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Analysis of a Cutoff Priority Cellular Radio System 
with Finite Queueing and RenegingDropping 

Chung-Ju Chang, Senior Member, IEEE, Tian-Tsair Su, and Yueh-Yiing Chiang 

Absrruct- Queueing of new or handoff calls can minimize 
blocking probabilities or increase total carried traffic. This paper 
investigates a new cutoff priority cellular radio system that allows 
finite queueing of both new and handoff calls. We consider the 
reneging from the system of queued new calls due to caller 
impatience and the dropping of queued handoff calls by the system 
as they move out of a handoff area before being accomplished 
successfully. We use signal-flow graphs and Mason’s formula 
to obtain the blocking probabilities of new and handoff calls 
and the average waiting times. Moreover, an optimal cutoff 
parameter and appropriate queue sizes for new and handoff calls 
are numerically determined so that a proposed overall blocking 
probability is minimized. 

I. INTRODUCTION 

N A CELLULAR radio system, the blocking probabilities I of new and handoff calls should be depressed as much 
as possible so as to improve the perceived service quality 
or increase the carried traffic load. In several recent papers 
[5]-[7], a system with a cutoff priority channel allocation 
strategy involving queueing of new calls has been proposed to 
minimize the blocking probability of handoff calls and increase 
the total carried traffic; a system that provides guard channels 
and a waiting queue for handoff calls to achieve a higher 
probability of successful handoffs has also been studied. 

In [5], Gukrin presented a novel approach to the study of 
a multichannel cutoff priority cellular radio system, in which 
the queue size for new calls is infinite and the queued calls 
never renege. He considered two Poisson arrival streams with 
distinct arrival rates and the same exponential service time 
distributions for new and handoff calls, and obtained simple 
closed-form expressions for state probabilities, in which the 
signal-flow graph approach and then Mason’s formula were 
utilized. This analytical method can be applied to a system 
with a finite queue. In the case of a system with a finite queue, 
however, no simple closed-form expressions for state proba- 
bilities can be found; instead, algorithmic numerical methods 
must be used to handle the corresponding computational 
problem. Moreover, the computational complexity increases 
with the capacity of the system buffer. In [6], [7], Hong 
and Rappaport described appropriate analytical models and 
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derived performance measures for a cellular mobile telephone 
system with infinite queueing of handoflcalls; the performance 
measures included blocking probability, forced termination 
probability, and fraction of incomplete new calls. 

Queueing of both new call and handoff calls can increase 
total carried traffic as well as minimize blocking probabilities. 
Therefore, as an altemative to the systems proposed in [5] 
and [6], [7], in this paper we investigate a new cutoff priority 
cellular radio system with finite queueing of both new and 
handof calls. In addition, we also take into account the 
reneging of queued new calls due to caller impatience [2,4] 
and the dropping of queued handoff calls as they move out of 
the handoff area before being accomplished successfully [6], 
[9]. Such a cellular radio system is practical because finite 
buffering is more realistic than infinite buffering and because 
the related call-control packets are usually carried out on a 
separate control channel [51. 

Our analysis is via a two-dimensional Markov chain ap- 
proach. The state probabilities can be obtained computationally 
without any problem since the system possesses a quasi 
birth-death Markovian property [ 141. We derive blocking prob- 
abilities for new and handoff calls, which are defined to contain 
their corresponding reneging and dropping probabilities, via 
the application of signal-$ow graphs and Mason’s formula 
[l], [8]; we also obtain average waiting times for new and 
handoff calls. Moreover, we heuristically define a cost function 
to investigate the optimal cutoff parameter and the suitable 
queue sizes for new and handoff calls. 

This paper is organized as follows. The assumptions upon 
which our analysis rests are presented in Section 11. In Section 
111, we derive the blocking probabilities of new and handoff 
calls by using signal-flow graphs and Mason’s formula and 
obtain the average waiting times for new and handoff calls. We 
also provide details on how Mason’s formula is numerically 
carried out in our problem and address the tractability of 
the numerical computation. In Section IV, some numerical 
examples are discussed; and overall blocking probability is 
proposed as a cost function for determining an optimal priority 
cutoff parameter and suitable queue sizes for new and handoff 
calls. Finally, concluding remarks are given in Section V. 

11. SYSTEM MODEL 

A conceptual model of the new cutoff priority cellular 
mobile radio system is shown in Fig. 1 .  The model follows 
those described in [ 5 ] ,  [6], except that it considers finite 
queueing of both new and handoff calls and reneginddropping 
of waiting calls. The assumptions involved in this model are 
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Fig. 1. The conceptual model of the new cellular mobile telephone system. 

stated below. 
1) The system has inputs of new and handoff calls gener- 

ated according to a Poisson distribution with mean rates 
of A,, and Ah, respectively. 

2) The unencumbered conversation time of a call, denoted 
by T,, is assumed to be exponentially distributed with 
mean Up,,,. 

3) The time spent in a cell by the mobile associated with 
a successful new (handoff) call, denoted by Tn (Th), is 
approximately assumed to be exponentially distributed 
with mean l/pn (l /ph).  

4) There are C channels available in the system. In order 
to protect handoff calls, the system assumes that in 
accessing the channels the handoff calls have priority 
over the new calls and a number of channels among 
C are reserved exclusively for handoff calls. We call 
the number of guard channels the cutoff parameter 
Ch. Thus, when a new call is originated, it can be 
successfully served only if the number of idle channels 
is greater than Ch. Otherwise, it will be put in the queue 
or blocked due to buffer overflow. The queued new call 
reneges from the queue unless it can be successfully 
served within its patience time [2 ] ,  [4]; similarly, the 
queued handoff call is dropped from the queue by the 
system as it moves out of the handoff area before being 
accomplished successfully [6]. Here, the time a mobile 
spends in the handoff area will be called the dwell time 
of the handoff call. 

5 )  The system provides a finite queue with capacity N ,  
for new calls during call setup and a finite queue with 
capacity Nh for handoff calls in the handoff area. 

6) The patience (dwell) time of the waiting new (handoff) 
call is denoted by Tnq(Thq) and is approximately 
assumed to be exponentially distributed with mean 

Notice that Ah and pCh are correlated with other parameters 
and can be determined from them. Interested readers are 
referred to [7] for details. We shall address these correla- 
tions in the section below entitled Numerical Examples and 
Discussion. 

111. ANALYSIS 

We define (n1,nz) as the system state with probability 
Pnl,nz, where n1 is the sum of the number of occupied 
channels and the number of handoff calls waiting in the queue, 
n2 is the number of new calls waiting in the queue, and 
0 5 n1 5 C+Nh, 0 5 n2 5 N,. The state-transition diagram 
of the system can then be obtained on the basis of assumptions 
1) through 7) above. The diagram is shown in Fig. 2. From this 
diagram, we can obtain the state-transition equations shown 
below. 

(i) If n2 = 0, then 

(An + Ah + nlPch)Pnl,O = 
( A n  + Xh)Pn1- l ,O  + (121 + l)PchPnl+l,O, 

for 0 5 n1 5 C - c h  - 1; 

l / h q (  I/Phq). 

by T H ~ ,  is approximately assumed to be exponentially 
7) The channel holding time of a call in a cell, denoted ( A n  + cPch + NhPhq + n2Pnq)Pn~,n~ = 

Ah Pn 1-1 ,n2 + An Pn , ,n2-l f (n  1 + 1) Pnq P n  1 ,n&l, 

for n l  = C + Nh. distributed with mean Upch. 
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Fig. 2. The state transition diagram. 

( C p c h  + N h P h q  + n2Pnq)pnl ,nz  = A h P n l - l , n z  

+AnPnl,nz- l , for  n1 = C + Nh. (1) 

The above state-transitions belong to a class of Markov 
chains: the quasi-birth-death (QBD) process [ 141. The structure 
of the transition matrix of the QBD process is in block 
tri-diagonal form. When a larger system is considered, the 
matrix can be computationally solved by a so-called folding 
algorithm. This type of algorithm, exploited in [14], begins 
with a forward reduction phase and then executes a backward 
expansion phase to find the solution. Thus, for any size system 
the state probabilities can be obtained without any problem. In 
the following, several performance measures will be derived, 
including the blocking probability of a new call and the 
probability of a call being forced into termination during 
conversation. 

A .  The Average Blocking Probabilities 
Blocking of a new call may occur for two reasons. One 

is that as a new call originates, the number of available idle 
channels is less than or equal to c h  and there are no free 
buffers left in the waiting queue. The other is that although a 
new call has been accepted and is waiting in the queue, it fails 
to access a free channel within its patience time and so reneges 
from the system. The reneging probability of a waiting new 
call can be easily obtained by comparing the reneging rate with 
the effective arrival rate, as in [2], [6], [7]. Nevertheless, we 
here propose an alternative approach to obtaining the reneging 
(or blocking) probability by considering an arbitrarily selected 
new call (or, say, new call of interest). We denote the blocking 
probability of an arbitrarily selected new call by P l .  P l  can 
be obtained by 

C + N h  C + N h  N , - l  

pj$' = pnl ,N , ,  + Pnl,nzRn(nl,na) 
nl=C-Ch TZl=C-Ch n 2 = O  

(2) 
where R,(nl,  n2) is the reneging probability of an arbitrarily 
selected new call given that the system state is (nl ,  n2) just 
at the instant when the call is accepted and put in the waiting 
queue. Clearly, C- c h  < n1 < Cf  NhandO 5 122 < Nn - 1 .  
The derivation of R,  (n1,nz)  is more complicated than the 
method used in [2], [6], [7], but it paves the way for obtaining 
the average waiting times later. 

We find (1 - Rn(n1,712)) instead of R , ( n l , n ~ ) .  (1 - 
R,(nl ,  722)) is the probability that the arbitrarily selected new 
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call can finally get a free channel within its patience time, 
given that the system state is (n1, nz) at the instant the call 
is accepted-by the system and begins waiting in the queue. 
When the arbitrarily selected waiting new call successfully 
accesses a free channel within its dwell time, the quasi-system 
state is at (C - c h  - 1,0), where the quasi-system state is 
defined as the system state observed by the arbitrarily selected 
new call, excluding those waiting new calls coming after the 
call of interest. In deriving (1 - Rn(n1, nz)), we use the 
signal-flow graph shown in Fig. 3 to portray the transitions of 
quasi-system states from the input node yin of state (n l ,  nz) 
to the output node yOut of state (C - ch - 1 , O )  and the 
respective branch gains (the probabilities of transitions). Any 
intermediate quasi-system state (m1,mz) in the graph may 
have three possibilities of transition: (ml , mz) to ( m l + l ,  mz), 
to (ml - l ,mz) ,  or to (m1,mz - 1). The possibility of 
transition from (m1,mz) to (m1,mz + 1) is not included. 
In this graph, the transition probability from Yin to (n1, nz)  
is 1 because the system state is given at (n1,nz) as the 
arbitrarily selected waiting new call is just accepted by the 
system. 

Thetransitionfrom(m1,mz) t o ( m l + l , m z )  forC-Ch 5 
ml 5 C, 0 5 mz 5 nz 5 N ,  - 1 indicates the arrival of an 
acceptable handoff call. We denote this transition probability 
by ~ m l + ~ , m z l m l , m z .  If C-Ch 5 ml 5 C,O 5 mz 5 nz, the 
transition occurs when the remaining interarrival time of the 
handoff call, denoted by Tt, is smaller than the remaining 
channel holding time of any of the ml calls in progress, 
TH,, the remaining patience time of any of the m2 new 
calls waiting in the queue, and the remaining patience time 
of the accepted waiting new call of interest, Tnq. If C + 1 5 
ml 5 C + Nh - 1,0  5 m2 5 n 2 ,  the transition occurs 
when Tc is smaller than the remaining channel holding time 
of any of the C calls in progress, TH,, the remaining dwell 
time of any of the (ml - C) handoff calls waiting in the 
queue, Thq, the remaining patience time of any of the m2 

new calls waiting in the queue, and the remaining patience 
time of the accepted waiting new call of interest, Tnq. Since 
Te , TH, Tnq, and Thq are mutually independent and are all 
assumed to be exponentially distributed, Pml+l,mz~ml,mz can 

We denote the probability of transition from (m1,mz) to 
(mi - 1 , m d  by Pm1-l,mzlml,m2 for mi = C - Ch,mz = 

If ml  = C - Ch,mZ = 0 or C - c h  + 1 5 ml 5 C,O 5 
mz 5 nz,Pml--l,mzlml,mz is contributed by the probability 
that the ml channels in use are reduced by 1 due to completion 
of a conversation. If C + 1 5 ml 5 C + N h , O  5 m2 5 
nz, Pml-l,mzlml,mz is contributed by the probability that (i) 
the C channels in use are reduced by 1 due to completion 
of a conversation of (ii) the number of handoff calls waiting 
in the queue is reduced by 1 due to dropping of a call. In 
a manner similar to that used to derive Pml+l,m21ml,m2 in 
(9, Pml-l,mzlml,mz can be obtained by (4) shown at the 
bottom of the page,where T& is the channel holding time 
of the other (ml - 1) calls in progress and TAq is the dwell 
time of the other waiting handoff calls. T& has the same 
distribution as TH,, and TAq has the same distribution as 

We denote the probability of transition from (ml,  mz) to 
(m1,mz - 1) by Pml,mz-11ml,m2 for C - c h  5 ml 5 
C + N h l  1 5 mz 5 n2 5 N, - 1. If ml = C - Chl 1 5 
m2 5 n ~ , P ~ ~ , ~ ~ - 1 l ~ ~ , ~ ~  is contributed by the probability 
that (i) a call among ml now in progress will complete its 
conversation or (ii) there is a waiting new call among m2 

reneging from the system. If C - ch + 1 5 ml 5 C + Nh 1 5 
m2 I nz ,Pml ,mz- l lml ,mz is contributed by the probability 
that there is a waiting new call reneging from the system. 
Accordingly, Pml,m2-llml,mz is given by (see (5) shown 
below), where TAq, the patience time of the other waiting new 
calls, has the same distribution as Tnq. 

Based on the established signal-flow graph shown in Fig. 3 
and the branch gains obtained in (3)-(5), (1 - R,(nl,nz)), 
the probability that a new call attempt will succeed, can be 

0 OT c -  Ch 15 mi 5 c + N h 1 0  5 mz 5 nz 5 N ,  - 1. 

Thq. 



IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 2, APRIL 1994 170 

Fig. 3. The signal-flow graph for obtaining Rn ( n  1.  712 ). 

obtained by using the general gain formula (Mason's rule) 
[8], which is given by 

k=l 

where N is the total number of forward paths, which are 
defined to be paths from the input node (nl ,  n2) to the output 
node (C - Ch - 1,0), Mk is the k-th forward path gain, which 
is the product of the branch gains encountered in traveling 
the k-th forward path, A = 1- (sum of the gains of all 
individual loops) + (sum of products of gains of all possible 
combinations of two nontouching loops) - (sum of products 
of gains of all possible combinations of three non-touching 
loops) +..., and Ak = the A for that part of the signal-flow 
graph that is nontouching with the k-th forward path. Note that 
loops are called nontouching if they do not share a common 
node. 

For the signal-flow graph shown in Fig. 3, we find that 
the graph excluding the output node (C - Ch - 1,0) has a 
rectangular structure with (n2 + 1) rows and (Ch + Nh + 
1) cblumns. It has (Ch + Nh + l)n2 forward paths and 
(Ch + Nh) x (n2 + 1) individual loops. Loops belonging to 
different rows or belonging to the same row but not adjacent 
to each other are non-touching. The gain of each loop is 
simply the product of the gains of two branches. On the 
basis of the specific features of the signal-flow graph, we can 
numerically compute A and Ak using a recursive algorithm. 
However, the large number of (ch + Nh + forward paths 
prevents our analytical method from applying to all cases. 
Fortunately, Nn and Nh need not be large in real applications, 
due to call reneging and dropping. We shall examine this 
characteristic in the numerical examples discussed in the next 
section. In summary, the analytical method presented here is 

computationally tractable. Via the general gain formula in (6), 
we can numerically obtain R, (nl , n2) and in turn the blocking 
probability of an arbitrarily selected new call PF in (2). 

We also derive the blocking probability of a handoff call 
by considering an arbitrarily selected handoff call (or, say, 
handoff call of interest). Blocking of an arbitrarily selected 
handoff call occurs in two situations. The first is that there 
are no free channels and no free buffers available as the call 
moves into a handoff area. The second is that, although the 
handoff call has been accepted by the system and is waiting in 
the queue, the call cannot access a free channel within its dwell 
time in the handoff area and so is dropped from the queue by 
the system. The blocking probability of the arbitrarily selected 
handoff call, denoted by Pf, can be similarly obtained by 

C+Nh-1 Nn NTl 

PB" = PC+Nh,n2 + Pnl,lzzRh(nl,nz) (7) 
nz=O nl=C nz=O 

where Rh (n1, n ~ )  is the dropping probability of the arbitrarily 
selected handoff call given that the system state is (n1,nz) 
just at the instant when the call is accepted by the system and 
waits in the queue. 

In this case, we again find the probability (1 - 
Rh(n1,nz))instead of Rh(n1,nz). In obtaining 
(1 - Rh(n1,nZ)) for C 5 n1 5 C + Nh - 1, O 5 712 5 N,, 
we once again construct a signal-flow graph and find the 
respective branch gain. When the arbitrarily selected waiting 
handoff call successfully accesses a free channel within its 
dwell time, the quasi-system state is at (C - l,nz), where 
the quasi-system state is defined as the system state observed 
by the arbitrarily selected waiting handoff call, excluding 
the new and handoff calls coming after the call of interest. 
Fig. 4 shows a signal-flow graph that portrays the transitions 
of quasi-system states from the input node yin of state 
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Fig. 4. The signal-flow graph for obtaining Rh ( R 1 ,  n2 ). 

(n1,nz) to the output node yout of state (C - 1,712). For any 
intermediate quasi-system state (ml , 712) in the signal-flow 
graph, C 5 ml 5 nl, its only transition is from (m1,ma) 

We denote the probability of transition from (ml, n2) to 

tributed by two probabilities. The first is the probability that 
the remaining channel holding time of any of the C calls in 
progress, TH,, is smaller than the remaining channel holding 
time of any of the other (C - 1 )  calls in progress TLa, the 
dwell time of any of the (ml - C) waiting handoff calls, and 
the dwell time of the waiting handoff call of interest, Thq. 
The second is the probability that the remaining dwell time 
of any of the (ml - C) handoff calls waiting in the queue, 
Thq, is smaller than the channel holding time of any of the 
C calls in progress, TH,, the dwell time of any of the other 
(ml - C - 1)  waiting handoff calls, and the dwell time of the 
waiting handoff call of interest, TAq. Thus Qml -lrnZ l m l  ,nz 

can be obtained by 

to ( m 1  - 1,nz). 

(ml - l ,n2) by Qml-l,nzlml,nz- Qml-l ,nzlml ,n~ is con- 

CPch + (ml - C)phq 
CPch + (ml - c + 1)phq ’ Qml-1,nzlml,nz = 

for C 5 ml 5 n1. (8) 

Fortunately, because there are no individual loops in the 
signal-flow graph and only one possible path between y;,, and 
yout, we can obtain a closed-form solution for (l-Rh(n1 , 712)) 

via the general gain formula. The solution is given by 

From (7) and (9), P: can be obtained. 
However, the probability that a successfully call is forced 

into termination during conversation due to handoff blocking 
could be more significant than P f  [7]. A call may succeed in 
the first ( K - 1)  handoff attempts but be forced into termination 
at the K-th handoff due to blocking. We denote this probability 
by PF and express it as 

where @ N  and @ H  are the handoff requirement probabilities 
for a new and a 
obtained by 

@ N  

and 

@ H  = 

handoff call, respectively. They can be 

B.  The Average Waiting Times 
We first derive the average waiting time for queued new 

calls. The waiting time of a queued new call is here defined 
as the time that an arbitrarily selected waiting new call spends 
from the time it is accepted by the system to the time it 
successfully accesses a free channel. We denote W, ( n ~  , 712) 

the waiting time of a queued new call given that the system 
state is at (nl ,  n2) when the call just arrives at the system and 
waits in the queue. Clearly, c-ch 5 n 1  5 c+Nh,  0 5 n2 L 
N ,  - 1. The waiting time Wn(nl, n2) can be obtained via the 
probability ( 1  - R,(n1, nz)), which can be expressed as 

1 - Rn(n1, n2) = PTOb{T,q > Wn(n1,722)). (13) 

Since Tnq is assumed to be exponentially distributed, 
Wn(nl, n2) can be obtained by 

1 

P w  
W,(ni,na) = -- . I n ( l -  Rn(ni,n2)), (14) 

where “Zn” is the natural logarithmic function. Consequently, 
the average waiting time of a queued new call, denoted by 
W,, can be obtained by 
- 

C+Nh Nn-1  

nl=C-Ch n2=0 

Similarly, we define the waiting time of queued handoff 
calls as the time that an arbitrarily selected handoff call takes 
from the time it is accepted and begin waiting in the queue to 
the time it successfully accesses a free channel. We denote the 
waiting time of a queued handoff call given that the system is 
at (nl , 122) when it arrives at the system and waits in the queue 

Wh(n1, n2) can be through a formula analogous to (14) by 
by wh(n1,712). Clearly, c 5 721 5 c+Nh-1, 0 5 n2 5 N,. 

And the average waiting time of a queued handoff call, denoted 
by wh, can be obtained by 

C+Nh-1 N n  - 
Wh = pn1,n2 . Wh(n1, n2) 

n1=C n2=0 

IV. NUMERICAL EXAMPLES AND DISCUSSION 

As mentioned previously, the arrival rate of handoff call 
Ahis correlated with other parameters. From [7,(17)], Ah can 
be obtained by 
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Fig. 5. The probabilities of Pg and PF versus A,, for various Ch's. 

As in the derivation in [7, eqs. (4)-(7)], we obtain the cumu- 
lative distribution function (CDF) of the channel holding time 
of a call in a cell TH,. denoted by F H , ( ~ ) ,  by 

- A h ( 1  - p F )  e - ( P m + h h ) t .  (19) 
An(1  - p,") + A h ( 1  - PF) 

If the time spent in a cell by the mobile associated with a 
successful new call l / p ,  is assumed to be equal to the time 
spent in a cell by the mobile associated with a successful 
handoff call 1/ph,  TH, should be exponentially distributed 
with mean pch = p m  + p,. If l / p n  # 1/ph,  TH, can 
be closely approximated by an exponential distribution as 
a result of [6, Table I]. In the following examples, we 
assume 1/ph = l / p ,  for convenience. We also assume 
the following parameters: C = 40, l / p m  = 120, 1/ph = 
l / p n  = 150, l / p n q  = 10, and 1/phq = 5. We use an iterative 
method to numerically compute the solutions. With the above 
parameters and an initial guess for A h ,  we obtain temporary 
performance measures of P[ and PF; we then substitute the 
temporary P[ and PF into (18) to obtain a new value of 
Ah and execute the computation process again. The entire 
computation process is repeated until there are no further 
changes within four significant figures for P[ and PF. 

Fig. 5 shows the probabilities of P[ and PF versus the 
new call arrival rate A, for different cutoff parameters c h ,  

where we assume the queue size for new calls N ,  = 3 and 
the queue size for handoff calls Nh = 3. The effects of c h  

on P[ and PF can be seen from the figure. As c h  increases, 
P[ increases and PF decreases for all traffic loads. This is 
intuitively reasonable. If there is only one channel reserved 
for handoff calls ( c h  = I ) ,  PF can be at least five times 
smaller than P[ in this example. Also, notice that if there is 
no channel reserved for handoff calls, PF is still smaller than 
P i .  This is because the handoff call in the waiting queue has 
a higher priority to access channels than the new call does. 

New Call Attempts Rate: A, calls/sec 

Fig. 6. The probabilities of P: and PF versus A,, for various ivh 's. 

0.1 

.d 0 0.01 

% 
% 
& 0.001 

- .d 

o.Ooo1 

1E-005 
0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

New Call Attempts Rate: A, calls/sec 
Fig. 7. The probabilities of P c  and P,F versus A,, for various N,, 's. 

Fig. 6 shows the probabilities of P[ and PF versus A, for 
various Nh's, where we assume Ch = 1 and N ,  = 3. We find 
that as the queue capacity for handoff calls Nh increases, P[ 
deteriorates very little (almost no change) but PF improves 
greatly for all traffic loads. For example, when A, = 0.26, PF 
is reduced from 0.0108 at Nh = 0 to 0.0044 at Nh = 3. A 
similar conclusion is also presented in [9, p.2801. This result is 
because Nh has a direct effect on the performance of handoff 
calls but an indirect effect on that of new calls. We also observe 
that the improvement in PF becomes saturated as Nh becomes 
larger. This is because of the dropping effect of the handoff 
calls, and this tells us that it is not necessary to provide a 
large queue size for handoff calls for a given dropping rate of 
handoff calls. In this example Nh = 3 is sufficient. 

Fig. 7 shows the probabilities of P[ and PF versus A, for 
various N,'s, where we assume Ch = 1 and Nh = 3. When 
the queue capacity for new calls N ,  increases, P[ decreases 
but PF increases. The improvement in P[ is significant but 
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A. =0.28 calls per second 

p,,q=l/lO, llhq=1/5 
C=40, Nn=3, Nh=3 

1 1  I 
0 1 2 3 4 5 

Reserved Channels for Handoff Calls, Ch 

Fig. 8. The cost function B versus Ch for various n's. 

A. =0.28 calls per second 

p=j1t,=1/150 

C=40, c h = l ,  Nn=3 
pnq=l/lO, h = 1 / 5  

U = 0.4 

U = 0.2 

1 
0 1 2 3 4 5 

Queue Size of Handoff Calls, Nh 

Fig. 9. The cost function B versus ,V,, for various CY'S. 

the deterioration in PF is insignificant, because a very small 
value of PF does not result in a significant deterioration in 
service for customers. For example, when A, = 0.26, P i  is 
reduced from 0.0344 at N ,  = 0 to 0.0208 at N ,  = 3, while 
PF is increased from 0.0024 at N ,  = 0 to 0.0044 at N ,  = 3. 
The improvement in P: becomes saturated as N ,  becomes 
larger because of the reneging effect of new calls. This also 
tells us that it is not necessary to provide a large queue size 
for new calls for a given reneging rate of new calls. In this 
example N,  = 3 is sufficient. 

There is a tradeoff between the two performance measures, 
P i  and PF, for different cutoff parameters of ch, as can be 
seen in Fig. 5. There should exist an optimal cutoff parameter 
c h .  Here, to determine an optimal c h  we define an overall 
blocking probability (or cost function), denoted by B, similar 
to that used in [7]. B is given by 

B = Q . P ~ + ( ~ - Q ) . P F ,  (20) 

where Q is a weighting factor, 0 5 Q 5 1. The value 
of cy depends on the stress laid on the quality-of-service 

A.=O.28 calls per second 
C=40, Nh=3 
p,,q=l/lO,llbq=1/5 

p,,=pIl = 1/150 

Q = 0.4 \ 
a=0.2 -----I 

1 1  I 
0 1 2 3 4 

Queue Size of New Call Attempts, N. 

Fig. 10. The cost function B versus ,Vn for various CY'S. 

Q ,  

Nn =0,1,3,5 

5 

1 5 
0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

New Call Attempts Rate& calls/sec 

Fig. 1 1 .  
Nn 'S. 

The average waiting times v,, and w,, versus A,, for various 

requirements for P: and PF. Usually, interruptions of handoff 
calls upset customers much more than blocking of new calls. 
In other words, PF is more significant than P i .  Therefore the 
value of Q should be confined to be less than 0.5. Fig 8 shows 
the overall blocking probability B versus the cutoff parameter 
ch for Q = 0.2 and 0.4, given that An = 0.28, N ,  = 3, 
and Nh = 3. We observe that in this particular example the 
optimal value of c h  is 2 if Q = 0.2 and the optimal value 
of c h  is 1 if Q = 0.4. Figs. 9 and 10 also show the overall 
blocking probability B versus Nh and N,, respectively, for 
Q = 2 and 0.4. We find that the overall blocking probability 
B decreases as Nh (N, )  increases, asymptotically approaching 
a bounded value at around Nh = 3(Nn = 3).The results 
in Figs. 9 and 10 justify our earlier statements that queueing 
of new and handoff calls can minimize the overall blocking 
probability and that the queue sizes for new and handoff calls 
need not be large in real applications. 

Fig. 11 shows the average waiting times of queued new and 
handoff calls, m, and mh, versus the new call amval rate A, 
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0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 

New Call Attempts Rate% calls/sec 

Fig. 12. The average waiting times rn and wh versus A,, for various 
?ih  ’S. 

for various N,’s, given that c h  = 1 and Nh = 3. We can see 
from the figure that, as the new call arrival rate A, increases, 
the increment in w, is more significant than the increment in 
wh; moreover, the larger the queue capacity for new calls N ,  
is, the greater the increment in w, will be. These findings are 
intuitive. Fig. 12 shows the average waiting times of queued 
new and handoff calls versus the new call arrival rate A, for 
various Nh’s, given that c h  = 1 and N ,  = 3. We can see 
from the figure that, as the queue capacity for handoff calls 
Nh increases, wh becomes larger and approaches saturation. 
It is because of the dropping effect of the handoff call. On the 
other hand, it is interesting to see that as Nh increases, w, 
becomes smaller and approaches saturation. This is because 
those waiting new calls in the rear of the queue, which would 
contributed more to w, if they could be served, are likely to 
renege as Nh increases. 

- 

V. CONCLUDING REMARKS 
This paper studies a new cutoff priority cellular radio 

system, in which the ability for both types of calls to wait 
in a finite queue and the possibility for calls to renege or to be 
dropped form the queue are considered. High-priority handoff 
calls have access to all channels, while low-priority new calls 
can be served only if enough channels are idle. All arrival 
processes are Poisson and the service time distributions are 
exponential. The analysis is via a two-dimensional Markov 
chain approach; the blocking probability of new calls and 
the probability of a call being forced into termination during 
conversation are derived using signal-flow graphs and Mason’s 
formula. We also obtain the average waiting time for queued 
new and handoff calls. We conclude that, in the new cutoff 
priority cellular radio system, there exists an optimal cutoff 
parameter and appropriate queue sizes for both new and 
handoff calls. 

Note that the system designed here is a system with only 
single-call platform type. A system that supports a mixture of 
platform types and queueing of handoff calls was studied in 
[ 1 11-[ 131. An extension of the system that considers multiple- 

call platform types and queueing of both new and handoff 
calls is now being studied. 
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