). We compute the

average structural profile vector at I by

p� �
1
4(p4

PEAI 
 p3
EAIC 
 p2

AICA 
 p1
ICAT) (4)

This is equivalent to a weighted average over a seven-
residue window where the nearer neighboring residues are
given more weight. The structural entropy S at I for the
query sequence is then computed by

S � � �
j�1

8

�� j ln�� j (5)

where �� j is the jth component of p� . We built the library of
structural profile using the SCOP-35 dataset,28 which is
the non-redundant subset comprised of sequences with
pairwise sequence identities �35%. Using the SCOP-35
dataset can help avoid sampling bias due to homologue
redundancy. For sequence fragments with lengths 3,4 and
5, the numbers of distinct patterns are 8 
 103, 1.6 
 105

and 3.2 
 106, respectively, and their coverage by SCOP-35
is 99%, 86% and 19%, respectively. In this work, the
structural profile library is built for tetrapeptides (l � 4)
for the consideration of sufficient sequence coverage and
sequence patterns. For sequences of lower occurrence, we
used the pseudocount method [eq. (2)] described before to
estimate the occurrence probability. The complete flow-
chart for computing the structural entropy of a query
sequence is shown schematically in Figure 2.

RESULTS AND DISCUSSION

Figure 3 shows the average structural entropy values for
the 20 amino acids. Nonpolar amino acids generally have

Fig. 1. An example to compute the structural entropy of a particular
residue (I) in a protein sequence. If the length of the sequence window is
l � 4, there are four possible sequence windows covering the residue:
PEAI, EAIC, AIAC and ICAT. The structural profile vectors of I for these
sequence fragments are p4

PEAI, p3
EAIC, p2

AICA and p1
ICAT, respectively. The

structural entropy of I can be computed using eqs. (4) and (5).
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smaller structural entropy because of their preference to
be buried in the core, while charged or polar amino acids
have higher structural entropy because of their preference
to be on the surface. The smallest amino acid, glycine, has
the highest average structural entropy, and this may due
to its small size allowing it to adopt a variety of conforma-
tions with little steric hindrance. Among the aromatic
amino acids, phenylalanine has the highest hydrophobic-

ity 29 and the lowest average structural entropy. However,
Figure 3 provides only a simplified picture of the general
trends in structural entropy of the 20 amino acids. The
structural entropy of a particular amino acid is in fact
significantly affected by its neighboring sequences, as will
be shown in a later section. In cytochrome c551, an F34Y
mutation actually results in the lowering of the structural
entropy, despite the fact that phenylalanine has a lower
average entropy than tyrosine.

To explore the relationship between structural entropy
profile and protein thermal stability, we present three
examples: methanococcal adenylate kinases and their
chimeric constructs,21,30 ribonuclease HIs and their chi-
meric constructs,31 and holocytochrome c551 and its single/
multiple amino acid mutants.6

Case 1: Methanococcal Adenylate Kinases

The methanococcal adenylate kinases (AKs) provide a
good model system to study protein thermostabiliza-
tion.21,30 The mesophilic Methanococcus voltae (AKvol)
and the extremely thermophilic Methanococcus jannaschii
(AKjan) share 61% sequence identity but differ signifi-

Fig. 2. The schematics of calculating the structural entropy profile of a query sequence. We built the tetrapeptide library to include secondary
structural elements from the SCOP-35 and DSSP databases. We then built a library of structural profiles for all tetrapeptides. For a query sequence, we
can compute the structural entropy of each position from the structural profile library by averaging four successive sequence windows, indicated by four
stacked thick lines.

Fig. 3. The average structural entropy of the 20 amino acids.
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cantly in their thermal stability (their melting tempera-
tures are 69°C and 103°C respectively). The structure of
AK is characterized by the CORE domains (residues 1–38,
86–134 and 145–192), the nucleoside monophosphate
(NMP)-binding domain (residues 39–85) and the LID
domain (residue 135–144). Figure 4 shows the computed
structural entropy profiles of AKjan (SAKjan) and AKvol
(SAKvol) as well as their entropy difference �S � SAKjan 	
SAKvol. Most residues of the AKjan sequence have lower
structural entropy than those of the AKvol sequence,
especially in the CORE domains. We observed that most of
the residues (filled circles) involved in the thermal stabili-
zation of AKs21,30 occur at or close to the �S minima.
Figure 5(a,b) shows the colorimetric mapping of �S on the
tertiary structure of AK (1KI9).21 The color of the sphere in
the figure represents the sign of �S (red for negative and
blue for positive). The size of the spheres indicates the
magnitude of �S. As seen in the figures, the large red
spheres (or the residues with large negative �S) are
usually in close proximity to each other, especially in the
N- and C-terminal regions. These results are encouraging,
since they indicate that our approach may provide a
simple, straightforward means of identifying the residues
involved in thermal stabilization.

Case 2: Ribonuclease HI

Kimura and coworkers31 have constructed a variety of
chimeric proteins of Escherichia coli ribonuclease HI (EI
RNase HI) by substituting the corresponding R1–R9 re-
gions from Thermus thermophilus RNase HI (TH RNase
HI), an exceptionally thermal stable protein. The enzymes
share a 52% sequence identity. It has been shown31 that
the replacement of each of four regions (R4–R7) results in
an increase in protein thermostability. R4 contains a single
residue P63 located at the loop between helix I and sheet
C, R5 covers part of helix II, R6 covers the loop region
between helices III and IV, and R7 contains the region
from helix IV to sheet E. Since these regions are relatively
far apart in space, the effect of each replacement on
thermostability is independent of the others. The simulta-

neous replacement of all four regions results in the most
stable protein, raising the melting temperatures from
52.0°C to 68.7°C. Figure 6 compares the structural entropy
profiles of EI RNase HI and the chimeric R4–R7 protein.
The structural entropy profile of the chimeric protein also
shows very large entropy reduction in the R5, R6 and R7

regions of the four substitution regions.

Case 3: Holocytochrome c551

Hasegawa and coworkers6 have systematically substi-
tuted the amino acids of Pseudomonas aeruginosa cyto-
chrome c551 (PA c551) based on the structure of thermo-
philic Hydrogenobacter thermophilus cytochrome c552 (HT
c552). Their strategy was based on the observation32 that
small hydrophobic cores in HT c552 are more tightly
packed because of the occupancies of A5, M11 and I76,

Fig. 4. The structural entropy profiles of AKjan (SAKjan, red line), AKvol
(SAKvol, blue line) and their entropy difference (�S, black line). Filled
circles show the residues related to thermostabilization.21,30 The domains
of AK are indicated by the lines above the x-axis.

Fig. 5. The colorimetric mapping of �S between AKjan and AKvol on
the tertiary structure of the methanococcal AK (1KI9).21 The color and size
of the sphere represent the sign (red for negative and blue for positive)
and the magnitude of �S, respectively. Two views are shown (a and b);
the latter is rotated by 180° from the first. The figures were produced by
RASMOL.50
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while in PA c552 the corresponding amino acids are F7, V13
and V78. In PA c552, F7 overfills the cavity and forces V13
to be displaced from the hydrophobic core.32 However, in
HT c552, the occupancy of A5 makes a smaller cavity,
which is filled with M11 without excess void spaces. Using
this strategy, they succeeded in constructing several single
and multiple amino acid mutants of increased thermosta-
bility compared to PA c551. Figure 7 compares the struc-
tural entropy profiles of PA c551 and the mutant proteins
(F7A, V13M, F34Y, E43Y and V78I). As shown in the
figure, two mutations F7A and F34Y show the largest
entropy reduction, which is consistent with the experimen-
tal result that these two mutations have the largest �Tm

values of all single amino acid mutants. Structural analy-

sis6 shows that the F7A mutation results in tighter
hydrophobic packing, and the F34Y mutation forms a new
hydrogen bond between the hydroxyl group of the tyrosine
residue and the guanidyl base of R47.

Relationship Between Structural Entropy and
Thermal Stability

Haney and coworkers30 constructed a number of chi-
meric proteins with melting temperatures varying from
those of AKjan and AKvol. These sequences share 68% to
81% sequence identity, and their melting points range
from 69°C to 103°C (Table I). Figure 8(a) shows the plot of
�Tm versus � for these sequences, where �Tm is the
difference between the melting temperatures of a particu-

Fig. 6. Structural entropy profiles of RNase HI (blue line), the R4–R7 mutant proteins (red line) and their
entropy difference �S (black line). The residues of the R4, R5, R6 and R7 regions are shown as filled circles.31

Fig. 7. Structural entropy profiles of PA c551 (blue line) and its mutant proteins (red line) and their entropy
difference �S (black line). The mutated residues are indicated by the filled circles.6
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lar sequence and the reference sequence (AKvol), and � is
the difference in the average structural entropies per
amino acid. We use linear regression to model the relation-
ship between �Tm and �. The regression line is obtained by
the method of least-squares. Note that in Figure 8(a) the
slope of the line is positive, indicating that lower struc-
tural entropy is related to higher thermostability. With the
linear regression equation, we can compute the predicted
melting temperatures. Figure 8(b) compares the observed
melting temperatures �Tm

o with those computed from the
linear model �Tm

c . We observed a very good linear relation-
ship between them. The fitting linear equation for AKs is
�Tm

c � 1.0622�Tm
o 	 2.5196 and the linear regression

correlation coefficient is r � 0.934.
If the entropy linear model is a general one, the struc-

tural entropy will provide a useful measure of the thermal
stability. To check this, we compiled a comprehensive
dataset comprised of 1153 protein sequences with varying
melting temperatures. These sequences included members

of the following families: adenylate kinases,30 cytochrome
c551,6 RNase HI,31 staphylococcal nuclease,1 alpha-amy-
lase,23 arc repressor,33 rubredoxin variant (PFRD-XC4)34

and human fibroblast growth factor 1,35 ligase,36 gluta-
mate dehydrogenase,37 alcohol dehydrogenase,38 histone-
like bacterial DNA-binding protein,39 Fyn SH3 domain,40

cold-shock protein Bs-CspB,12,41 malate dehydrogenase,42

cytochrome P450,43 WW domain,44 bovine pancreatic tryp-
sin inhibitor45,46 and phytase47 and other families from
the ProTherm database.48 Each family contains highly
homologous sequences: the wild-type protein and its mu-
tants (either single/multiple point mutations or chimeric
constructs). These sequences are listed in the supplemen-
tary material. For each family, we computed the linear
regression of �Tm on �. From this linear model, we
computed their melting temperatures. Figure 9 compares
the calculated and observed melting temperatures of the
sequences of the dataset. The linear regression correlation
coefficients between the calculated and observed melting
temperatures are r � 0.721 and p � 0.143 
 10	3.

On close examination of the results, we found that, for
the sequences displaying the best linear relationship be-
tween � and �Tm, the mutated residues usually result in
more hydrophobic packing1,30 or conformational rigid-
ity.33,34,36,38 On the other hand, if the mutated residues
are involved in electrostatic interactions, some examples,
such as rubredoxin34 still show relatively good linear
relationships. Experiment34 has shown that the thermosta-
bilization of the mutant rubredoxin comes from a surface
salt bridge involving the protein’s backbone, which re-
duces the entropic cost. However, other examples, such as
the cold shock protein Bs-CspB,12,41 show little correlation
between � and �Tm. The increased thermal stability of
mutant Bs-CspB is due to electrostatic networks arising
from the mutated surface residues. The linear entropy
model computed from sequences obviously cannot account
for the long-range stabilization from such intricate struc-
tural features. We noticed that the linear entropy model

Fig. 8. (a) The 	� vs. �Tm plots for AKjan, AKvol and their chimeric proteins. �Tm is in degrees Celsius, and � is in arbitrary units. (b) Comparison of
the calculated melting temperature computed from the linear model and the observed melting temperature. The correlation coefficients of both plots are
r � 0.934.

TABLE I. Melting Temperatures of AKs and Their
Chimeric Constructs

Proteinsa Tm (°C)

AKvol 69.0
J36V 73.0
V160V 74.0
JVJ 89.0
V36J 98.0
J160V 96.0
VJV 82.5
AKjan 103.0

aThe melting temperatures of AKvol, AKjan and their chimeric
constructs.30 A 36 residue N-terminal residue region (1–36) or a 32
residue C-terminal region (161–192) was swapped to produce the
chimeric proteins. The notation J36V represents AKjan sequence
through residue 36 followed by the remaining AKvol sequence. For the
double chimera like JVJ, it represents AKjan through residue 36,
AKvol through 160, and AKjan residues 161–192. Similar logic applies
for the nomenclature of the other chimeras.
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may also be inapplicable to some polymeric proteins, such
as malate dehydrogenase,42 whose stabilization comes
from ionic interactions across the dimer–dimer interface.

Though various interactions enhancing protein thermo-
stability exhibit themselves as different structural fea-
tures. Our results show that local structural entropy may
be used as a generalized measure of thermal stability.
Since structure conservation reflects the effects of both the
intrinsically stable (context-independent) sequence pat-
terns and the long-range generic contributions (context-
dependent) from surrounding residues,49 structural en-
tropy provides a convenient structural measure of thermal
stability. Although the structural entropy profile alone
could be related to functional factors as well as structural
factors, the structural entropy differences between meso-
philic and thermophilic homologues augment information
from structural features involved in structural stabiliza-
tion. Our approach offers a straightforward way to com-
pute the structural entropy directly from the query se-
quence and may be used as a useful tool to screen mutant
candidates for thermophilic sequences in a high through-
put way.

Website

Both the web-implemented program and the compiled
entropy library are available at http://SDSE.life.nctu.
edu.tw/.
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