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Abstract—Diagnosability is an important factor in measuring the reliability of an interconnection network, while the (node) connectivity

is used to measure the fault tolerance of an interconnection network. We observe that there is a close relationship between the

connectivity and the diagnosability. According to our results, a t-regular and t-connected network with at least 2t + 3 nodes is

t-diagnosable. Furthermore, the diagnosability of the product networks is also investigated in this work. The product networks,

including hypercube, mesh, and tori, comprise very important classes of interconnection networks. Herein, different combinations of

t-diagnosable and t-connected are employed to study the diagnosability of the product networks.

Index Terms—Diagnosability, comparison diagnosis model, t-diagnosable, connectivity, order graph, product networks.
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1 INTRODUCTION

MANY studies have proposed and examined the feasi-
bility topologies of multiprocessor interconnection

networks. Such a topology is usually modeled as an
undirected graph where the set of nodes represents the
processors and the set of edges represents the communication
links between the processors. Desirable features of an
interconnection network include topological properties such
as symmetry, regularity, large connectivity, and others.
Related studies have investigated a class of graphs called
Cayley graphs, with their desirable features. In [1], Cayley
graphsarebasedonpermutationgroupsandare averyuseful
framework for the design and analysis of interconnection
networks. All Cayley graphs are regular, explainingwhy this
study considers regular graphs throughout.

The reliability of an interconnection network system is

essential to system design and system maintenance. The

reliability of a system is maintained by ensuring that it can

discriminate the faulty nodes from the fault-free ones. Then,

fault-free nodes must replace the faulty nodes. Identifying

the faulty nodes is called the diagnosis of the system. The

diagnosability of the system refers to the maximum number

of faulty nodes that can be identified by the system. The

fault tolerance is another important issue related to

interconnection networks. The fault tolerance of an inter-

connection network can be measured from the connectivity

of the underlying graph. In an interconnection network
with connectivity t, the fault-free node is guaranteed to
communicate with any other fault-free node even if ðt� 1Þ
nodes are faulty. Hence, diagnosability and connectivity are
important properties of interconnection networks. A
t-regular and t-connected interconnection network may
not be t-diagnosable, accounting for why the condition
under which a given t-regular and t-connected interconnec-
tion network is t-diagnosable is of interest. This study will
prove that, given a t-regular and t-connected interconnec-
tion network with at least 2tþ 3 nodes, the interconnection
network is t-diagnosable according to the comparison
diagnosis model. Therefore, many well-known interconnec-
tion networks are found to be t-diagnosable under the
comparison diagnosis model.

A product network is generated by applying the graph
Cartesian product operation to factor networks. Combining
two known topologies with established properties into a
new one with the properties of both would be valuable. The
Cartesian product can be used to perform this combining.
Product networks are very important classes of intercon-
nection networks. Some well-known interconnection net-
works, e.g., hypercubes, meshes, tori, k-ary n-cubes, and
generalized hypercubes, are product networks [2], [3], [4].
Motivated by this observation, this work addresses the
diagnosability of product networks by applying the
comparison diagnosis model. Although related studies
have investigated various characteristics of product net-
works (e.g., connectivity, diameter, shortest path routing,
and embedding) [5], [6], [8], [10], [11], [16], [17], [19], [23],
this paper studies some topological properties different
from those investigated elsewhere. The diagnosability of
hypercubes and enhanced hypercubes was studied in [12],
[21], [22] and that of crossed cubes was considered in [9].
The diagnosability of the product networks under the
PMC model was investigated in [2]. Lai et al. [13] addressed
the diagnosability of matching composition networks. In
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[13], the matching composition network can be viewed as a
particular product network of G and K2, where G is a
t-connected network. This study examines the diagnosa-
bility of the product network of G1 and G2, where Gi is
ti-diagnosable or ti-connected for i ¼ 1; 2. Moreover, we
apply different combinations of ti-diagnosability and
ti-connectivity to investigate the diagnosability of the
product networks.

Previous studies have proposed various models for
diagnosis [14], [15], [18]. An important approach, first
proposed by Malek and Maeng [14], [15], is called the
comparison diagnosis model (MM model). In the
MM model, the number of faulty nodes is limited and all
faults are permanent. The MM model deals with the faulty
diagnosis by sending the same input (or task) from a node w
to each pair of distinct neighbors, u and v, and then
comparing their responses. The node w is called the
comparator of the two nodes u and v. Different comparators
may examine the same pair of nodes. The result of the
comparison is that either the two responses are consistent or
two responses disagree. The goal is to use the comparison
results to identify the faulty/fault-free status of the nodes in
the system. Using the comparison diagnosis model,
Sengupta and Dahbura characterized the diagnosable
system and presented a polynomial algorithm to determine
the set of all faulty nodes [20].

The rest of this paper is organized as follows: Section 2
summarizes some known results on product networks and
provides necessary background and notation used herein.
Section 3 shows that, under certain conditions, a
t-connected network is also t-diagnosable. Section 4 pre-
sents the diagnosability of the product networks under the
comparison diagnosis model. Conclusions are finally made
in Section 5.

2 PRELIMINARIES AND NOTATION

Let G ¼ ðV ;EÞ be a graph. V and E represent the set of
nodes and the set of edges of G, respectively. The topology
of an interconnection network is usually denoted by a graph
G ¼ ðV ;EÞ, where nodes represent processors and edges
represent links between processors. Let V 0 be a subset of V ;
G� V 0 represents the subgraph of G induced by V � V 0.
The (node) connectivity of G is defined as

�ðGÞ ¼ minfjV 0jjV 0 � V and G� V 0 is not connectedg:

A graph G is t-connected if �ðGÞ � t. Given a t-connected
graph, Menger’s theorem states there exist t internally node-
disjoint (abbreviated as disjoint) paths between any two
distinct nodes.

The comparison scheme of the system can be modeled as
a multigraph M ¼ ðV ;CÞ, where V represents the node set
and C the labeled-edge set. Let ðu; vÞw denote an edge
labeled by w. InM, an edge ðu; vÞw 2 C represents the nodes
u and v, which are to be compared by w. The same pair of
nodes may be compared by various comparators, so M is a
multigraph. For ðu; vÞw 2 C, rððu; vÞwÞ denotes the results of
comparing nodes u and v by w such that rððu; vÞwÞ ¼ 0 if the
outputs of u and v agree and rððu; vÞwÞ ¼ 1 if the outputs of
u and v disagree. If rððu; vÞwÞ ¼ 0 and w is fault-free, then

both u and v are fault-free. If rððu; vÞwÞ ¼ 1, then at least one
of u, v, and w must be faulty. If w is faulty, then the result of
comparison is unreliable and the exact status of u and v are
unknown. The complete result of all comparisons, defined
as a function s: C ! f0; 1g is called the syndrome of the
diagnosis.

A subset F � V is said to be consistent with a syndrome s
if s can arise from the circumstance that all the nodes in F
are faulty and all the nodes in V � F are fault-free. A
system is said to be diagnosable if a unique F � V is
consistent with s for every syndrome s. In [20], a system is
called a t-diagnosable system if the system is diagnosable as
long as the number of faulty nodes therein does not exceed
t. Let �ðF Þ represent the set of syndromes which could be
generated if F is the set of faulty nodes. Two distinct sets
S1; S2 � V are said to be indistinguishable if and only if
�ðS1Þ \ �ðS2Þ 6¼ ;; otherwise, S1 and S2 are said to be
distinguishable. Clearly, a system is t-diagnosable if and only if
each pair of sets S1; S2 � V are distinguishable and jS1j � t
and jS2j � t.

Consider two interconnection networks modeled by two
undirected graphs G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ. The
Cartesian product, G1 �G2, of two factor networks is an
interconnection network, defined as follows:

Definition 1. The Cartesian product G ¼ G1 �G2 of two
graphs G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ is the graph
G ¼ ðV ;EÞ, where the set of nodes V and the set of edges E
are given by:

1. V ¼ fhx; yijx 2 V1 and y 2 V2g, and
2. for u ¼ hxu; yui and v ¼ hxv; yvi in V , ðu; vÞ 2 E if

and only if ðxu; xvÞ 2 E1 and yu ¼ yv, or ðyu; yvÞ 2
E2 and xu ¼ xv.

Let y be a fixed node of G2. The subgraph Gy
1-component

of G1 �G2 has node set V y
1 ¼ fðx; yÞjx 2 V1g and edge set

Ey
1 ¼ fðu; vÞj < u ¼ xu; y >; v ¼< xv; y >; ðxu; xvÞ 2 E1g. Si-

milarly, let x be a fixed node of G1; the subgraph
Gx

2-component of G1 �G2 has node set V x
2 ¼ fðx; yÞjy 2 V2g

and edge set

Ex
2 ¼ fðu; vÞj u ¼< x; yu >; v ¼< x; yv >; ðyu; yvÞ 2 E2g:

Clearly, the Gy
1-component (abbreviated as Gy

1) and the
Gx

2-component (abbreviated as Gx
2) are isomorphic with G1

and G2, respectively (as illustrated in Fig. 1). The following
lemma lists a set of known results [5], [6], [8], [10], [23]
related to the topological properties of the Cartesian
product of G1 �G2 of two graphs G1 and G2.

Lemma 1. Let u ¼ hxu; yui and v ¼ hxv; yvi be two nodes in
G1 �G2. The following properties hold:

1. G1 �G2 is isomorphic to G2 �G1,
2. jG1 �G2j ¼ jG1j � jG2j, where jGj is the number of

nodes in G,
3. degG1�G2ðuÞ ¼ degG1ðxuÞ þ degG2ðyuÞ,
4. distG1�G2ðu; vÞ ¼ distG1ðxu; xvÞ þ distG2ðyu; yvÞ,

where distGðu; vÞ is the distance between u and v in G,
5. DðG1 �G2Þ ¼ DðG1Þ þDðG2Þ, where DðGÞ is the

diameter of G,
6. �ðG1 �G2Þ � �ðG1Þ þ �ðG2Þ, where �ðGÞ is the

connectivity of G.
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Let G ¼ ðV ; EÞ be a graph. A node cover of G is a subset

Q � V such that every edge of E has at least one end node

in Q. A node cover with the minimum cardinality is called a

minimum node cover. Let NðuÞ be the set of neighbors of u,

NðuÞ ¼ fvjðu; vÞ 2 Eg. Let V1; V2 be two subsets of nodes,

V1 6¼ ;, V2 6¼ ;; the neighbor set of V1 in V2 is defined as

NðV2; V1Þfxjx 2 V2; x 62 V1; a node y 2 V1 and ðx; yÞ 2 Eg.
Given an interconnection network G, let M ¼ ðV ;CÞ

represent the comparison scheme of G. For a node u 2 V , let

Xu ¼ fvjðu; vÞ 2 E or ðu; vÞw 2 C; for some wg;
Yu ¼ fðv; wÞjv; w 2 Xu and ðu; vÞw 2 Cg:

In [20], the order graph of u is defined as GðuÞ ¼ ðXu; YuÞ and
the order of the node u is defined as the cardinality of a

minimum node cover of GðuÞ. Given a network G and a

comparison scheme M, for a subset of nodes V 0 � V ,

T ðG; V 0Þ denotes the set of all nodes in V � V 0, which are

compared to some node of V 0 by the other nodes of V 0.

Therefore,

T ðG; V 0Þ ¼ fvjðu; vÞw 2 C and u;w 2 V 0 and v 2 V � V 0g:

For V 0 � V and jV 0j > 1, if the subgraph induced by V 0 is

connected, then T ðG; V 0Þ ¼ NðV � V 0; V 0Þ, where NðV �
V 0; V 0Þ is the neighbor set of V 0 in V � V 0. Fig. 2 shows an

example ofT ðG; V 0Þ. ForV 0 ¼ f0; 1; 5g, T ðG; V 0Þ ¼ f2; 3; 4; 6g;
for V 0 ¼ f0; 2; 6g, T ðG; V 0Þ ¼ ;.

Five theorems presented by Sengupta and Dahbura [20]

must be applied to characterize whether a system is

t-diagnosable. The results of these theorems are as follows:

Lemma 2 [20]. For any S1; S2 where S1; S2 � V and S1 6¼ S2,

ðS1; S2Þ is a distinguishable pair if and only if at least one of

the following conditions is satisfied (as shown in Fig. 3):

1. 9 u;w 2 V � S1 � S2 and 9 v 2 ðS1 � S2Þ [ ðS2 �
S1Þ such that ðu; vÞw 2 C,

2. 9 u; v 2 S1 � S2 and 9 w 2 V � S1 � S2 such that
ðu; vÞw 2 C,

3. 9 u; v 2 S2 � S1 and 9 w 2 V � S1 � S2 such that
ðu; vÞw 2 C.

Lemma 3 [20]. If a system with N nodes is t-diagnosable, then

N � 2tþ 1.

Lemma 4 [20]. If, in a system, each node has order at least t,

then, for each S1; S2 � V such that jS1 [ S2j � t, ðS1; S2Þ is a
distinguishable pair.

Lemma 5 [20]. A system is t-diagnosable if and only if each node

has order at least t and for each distinct pair of sets S1; S2 � V

such that jS1j ¼ jS2j ¼ t and at least one of the conditions of

Lemma 2 is satisfied.

From condition 1 of Lemma 2 and Lemma 5, the
following is a sufficient condition for a system to be a
t-diagnosable.

Lemma 6 [20]. A system with N nodes is t-diagnosable if
1) N � 2tþ 1, 2) each node has order at least t, 3) for each

V 0 � V such that jV 0j ¼ N � 2tþ p and 0 � p � t� 1,

jT ðG; V 0Þj > p.

3 DIAGNOSABILITY OF t-CONNECTED NETWORKS

This section considers the problem that, under suitable
conditions, a t-regular and t-connected interconnection
network is also t-diagnosable. A t-regular and t-connected
interconnection network with at least 2tþ 3 nodes is first
proven also to be t-diagnosable. Moreover, the product
network of G1 and G2 is shown to be ðt1 þ t2Þ-diagnosable,
where Gi is ti-connected with regularity ti for i ¼ 1; 2.

Lemma 7. Let G be a t-regular and t-connected network with
N � 2tþ 1 nodes and t > 2. Then, each node v ofG has order t.

Proof. Let v be a node of G and let GðvÞ be the order graph
of v in G. Assume that node v has order k < t. Since G

contains N � 2tþ 1 nodes and the order of v is k < t,
there exists at least one node y 2 V , y 6¼ v, y 62 NðvÞ, and
y 62 Q. The distance between v and y is at least 2. Each
edge of GðvÞ has at least one endpoint in Q, so all paths
from v to y in G must be from v via z, which is a node in
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Q. Deleting all the nodes of Q in G ensures that no path
exists from v to y. However, exactly k nodes are deleted,
contradicting the assumption that G is a t-connected
network, so k � t. NðvÞ is a node cover of GðvÞ, so the
node v must have order k ¼ t. tu

Given a t-diagnosable system, by Lemma 3, the number
of nodes must exceed or be equal to 2tþ 1. However, a
t-regular and t-connected network with N ¼ 2tþ 1 nodes is
not necessarily t-diagnosable. The graph shown in Fig. 4 is a
4-regular and 4-connected network with N ¼ 9 nodes since
any two arbitrarily distinct nodes in Fig. 4 are contained in
two disjoint cycles. For example, two distinct nodes 4 and 5
are present in cycles <4, 9, 8, 5> and <4, 1, 6, 5, 2, 7, 3>.This
graph can be easily seen to be not 4-diagnosable, since {4, 5,
6, 7} and {6, 7, 8, 9} constitute an indistinguishable pair.
With regard to N ¼ 2tþ 2, the three-dimensional crossed
cube CQ3 and the three-dimensional hypercube Q3 are
3-regular, 3-connected networks and each node has order
t ¼ 3. However, [9], [22] demonstrated that CQ3 and Q3 are
not 3-diagnosable under the comparison diagnosis model.
The t-regular and t-connected network G with N � 2tþ 3
nodes is thus considered in the following theorem.

Theorem 1. Let G ¼ ðV ;EÞ be a t-regular and t-connected
network with N nodes and t > 2. G is t-diagnosable if
N � 2tþ 3.

Proof. Let S1 and S2 be two distinct subsets of V with
jS1j ¼ jS2j ¼ t, jS1 \ S2j ¼ p, and 0 � p � t� 1. By Lem-
mas 5 and 7, G can be shown to be t-diagnosable by
showing that ðS1; S2Þ is a distinguishable pair. Let V 00 ¼
S1 [ S2 and V 0 ¼ V � V 00. Then, jV 00j ¼ 2t� p > t. Nota-
bly, V 0 may not be connected.

The case in which all connected components of the
subgraph induced by V 0 are isolative nodes is considered
first. For 0 � p � t� 1, the following cases are considered:

Case 1. 0 � p � t� 3. Since 0 � p � t� 3 and G is a
t-regular graph, each node of V 0 has at least two
neighbors in S1 � S2 or S2 � S1 for t > 2. Thus, either
condition 2 or condition 3 in Lemma 2 is satisfied.

Case 2. p ¼ t� 2. In this case, jV 00j ¼ tþ 2, N � 2tþ 3,
and jV 0j ¼ N � ðtþ 2Þ � tþ 1. Assume that the pair
S1; S2 are indistinguishable. Therefore, conditions 2 and
3 in Lemma 2 cannot be satisfied, implying that each
node of V 0 must be connected to t� 2 nodes in S1 \ S2,
one node in S1 � S2, and one node in S2 � S1. Therefore,
at most t nodes in V 0 satisfy this assumption, contra-
dicting the condition jV 0j � tþ 1. Hence, either condition
2 or condition 3 in Lemma 2 must be satisfied.

Case 3. p ¼ t� 1. jV 00j ¼ tþ 1 and jV 0j ¼ N � t� 1.
The subgraph induced by V 0 consists of isolative nodes

and G is a t-regular graph, so ðN � t� 1Þ t edges are
adjacent to the nodes of V 0 and V 00. However, G has
exactly Nt=2 edges. For N � 2tþ 3, we have ðN � t� 1Þ
t > Nt=2, which is a contradiction, so p ¼ t� 1 is
impossible.

Now, consider that the subgraph induced by V 0

contains a connected component R with cardinality of
at least 2. Let u 2 R and v 2 ðS1 � S2Þ [ ðS2 � S1Þ. G is
t-connected, so there exist t disjoint paths from u to v.
However, at most p disjoint paths exist from u to v via the
nodes of S1 \ S2. Therefore, there exists at least one path
from u to v such that no node of the path belongs to
S1 \ S2. Since u is a node in R, there exists another node
w adjacent to u. Hence, condition 1 in Lemma 2 is
satisfied, completing the proof of the theorem. tu

Corollary 1. For t1; t2 > 2, let G1 and G2 be two t1-connected
and t2-connected networks, with regularity t1and t2, respec-
tively. Let G ¼ ðV ;EÞ be the product network of G1 and G2.
Then, the product network G ¼ G1 �G2 is ðt1 þ
t2Þ-diagnosable with regularity t1 þ t2.

Proof. G1 is t1-regular and t1-connected, so at least t1 þ 1
nodes exist in G1. Similarly, the number of nodes in G2

is at least t2 þ 1. Therefore, G contains at least ðt1 þ
1Þðt2 þ 1Þ nodes. Moreover, by Lemma 1, the degree of
every node in G is t1 þ t2 (regularity t1 þ t2). �ðGÞ is
used to denote the minimum degree of G. That [7]
�ðGÞ � �ðGÞ is well-known. However, by Lemma 1,
�ðGÞ � �ðG1Þ þ �ðG2Þ ¼ t1 þ t2. Since

t1 þ t2 � �ðGÞ � �ðGÞ ¼ t1 þ t2;

�ðGÞ ¼ t1 þ t2. Since ðt1 þ 1Þðt2 þ 1Þ > 2ðt1 þ t2Þ þ 3 for
t1; t2 > 2, Theorem1 implies thatG is ðt1 þ t2Þ-diagnosable.
Therefore, the corollary follows. tu
Notice that the number Ni of nodes is greater than or

equal to ni þ 1 for ni-connected i ¼ 1; 2 in Corollary 1. The
following corollary is immediately obtained from
Corollary 1 and by induction.

Corollary 2. Let G be a product network of G1; G2; . . . , and Gk.
Each Gi is ti-regular and ti-connected and ti > 2 for
1 � i � k, where k > 2. Then, the product network G is ðt1 þ
t2 þ � � � þ tkÞ-regular and ðt1 þ t2 þ � � � þ tkÞ-diagnosable.

Theorem 1 indicates that a t-connected network with
N � 2tþ 3 nodes is also t-diagnosable. However, a t-
diagnosable network is not necessarily a t-connected net-
work (as depicted in Fig. 5). The example shown in Fig. 5 is
4-regular and 4-diagnosable, but not 4-connected. The
t-diagnosability and t-connectivity are not equivalent terms,
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but these two concepts are closely related; Theorem 1
provides an example.

4 DIAGNOSABILITY OF PRODUCT NETWORKS

The product networks are distinguished into homogeneous
product networks and heterogeneous product networks.
Homogeneous product networks refer to every factor
network of the product that is t-diagnosable and t-regular
(or being t-connected and t-regular, respectively), while
heterogeneous products are of factor networks one of which
is t-diagnosable and the other is t-connected. Section 4.1
addresses the diagnosability of homogeneous product
networks. Section 4.2 presents the diagnosability of hetero-
geneous product networks.

4.1 Diagnosability of Homogeneous Product
Networks

By Corollary 1, the homogeneous product network G1 �G2

is ðt1 þ t2Þ-diagnosable, where Gi is ti-connected and
ti-regular, ti > 2 i ¼ 1; 2. The homogeneous product net-
work G1 �G2 is also ðt1 þ t2Þ-diagnosable, where Gi is
ti-diagnosable and ti-regular, ti > 2 i ¼ 1; 2. Several lemmas
must be proven first.

Lemma 8. Let G ¼ ðV ;EÞ be a t-regular network with N �
2tþ 1 nodes. Suppose each node of G has order t, t > 2. If
V 0 � V and jV � V 0j � t, then T ðG; V 0Þ ¼ V � V 0.

Proof. Let v be an arbitrary node in V � V 0, and let GðvÞ be
the order graph of v in G. The following two cases are
considered:

Case 1. jV � V 0j < t. For jV � V 0j < t, the degree of
each node is t, so each node in V 0 has at least one
neighbor in V 0. Therefore, no isolated node exists in V 0.
Similarly, every node in V � V 0 has at least one neighbor
in V 0. Hence, T ðG; V 0Þ ¼ V � V 0.

Case 2. jV � V 0j ¼ t. For jV � V 0j ¼ t, each node in
V � V 0 has at least one neighbor in V 0. NðV 0; vÞ is used to
denote the neighbor set of v in V 0. Assume that no node
in NðV 0; vÞ is adjacent to any other node in V 0. Then,
every node in NðV 0; vÞ is adjacent only to V � V 0 (as
shown in Fig. 6). Thus, V � V 0 � fvg is a node cover of
GðvÞ because every node in NðV 0; vÞ is an isolated node
in V 0.The cardinality of a minimum node cover of the
order graph GðvÞ can be easily determined to be at most
t� 1. However, this contradicts the hypothesis that each
node has order t. Therefore, NðV 0; vÞ contains at least one
neighbor u of v such that the node u is adjacent to
another node w in V 0. Hence, T ðG; V 0Þ ¼ V � V 0. tu

Lemma 9. Let H be a t-regular network, t > 2, and let K2 be the

complete network with two nodes. Suppose that the order of

each node in H is t. Then, each node of the product network

G ¼ H �K2 has order tþ 1.

Proof. Let G0 and G1 be two copies of H in G. M ¼ ðV ;CÞ
represents the comparison scheme of G. Let v be a node
of G and let GðvÞ be the order graph of v in G. Without
loss of generality, assume that v is a node in G0 and that
u is a neighbor of v in G1. There exists at least one node w
in G1 such that ðv; wÞu 2 C. Then, let G0ðvÞ be the order
graph of v in G0. Since G0ðvÞ is a proper subgraph of
GðvÞ, every node cover of GðvÞ must contain a node
cover of G0ðvÞ. However, ðw; uÞ is an edge in GðvÞ rather
than in G0ðvÞ. Therefore, a node cover of GðvÞ must
include at least either u or w. The order of v in G

therefore exceeds that of v in G0 by one. Thus, the lemma
is proven. tu

Theorem 2. For t > 2, let H be a t-regular and t-diagnosable

network with N nodes. Then, the product network G ¼
H �K2 is ðtþ 1Þ-diagnosable.

Proof. Let G0 ¼ ðV 0; E0Þ and G1 ¼ ðV 1; E1Þ be two copies
of H in G ¼ ðV ;EÞ. Let S1 and S2 be two distinct
s u b s e t s o f V a n d l e t V 00 ¼ S1 [ S2 w i t h
jS1j ¼ jS2j ¼ tþ 1, jS1 \ S2j ¼ p, and 0 � p � t. Then,
let V 0 ¼ V � V 00 with jV 0j ¼ 2N � 2ðtþ 1Þ þ p. Since G

has 2N nodes, 2N � 2ð2tþ 1Þ > 2ðtþ 1Þ þ 1. Lemma 9
implies that each node of G has order tþ 1. Hence, the
theorem is proven if one of the conditions of Lemma 2
is satisfied. Now, let V 00 ¼ V 0 \ V 0 and V 10 ¼ V 0 \ V 1.
G0 and G1 are isomorphic to H, so, without loss of
generality, assume that jV 00 j � jV 10 j. Let jV 0 � V 00 j ¼ k

and jV 1 � V 10 j ¼ 2ðtþ 1Þ � p� k. Since jV 00 j � jV 10 j,
k � 2ðtþ 1Þ � p� k. Thus, the proof is divided into
the following cases:

Case 1. 2ðtþ 1Þ � p� k � t and k < t. From Lemma 8,

jT ðG; V 0Þj � jT ðG0; V 00 Þj þ jT ðG1; V 10 Þj
¼ kþ 2ðtþ 1Þ � p� k ¼ 2ðtþ 1Þ � p:

Since p � t, jT ðG; V 0Þj � 2ðtþ 1Þ � p > p. By Lemma 6,
this case holds.

Case 2.1. 2ðtþ 1Þ � p� k > t and k < t. From
Lemma 8, jT ðG0; V 00 Þj ¼ k. Since V 0 � V 00 contains k <
t nodes, each node in V 00 has at least one neighbor in V 00 .
Therefore, no isolated node is present in V 00 . Notably, at
least 2ðtþ 1Þ � p� 2k nodes in V 1 � V 10 are adjacent to
some 2ðtþ 1Þ � p� 2k nodes in V 00 . Thus,

jT ðG; V 0Þj � jT ðG0; V 00 Þj þNðV 1 � V 10 ; V 00 Þ
� kþ 2ðtþ 1Þ � p� 2k ¼ 2ðtþ 1Þ � p� k:

Since 2ðtþ 1Þ � p� k > t � p, by Lemma 6, the case
holds.

Case 2.2. 2ðtþ 1Þ � p� k > t and k ¼ t. Since 2ðtþ
1Þ � p� k > t and k ¼ t, ðtþ 2Þ � p > t, implying p < 2.
From Lemma 8,

jT ðG; V 0Þj � jT ðG0; V 00 Þj ¼ t > 2 > p:

Then, the case follows.
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Case 2.3. 2ðtþ 1Þ � p� k > t and k > t. Since 2ðtþ
1Þ � p� k > t and k > t, the number of nodes in V � V 0 is
2ðtþ 1Þ, indicating p ¼ 0. Condition 1 in Lemma 2 is first
supposed to be satisfied in G0. Then, the subgraph
induced by V 00 includes at least one connected compo-
nent R with a cardinality of at least 2. Given
jV 0 � V 00 j ¼ tþ 1, Lemma 6 implies jT ðG0; V 00 Þj � t > 2
since G0 is t-diagnosable. Therefore,

jT ðG; V 0Þj � jT ðG0; V 00 Þj > 2 > p:

This result implies that condition 1 in Lemma 2 is also
satisfied in G.

Next, consider that condition 1 in Lemma 2 is violated
in G0. Then, either condition 2 or condition 3 in Lemma 2
is satisfied in G0. Since G0 is t-regular and t > 2, one
node v in V 00 is adjacent to at least three nodes in
V 0 � V 00 . Now, let u, w, and x be three nodes in V 0 � V 00

such that u;w 2 S1, and x 2 S2. Since u;w 2 S1 � S2,
v 2 V � S1 � S2, and p ¼ 0, condition 2 in Lemma 2 is
also satisfied in G. The theorem follows. tu

Let Gi be a ti-regular interconnection network i ¼ 1; 2
and let G ¼ G1 �G2 be the product network of G1 and G2.
Then, the order of each node v in G is estimated from the
following lemma.

Lemma 10. Let Gi ¼ ðVi; EiÞ be a ti-regular network with
ti > 2. Suppose each node of Gi has order at least ti, i ¼ 1; 2.
Then, each node of the product network G ¼ G1 �G2 has
ordert t1 þ t2.

Proof. Let v ¼ hx; yi be an arbitrary node of G and let GðvÞ
be the order graph of v in G. According to the definition
of product networks, x is a node of V1 and y is a node of
V2. Therefore, the order of x is at least t1 and the order of
y is at least t2. Let G1ðxÞ be the order graph of x in G1 and
let G2ðyÞ be the order graph of y in G2. NðxÞ is a node
cover of G1ðxÞ, so the order of node x is exactly t1.
Similarly, the order of node y is t2. Let G

y
1ðvÞ be the order

graph of v in the subgraph Gy
1 of G and let Gx

2ðvÞ be the
order graph of v in the subgraph Gx

2 of G. Since
V y
1 \ V x

2 ¼ v, V ðGy
1ðvÞÞ \ V ðGx

2ðvÞÞ ¼ ;, where V ðGy
1ðvÞÞ

and V ðGx
2ðvÞÞ are the node sets of Gy

1ðvÞ and Gx
2ðvÞ,

respectively. Gy
1ðvÞ and Gx

2ðvÞ are observed to be
subgraphs of GðvÞ. Thus, every node cover of GðvÞ must
contain a node cover of both Gy

1ðvÞ and Gx
2ðvÞ. Since the

subgraphs Gy
1 and Gx

2 of G are isomorphic to G1 and G2,
respectively, Gy

1ðvÞ is isomorphic to G1ðxÞ and Gx
2ðvÞ is

isomorphic to G2ðyÞ. Therefore, the order of v in Gy
1ðvÞ is

t1 and the order of v in Gx
2ðvÞ i s t2. S ince

V ðGy
1ðvÞÞ \ V ðGx

2ðvÞÞ ¼ ;, the order of v in GðvÞ is
t1 þ t2. Hence, the lemma follows. tu

Corollary 1 was proven; it states that the product
network G1 �G2 is ðt1 þ t2Þ-diagnosable, in which Gi is ti-
connectedfor ti > 2 i ¼ 1; 2. The previous section also
established that a ti-diagnosable network is not equivalent
to a ti-connected network. The following theorem states that
the product network G1 �G2 is ðt1 þ t2Þ-diagnosable, where
Gi is ti-diagnosable for ti > 2 i ¼ 1; 2. Theorem 3 is proven in
Appendix A.

Theorem 3. For ti > 2, let Gi ¼ ðVi; EiÞ be a ti-diagnosable and
ti-regular network with Ni nodes i ¼ 1; 2. Let G ¼ ðV ;EÞ be
the product network of G1 and G2. Then, the product network
G ¼ G1 �G2 is ðt1 þ t2Þ-diagnosable with regularity
t1 þ t2.

Notice that, in Theorem 3, the number of nodes Ni is
greater than or equal to 2ti þ 1 for ti-diagnosable i ¼ 1; 2.
From Theorem 3 and by induction, the following corollary
is obtained.

Corollary 3. LetG be the product network ofG1; G2; . . . , andGk,
where eachGi is ti-diagnosablewith regularity ti and ti > 2 for
1 � i � k. Then, the product network G is ðt1 þ t2 þ � � � þ
tkÞ-diagnosable with regularity ðt1 þ t2 þ � � � þ tkÞ.

4.2 Diagnosability of Heterogeneous Product
Networks

This section considers different combinations of
ti-diagnosability and ti-connectivity to study the diagnosa-
bility of the product networks. The diagnosability of the
heterogeneous product network G of G1 and G2 is
considered in which G1 is t1-diagnosable and G2 is
t2-connected. Although the heterogeneous product network
differs from the homogeneous product network, a similar
result is obtained as that obtained for the homogeneous
product network. Lemmas 7 and 10 immediately yield the
following lemma.

Lemma 11. Let G1 be a t1-regular and t1-diagnosable network
with t1 > 2 and let G2 be a t2-regular and t2-connected
network with N2 � 2t2 þ 1 nodes and t2 > 2. Then, each node
of the product network G ¼ G1 �G2 has order t1 þ t2.

Section 3 presents some examples to show that a
t-diagnosable network is not equivalent to a t-connected
network. Therefore, the following theorem is not implied by
Theorem 3, but it can be proven by a similar technique.
Theorem 4 is proven in Appendix B.

Theorem 4. For t1; t2 > 2, let G1 ¼ ðV1; E1Þ be a t1-regular and
t1-diagnosable network with N1 nodes and let G2 ¼ ðV2; E2Þ
be a t2-regular and t2-connected network with N2 � 2t2 þ 1
nodes. Then, the product network G ¼ G1 �G2 is ðt1 þ
t2Þ-diagnosable with regularity t1 þ t2.

In the above theorem, the factor network G2 must have at
least 2t2 þ 1 nodes. Therefore, by Corollary 3 and
Theorem 4, the following corollary holds.

Corollary 4. Let G be the product network of G1; G2; . . . , and
Gk. Suppose that G1 is t1-regular and t1-connected with
N1 � 2t1 þ 1 nodes and suppose that Gi is ti-regular and
ti-diagnosable, ti > 2 for 2 � i � k. Then, the product
network G is ðt1 þ t2 þ � � � þ tkÞ-diagnosable with regularity
ðt1 þ t2 þ � � � þ tkÞ.

However, Corollaries 2 and 3 yield the following
corollary.

Corollary 5. Let G be the product network of G1; G2; . . . , and
Gk. Suppose that Gi is ti-regular and ti-connected, ti > 2 for
1 � i � m, where m > 2, and suppose that Gj is tj-regular
and tj-diagnosable, tj > 2 for mþ 1 � j � k. Then, the
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product network G is ðt1 þ t2 þ � � � þ tkÞ-diagnosable with
regularity ðt1 þ t2 þ � � � þ tkÞ.

5 CONCLUSIONS

The reliability of an interconnection network is an im-
portant issue. The diagnosability is also an important factor
in measuring the reliability of an interconnection network.
The connectivity is used to measure the fault tolerance of an
interconnection network. This study addresses how the
connectivity and the diagnosability of an interconnection
network are related. Given an n-regular and n-connected
interconnection network with at least 2nþ 3 nodes, the
interconnection network is n-diagnosable. Illustrative ex-
amples reveal that the result may not hold if the condition
of more than 2nþ 3 nodes is replaced by 2nþ 1 or 2nþ 2.
This finding suggests that fault diagnosis improves with
fault tolerance. Among the many well-known interconnec-
tion networks that meet this condition are hypercubes, tori,
crossed cubes, k-ary n-cubes, and generalized hypercubes,
among others, and such interconnection networks are
n-diagnosable. Besides, the Cartesian product has defined
several interconnection networks and the product networks
construct important classes of interconnection networks.
This work also investigates the diagnosability of product
networks. The homogeneous product network G of G1 and
G2 is proven to be ðn1 þ n2Þ-diagnosable, given that Gi is
either ni-diagnosable or ni-connected with regularity ni for
i ¼ 1; 2. Furthermore, different combinations of
ni-diagnosability and ni-connectivity are considered to study
the diagnosability of the product networks. The hetero-
geneous product network G of G1 and G2 is shown to be
ðn1 þ n2Þ-diagnosable, given that G1 is n1-diagnosable with
regularity n1, and G2 is n2-regular and n2-connected with
2n2 þ 1 nodes. Similarly, the product network G is also
generalized in terms of the k factor networks, G1; G2; . . . ,
and Gk, all with regularity ni, such that each Gi is either
ni-diagnosable or ni-connected for 1 � i � k. The product
network G is shown to be ðn1 þ n2 þ � � � þ nkÞ-diagnosable.

APPENDIX A

Proof. Let S1 and S2 be two distinct subsets of V and let
V 00 ¼ S1 [ S2 with jS1j ¼ jS2j ¼ ðt1 þ t2Þ, jS1 \ S2j ¼ p,
and 0 � p � ðt1 þ t2Þ � 1. Then, let V 0 ¼ V � V 00 with
jV 0j ¼ N1N2 � 2ðt1 þ t2Þ þ p. Since G1 is t1-diagnosable
and G2 is t2-diagnosable,

jV j ¼ N1N2 � ð2t1 þ 1Þð2t2 þ 1Þ � 2ðt1 þ t2Þ þ 1:

By Lemma 10, each node of the product network G has
order t1 þ t2. Therefore, the proof is complete if Lemma 6
can be shown to be satisfied. G1 and G2 are t1-diagnosable
and t2-diagnosable, respectively, so, without loss of
generality, assume that t1 � t2. Hence, Gy

1 ¼ ðV y
1 ; E

y
1Þ is

isomorphic to G1 for all 1 � y � N2. Let V 0y
1 ¼ V 0 \ V y

1 ,
V 00y
1 ¼ V 00 \ V y

1 for all 1 � y � N2. A set K is defined as
K ¼ fy : jV 00y

1 j > 0g. Let S be a subset ofK with jV 00y
1 j > t1

and let J be V2 �K. The following cases are discussed:
Case 1. jKj � t2. For all 1 � y � N2, since Gy

1 is
isomorphic to G1, G

y
1 must also be t1-diagnosable. Two

cases for V 00y
1 are thus distinguished.

Case 1.1. jV 00y
1 j � t1 for all y 2 K. In this case, the set S

is empty. From Lemma 8,

jT ðG; V 0Þj �
X
y2k

jT ðGy
1; V

0y
1 Þj ¼

X
y2K

jV 00y
1 j ¼ 2ðt1 þ t2Þ � p > p:

By Lemma 6, the case holds.
Case 1.2. At least one V 00y

1 exists for y 2 K such that
jV 00y

1 j > t1. G2 is t2-diagnosable and, in this case, jKj � t2,
so Lemma 8 implies that T ðG2; JÞ ¼ K. This lemma also
implies that each y 2 K is adjacent to at least one
connected component in J . Hence, for y 2 K and r 2 J ,
each V y

1 is adjacent to at least one V r
1 . Since r is in J and

r 62 K, jV 00r
1 j ¼ 0 such that V r

1 is also V 0r
1 . Gs

1 � V 0s
1

represents the subgraph of G induced by V s
1 � V 0s

1 for
all s 2 S. Let V s

1 � V 0s
1 be V 00s

1 . For r 2 J , s 2 S, one such
V 0r
1 is always adjacent to one specific V s

1 with jV 00s
1 j > t1.

jT ðGs
1 � V 0s

1 ; V 0r
1 Þj ¼ NðV 00s

1 ; V 0r
1 Þ ¼ jV 00s

1 j is thus ob-
tained for such s and r. Therefore,

jT ðG; V 0Þj �
X

y2K;y 62S
jT ðGy

1; V
0y
1 Þj þ

X
y2S;r2J

jT ðGs
1 � V 0s

1 ; V 0r
1 Þj

¼
X

y2K;y 62S
jV 00y

1 j þ
X
s2S

jV 00s
1 j ¼ 2ðt1 þ t2Þ � p > p:

Case 2. jKj > t2. Similarly, two cases for V 00y
1 are

considered.
Case 2.1. jV 00y

1 j � t1 for all y 2 K. The proof is similar
to that of Case 1.1.

Case 2.2. At least one V 00y
1 exists for y 2 K such that

jV 00y
1 j > t1. First, 0 � p < t1 is considered. Now, S is

nonempty and jV 00j � 2ðt1 þ t2Þ, so jV 00 � V 00s
1 j < t1 þ 2t2

for s 2 S. Since G2 is t2-regular, s has exactly t2 neighbors

in V2. Let z1; z2; . . . ; zt2 be these neighbors of s. Thus, all

V z1
1 ; V z2

1 ; . . . , and V
zt2
1 are adjacent to V s

1 . Since

jV 00 � V 00s
1 j < t1 þ 2t2, s has at least one neighbor zi for

1 � i � t2 s u c h t h a t jV 00zi
1 j < ðt1 þ 2t2Þ=t2 � t1 f o r

t1 � t2 � 2. For such zi and s, the subgraph induced by

V zi
1 [ V s

1 is isomorphic to G1 �K2. Since jV 00s
1 j > t1 and

jV 00zi
1 j < t1, it follows from Case 2.1 of Theorem 2 that

jðT ðG; V 0Þj � jT ðGs
1 [Gzi

1 ; V
0zi
1 Þj � jV 00s

1 j > t1 > p:

The other cases, with other relative positions of zi and s,

can be treated similarly.
Next, t1 � p < t1 þ t2 is considered. Then, jV 00j �

t1 þ 2t2 and jV 00 � V 00s
1 j < 2t2 for s 2 S. If another V 00t

1

exists with t 2 S, then jV 00 � V 00s
1 � V 00t

1 j � 2t2 � 1� t1 �
1 ¼ 2t2 � t1 � 2 � t2 � 2 for t1 � t2. Therefore, the num-
ber of V 00y

1 is at most t2 for y 2 K, violating the
assumption that jKj > t2. Hence, exactly one V 00s

1 satisfies
jV 00s

1 j > t1 and jKj � 1 V 00y
1 s have jV 00y

1 j � t1. Since G2 is
t2-regular and jV 00 � V 00s

1 j < 2t2, this situation is similar to
the case 0 � p � t1 in which, for at least one neighbor z of
s, jV 00z

1 j < 2t2=t2 ¼ 2. Similarly, the subgraph induced by
V z
1 [ V s

1 is isomorphic to G1 �K2. Following the same
argument as in case 0 � p < t1 with jV 00s

1 j > t1 and
jV 00z

1 j < 2, jT ðGs
1 [Gz

1; V 0z
1 Þj � jV 00s

1 j. Lemma 8 implies
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jT ðG; V 0Þj �
X

y2K;y 6¼s;z

jT ðGy
1;W

0y
1 Þj

 !
þ jT ðGs

1 [Gz
1; V

0z
1 Þj

�
X

y2K;y 6¼s;z

jV 00y
1 j

 !
þ jV 00s

1 j

¼ ð2ðt1 þ t2Þ � p� jV 00s
1 jÞ þ jV 00z

1 jÞ þ jV 00s
1 j

¼ 2ðt1 þ t2Þ � p� jV 00z
1 j:

Since jV 00z
1 j < 2,

2ðt1 þ t2Þ � p� jV 00z
1 j � 2ðt1 þ t2Þ � p� 1 � t1 þ t2 > p:

In other cases, jT ðG; V 0Þj > p can be similarly proven.

Furthermore, by Lemma 1, the degree of every node in

G is t1 þ t2 (regularity t1 þ t2). Hence, the proof is

completed. tu

APPENDIX B

Proof. Let G ¼ ðV ;EÞ be the product network of G1 and G2,

G ¼ G1 �G2. Now, G1 is t1-diagnosable and the number

of nodes in G2 is N2, so

jV j ¼ N1N2 � ð2t1 þ 1Þð2t2 þ 1Þ > 2ðt1 þ t2Þ þ 1:

By Lemma 11, each node of the product network G has

order t1 þ t2. Thus, the proof is complete if we can show

Lemma 6 is satisfied. Let S1; S2 be two distinct subsets of

V and let V 00 ¼ S1 [ S2 with jS1j ¼ jS2j ¼ ðt1 þ t2Þ,
jS1 \ S2j ¼ p, 0 � p � ðt1 þ t2Þ � 1. Now, let V 0 ¼ V � V 00

with jV 0j ¼ N1N2 � 2ðt1 þ t2Þ þ p. For t1 � t2, the proof is

similar to that of Theorem 3.
G2 is not t2-diagnosable, so considering only t1 � t2

does not suffice. The case t1 < t2 must therefore also be
considered in the following proof. By definition of the
product networks, Gx

2 ¼ ðV x
2 ; E

x
2 Þ is isomorphic to G2 for

all 1 � x � N1. Let V
0x
2 ¼ V 0 \ V x

2 , V
00x
2 ¼ V 00 \ V x

2 for all
1 � x � N1. A setK is defined asK ¼ fx : jV 00x

2 j > 0g. Let
S be a subset of K with jV 00x

2 j > t2 and let J be V1 �K.
The following cases are discussed:

Case 1. jKj � t1. G1 is t1-diagnosable and
jV1 � J j ¼ jKj � t1, s o L emma 8 imp l i e s t h a t
T ðG1; JÞ ¼ K. The lemma also implies that each x 2 K
is adjacent to at least one connected component in J .
Thus, for x 2 K and r 2 J , each V x

2 is adjacent to at least
one V r

2 . Since r is in J and r 62 K, jV 00r
2 j ¼ 0 such that V r

2 is
also V 0r

2 . For S ¼ ;, the proof is similar to that of Case 1.1
in Theorem 3. Therefore, the case S 6¼ ; is considered as
follows: Gs

2 � V 0s
2 represents the subgraph of G induced

by V s
2 � V 0s

2 for all s 2 S. Let V s
2 � V 0s

2 be V 00s
2 . For r 2 J ,

s 2 S, there always exists one such V 0r
2 that is adjacent to

one specific V s
2 with jV 0s

2 j > t2. The following are thus
obtained:

jðT ðGs
2 � V 0s

2 ; V 0r
2 Þj ¼ NðV 00s

2 ; V 0r
2 Þ ¼ jV 00s

2 j

for such s and r. Therefore,

jT ðG; V 0Þj �
X

x2K;x62S
jT ðGx

2 ; V
0x
2 Þj þ

X
s2S;r2J

jT ðGs
2; V

0s
2 ; V 0r

2 Þj

¼
X

x2K;x62S
jV 00x

2 j þ
X
s2S

jV 00s
2 j ¼ 2ðt1 þ t2Þ � p > p:

Case 2. jKj > t1. Since Gx
2 is isomorphic to G2, it

follows that Gx
2 is t2-connected. Thus, two cases for V 00x

2

are distinguished.
Case 2.1. jV 00x

2 j � t2 for all x 2 K. In this case, the set S
is empty. From Lemma 8,

jT ðG; V 0Þj �
X
x2K

jT ðGx
2 ; V

0x
2 Þj ¼

X
x2K

jV 00x
2 j

¼ 2ðt1 þ t2Þ � p > p:

Lemma 6 implies that the case holds.
Case 2.2. At least one V 00x

2 exists for x 2 K such
that jV 00x

2 j > t2. First, 0 � p < t2 is considered. Since S
is nonempty and jV 00j � 2ðt1 þ t2Þ, jV 00 � V 00s

2 j < 2t1 þ t2
for s 2 S. G1 is t1-regular, so exactly t1 neighbors of s
are present in V1. Let z1; z2; . . . ; zt1 be such neighbors
of s. Hence, all V z1

2 ; V z2
2 ; . . . , and V

zt1
2 are adjacent to

V s
2 . Since jV 00 � V 00s

2 j < 2t1 þ t2, there exists at least
one neighbor zi of s for 1 � i � t1 such that jV 00zi

2 j <
ð2t1 þ t2Þ=t1 < t2 for t2 > t1. For such zi, the subgraph
induced by V 0zi

2 is connected. Furthermore,
T ðGzi

2 ; V 0zi
2 Þ ¼ NðV 00zi

2 ; V 0zi
2 Þ ¼ V 00zi

2 . Notably, at least
jV 00s

2 j � jV 00zi
2 j nodes in V 00s

2 that are adjacent to some
jV 00s

2 j � jV 00zi
2 j nodes in V 0zi

2 . Therefore,

jT ðG; V 0Þj � jT ðGs
2; V

0zi
2 Þj þ jT ðGzi

2 ; V
0zi
2 Þj

� ðjV 00s
2 j � jV 00zi

2 jÞ þ jV 00zi
2 j

¼ jV 00s
2 j > t2 > p:

The other cases with different relative positions of zi and

s are similarly treated.
Now, consider t2 � p < t1 þ t2. Then, jV 00j � 2t1 þ t2

and jV 00 � V 00s
2 j < 2t1 for s 2 S. Another V 00t

2 exists with
t 2 S, then jV 00 � V 00s

2 � V 00t
2 j � 2t1 � 1� t2 � 1 < t1 � 2

for t2 > t1. Thus, the number of V 00x
2 is less than t1 for

x 2 K, contradicting the assumption that jKj > t1. There-
fore, exactly one V 00s

2 has jV 00s
2 j > t2 and jKj � 1 V 00x

2 s have
jV 00x

2 j � t2. G1 is t1-regular and jV 00 � V 00s
2 j < 2t1, so this

case is similar to that of 0 � p < t2, in which at least one
neighbor z of s has jV 00z

2 j < 2t1=t1 ¼ 2. Obviously, the
subgraph induced by V 0z

2 is connected. For such z and s
with jV 00s

2 j > t2 and jV 00z
2 j < 2, jT ðGs

2 [Gz
2; V 0z

2 Þj � jV 00s
2 j

can be obtained. By Lemma 8, jT ðGx
2 ; V

0x
2 Þj ¼ jV 00x

2 j for
x 2 K and x 6¼ s. Therefore,

jT ðG; V 0Þj �
X

x2K;x6¼s;z

jT ðGx
2 ; V

0x
2 Þj

 !
þ jT ðGs

2 [Gz
2; V

0z
2 Þj

�
X

x2K;x6¼s;z

jV 00x
2 j

 !
þ jV 00s

2 j

¼ ð2ðt2 þ t2Þ � p� jV 00s
2 j � jV 00z

2 jÞ þ jV 00s
2 j

¼ 2ðt1 þ t2Þ � p� jV 00z
2 j:

Since jV 00z
2 j < 2,

2ðt1 þ t2Þ � p� jV 00z
1 j � 2ðt1 þ t2Þ � p� 1 � t1 þ t2 > p:
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In other cases, jT ðG; V 0Þj > p can be similarly proven.

Furthermore, Lemma 1 implies that the degree of every

node in G is t1 þ t2 (regularity t1 þ t2). Therefore, the

proof is completed. tu
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