
www.elsevier.com/locate/dsw

Decision Support Systems 38 (2004) 399–419
Business-to-business workflow interoperation based

on process-views

Duen-Ren Liu*, Minxin Shen

Institute of Information Management, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC
Received 1 February 2002; accepted 23 July 2003

Available online 16 September 2003
Abstract

When cooperating with each other, enterprises must closely monitor internal processes and those of partners to streamline

business-to-business (B2B) workflows. This work applies the process-view model, which extends beyond conventional

activity-based process models, to design workflows across multiple enterprises. A process-view is an abstraction of an

implemented process. An enterprise can design various process-views for different partners based on diverse commercial

relationships and, in doing so, establish an integrated process that consists of internal processes and process-views that each

partner provides. Participatory enterprises can obtain appropriate progress information from their own integrated processes,

allowing them to collaborate effectively. Furthermore, B2B workflows are coordinated through virtual states of process-views.

This work develops a uniform approach to manage state mappings between internal processes and process-views. The proposed

approach enhances prevalent activity-based process models adaptable to collaborative environments.
D 2003 Elsevier B.V. All rights reserved.
Keywords: Process-view; Virtual workflow; Interorganizational workflow; Interoperation

1. Introduction well as controlled automatically by integrating work-
Enterprises cooperate strategically to develop a

competitive business alliance or virtual enterprise.

Cooperative relationships are formed by merging the

operational processes of participants. Workflow tech-

nology enables an enterprise to construct a process-

oriented organization efficiently. Business-to-business

(B2B) workflows are streamlined if value-added ac-

tivities are arranged from a process-oriented aspect as
0167-9236/$ - see front matter D 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0167-9236(03)00116-7

* Corresponding author. Tel.: +886-3-5712121-57405; fax:

+886-3-5723792.

E-mail address: dliu@iim.nctu.edu.tw (D.-R. Liu).
flow management systems (WfMS) of participatory

enterprises. However, managing workflows among

multiple enterprises is more complex than doing so

for an individual enterprise.

To remain competitive, a cooperating enterprise

must conceal its internal process structures. However,

collaborating enterprises must exchange business in-

formation. For example, a notebook computer manu-

facturer may submit a purchase order to a hard disk

manufacturer. In addition to the data required for

interaction, if an enterprise provides adequate prog-

ress status, its partners may respond as anticipated.

For example, if the notebook company exposes ap-

propriate progress data of its assembly workflow, then

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419400
the hard disk manufacturer may deliver products just

in time. Thus, the notebook company can reduce the

stock cost required for storing materials such as hard

disks. Moreover, distributed and heterogeneous

WfMSs of cooperating enterprises must be integrated

to automate B2B workflows.

From the perspective of decision support, a WfMS

offers an integrated environment for decision makers

to analyze, simulate, design, enact, control, and mon-

itor the overall business processes of an enterprise. As

the outsourced tasks grow, workflows extend across

several enterprises. Workflow technology is expected

to support decision-making within an interorganiza-

tional environment, just as it does within a single

enterprise.

Our previous study [17] proposed a process-view

model that enhances the capability of process abstrac-

tion in conventional activity-based process models

[7]. A process-view, i.e., a virtual process, is abstract-

ed from an actual process. According to distinct

organizational roles’ requirements, a process modeler

can design various process-views, hence providing the

appropriate process information to each participant.

However, the preliminary process-view model does

not consider managing workflows within interorgani-

zational collaboration.

This work proposes a process-view-based coordi-

nation model that extends the preliminary process-

view model [17] to effectively address the issues of

managing B2B workflows. A process-view abstracts

critical commercial secrets and is an external interface

of an internal process. An enterprise can design

various process-views, which are unique to each

partner. Process-views of participatory enterprises

comprise a collaboration workflow. Moreover, this

work employs virtual states to coordinate B2B work-

flows. The virtual states (execution states) of a pro-

cess-view represent progress status of an internal

process. A uniform means is developed to manage

state mappings between internal processes and pro-

cess-views. An enterprise can monitor and control the

progress of partners’ processes through the virtual

states of their process-views. Furthermore, data ab-

straction is proposed to derive meaningful process-

view relevant data since our previous work focus only

on the control flow of process-views. With these

extensions, the enhanced process-view model con-

tains a modeling tool that can accurately describe
interorganizational workflows as well as an interop-

eration mechanism to coordinate autonomous, hetero-

geneous and distributed WfMSs.

The rest of this paper is organized as follows.

Section 2 presents the process-view model and its

applications within inter-enterprise cooperation. Sec-

tion 3 then summarizes how to define an order-

preserving process-view as presented in Ref. [17]. In

addition, data abstraction is proposed for deriving

process-view relevant data. Next, Section 4 presents

the coordination of B2B workflows through the vir-

tual states of process-views. Section 5 presents a

prototype to demonstrate the effectiveness of the

proposed approach. Section 6 then discusses some

properties of the process-view-based approach and

reviews related work in collaborative workflow man-

agement. Conclusions are finally made in Section 7.
2. Process-view-based coordination model

This section first introduces process-view model

and then presents the process-view-based B2B

coordination.

2.1. Basic definitions: base process and process-view

A process that may have multiple process-views is

referred to herein as a base process. A process-view,

i.e., an abstracted process derived from a base process,

provides abstracted process information. From the

users’ perspective, a process-view resembles a typical

process that consists of activities and dependencies

although it is an abstracted form of an implemented

process. Based on the process-view definition tool, a

modeler can define various process-views to achieve

different levels of information concealment. The fol-

lowing summarizes basic definitions of base process

and process-view. Please refer to Ref. [17] for detailed

definitions, semantics and examples.

Fig. 1 shows an example of base process, where

the split and join structures are defined by the Work-

flow Management Coalition (WfMC) [29]. AND-

SPLIT: An activity splits into multiple parallel activ-

ities that are all executed. XOR-SPLIT: An activity

splits into multiple mutually exclusive alternative

activities, only one of which is followed. AND-JOIN:

Multiple parallel executing activities join into a single

Fig. 1. Sample process.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 401
activity. XOR-JOIN: Multiple mutually exclusive al-

ternative activities join into a single activity. A base

process is defined as follows.

Definition 1 (Base process). A base process BP is a

2-tuple hBA, BDi, where

1. BD is a set of dependencies. A dependency is

denoted by dep(x, y, C). Condition C represents the

constraints, such as time or events, that determine

whether routing can proceed from activity x to

activity y.

2. BA is a set of activities. An activity is a 3-tuple

hSPLIT_flag, JOIN_flag, SCi, where (a) SPLIT_

flag/JOIN_flag may be ‘‘NULL’’, ‘‘AND’’, or

‘‘XOR’’. NULL indicates that this activity has a

single outgoing/incoming dependency (Se-

quence). Given multiple outgoing dependencies,

AND indicates all succeeding branches are

followed (AND-SPLIT), while XOR indicates

only one succeeding branch is followed (XOR-

SPLIT). Given multiple incoming dependencies,

AND indicates that this activity can be started if

all incoming dependencies have satisfied con-

dition (AND-JOIN), while XOR indicates that

this activity can be started if one of the

incoming dependencies has satisfied condition

(XOR-JOIN). (b) SC is the starting condition of

this activity. A workflow engine evaluates SC to

determine whether this activity can be started. If

JOIN_flag is NULL, SC equals the condition

associated with its incoming dependency. If

JOIN_flag is AND/XOR, SC equals Boolean

AND/XOR combination of the conditions of all

incoming dependencies.

3. For x, yaBA: (a) If there is a path from x to y in BP,

then the ordering of x is higher than y, i.e., x

precedes y. Their ordering relation in BP is denoted

by x>y or y < x. (b) If no path exists from x to y or
from y to x in BP, then x and y are ordering

independent, i.e., x and y proceed independently.

Their ordering relation in BP is denoted by xly.

The semantics of above definition is as follows.

During run-time, an execution of a process is called a

process instance. For dep(x, y, C), C is not evaluated

until x is completed. The value of C is either true of

false. The fact that x is completed and C is true is one

precondition of whether y can be started. For conve-

nience, ‘‘a dependency is evaluated as false/true’’

represents that the dependency’s condition field is

evaluated as false/true.

For an activity ba, its SC field is evaluated when all

incoming dependencies of ba have been evaluated. ba

can be started when SC is evaluated as true. If ba is

started, then its outgoing dependencies are evaluated

after the completion of ba. If SC is evaluated as false,

then ba is not executed in a process instance, and the

outgoing dependencies of ba are evaluated as false.

An activity is called a fired activity in a process

instance if its SC is evaluated as true and it is executed

in the process instance. Contrarily, an activity is called

a non-fired activity in a process instance if its SC is

evaluated as false and it is not executed in the process

instance. Notably, an activity that is non-fired in a

process instance may be fired in other process instan-

ces. For convenience, ‘‘an activity is evaluated as

fired/non-fired’’ represents that the activity’s starting

condition is evaluated as true/false.

A process-view is generated from either physical

processes (base processes) or other process-views and

is considered a virtual process. To differentiate the

terminology used in base process and process-view,

this work uses the terms virtual activity/dependency/

state for the process-view while the terms base

activity/dependency/state are used for the base pro-

cess. A process-view is defined as follows.

Definition 2 (Process-view). A process-view is a 2-

tuple hVA, VDi, where (1) VA is a set of virtual

activities. (2) VD is a set of virtual dependencies. (3)

Analogous to base process, bvai, vajaVA, the

ordering relation between vai and vaj may be ‘‘>’’,

‘‘ < ’’, or ‘‘l’’.

A virtual activity is an abstraction of a set of base

activities and corresponding base dependencies. A

Fig. 2. Process-view model.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419402
virtual dependency connects two virtual activities in a

process-view. Fig. 2 illustrates how the components of

our model are related. Section 3 demonstrates how to

abstract virtual activities and dependencies from a

base process. Notably, within an interorganizational

environment, a participant’s role represents an exter-

nal partner.

2.2. Process-view-based coordination

Fig. 3 illustrates the interaction scenario, in which

three systems cooperate through process-views. To

enhance the interoperability through open techniques,

process-views’ interactions (solid bi-arrow lines) are

implemented based on industrial standards, such as

CORBA/IIOP and XML. However, each enterprise

determines its proprietary implementation of the com-

munication autonomously (blank bi-arrow lines)
Fig. 3. Process-view-based
among base processes, process-views and integrated

processes.

A process-view is an external view (or interface) of

an internal base process and is derived through the

procedure described in Section 3. An integrated

process is a specific view of the interorganizational

workflow that is based on a participatory enterprise’s

perspective, which consolidates internal processes and

partners’ process-views. Notably, an integrated pro-

cess is also a virtual process. Each of its virtual

activity/dependency is either a base one of an internal

base process or a virtual one of partners’ process-

views. An integrated process is defined as follows.

Definition 3 (Integrated process). For a base process

BP= hBA, BDi and a set of process-views PVi = hVAi,

VDii, an integrated process is a 2-tuple hVA, VDi,
where (1) members of VA are members of BA or
coordination scenario.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 403
members of VAi. (2). Members of VD are members of

BD or members of VDi.

As a base activity/process, a virtual activity/process

is associated with a set of (virtual) states to represent

its run-time status. A virtual state is employed to

abstract the execution states of base activities/process-

es contained by a virtual activity/process. To monitor

and control the progress of an internal process through

the virtual states of its public process-view, two rules

are proposed in Section 4 to map the states between a

base and a virtual process. Therefore, an enterprise

can coordinate with its partners through virtual states

of process-views.

2.3. Three-phase modeling

Collaboration modeling is a complex negotiation

procedure. Process design is divided into three phases:

base process phase, process-view phase, and integra-

tion phase.

� Base process phase is the traditional workflow

build phase. A process modeler specifies the

activities and their orderings in a business process,

which is based on a top-down decomposition

procedure that many activity-based process models

support.
� Next, to facilitate the establishment of an alliance,

an enterprise may provide adequate detail regard-

ing its internal processes through process-views.

Process-view design is a bottom-up aggregation

procedure. A process modeler can define various

process-views for the partners according to diverse

cooperation relationships.
� Finally, a process modeler forms an integrated

process that is a personalized view of an interorga-

nizational workflow through consolidating internal

base process and partners’ process-views.

The integrated process not only provides a global

view of workflows across cooperating enterprises, i.e.,

different enterprises may have distinct views regard-

ing the interorganizational workflow, but also allows a

process modeler to employ the integrated process

definition in order to design action triggers and event

notifications in a base process definition. The modeler

incorporates appropriate information that is provided
in partners’ process-views into internal base process-

es. Then, a system engineer can implement the inter-

action points that connect B2B workflows based on

the integrated process definition and the chosen inter-

operation standards.

Fig. 4 illustrates the three phases of cooperation

between enterprises A (notebook computer producer)

and B (LCD panel manufacturer). After designing a

base process, enterprise A delegates activity ‘‘sourcing

LCD panels’’ to other companies. Assume that enter-

prise B is chosen to complete this activity. Enterprises

A and B then discuss how to merge their respective

processes for workflow automation. Both parties must

adequately detail their internal processes. They can

employ process-view definition tools to determine

appropriate abstractions of internal processes for ne-

gotiation. Assume that the process-views PVA and

PVB are defined as depicted in Fig. 4a and b. Enter-

prise A wants B to undertake ‘‘sourcing LCD panels’’

in PVA after ‘‘scheduling notebook production’’ has

been completed. B must deliver products (i.e., com-

plete ‘‘sourcing LCD panels’’) simultaneously with

‘‘sourcing other components’’ to avoid the stock cost

of A. Enterprise B is also notified that a delay in

‘‘sourcing LCD panels’’ will block the virtual activity

‘‘notebook production’’, hence becoming a bottleneck

in PVA. Enterprise A can monitor and control the

enactment of the base process of B via B’s process-

view, and vice versa. When both parties agree on the

information to be exchanged, the process-views be-

come the interoperation interfaces between A and B.

In the third phase, A and B define integrated process-

es, as shown in Fig. 4c and d, respectively.

In the above example, enterprise A dominates the

collaboration because A is B’s customer. Accordingly,

after the base process of A is initialized, the virtual

activity ‘‘scheduling notebook production’’ in Fig. 4a

is notified and B’s base process is thus initialized.

Fig. 5 depicts the run-time interactions between

process definitions (the object name with a prefix

‘‘PM_’’) and process instances. The event is used to

exchange information (e.g., state changes) between

workflow objects. The upper gray area in Fig. 5

illustrates the fact that enterprise A’s process-view

and integrated process are initialized (see messages

1.2, 1.3, 1.4, and 1.5) after the base process of A is

initialized (see message 1.1). Consequently, the inte-

grated process of enterprise B is notified (1.6). The

Fig. 4. Three phases of designing interorganizational workflows.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419404

Fig. 5. Interactions between base processes and virtual processes.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 405
lower gray area shows how enterprise B reacts to the

event notification (1.6). B’s integrated process is

initialized (2.1) after the event (1.6) is received. Next,

the base process of B is notified (2.2) and initialized

(2.3) to prepare service for A. Finally, the process-

view of B is initialized (2.4 and 2.5) to publicize the

progress of service enactment for A.

A modeler can define various process abstractions

without being restricted by original process definitions

since process-views are derived from a base process by

bottom-up aggregation. Although the above scenario

demonstrates cooperation between two enterprises, the

proposed approach can be applied to multi-enterprise

cooperation. Under such circumstances, the integrated

process of an enterprise may contain internal processes

as well as several process-views of partners.
3. Deriving interoperation interfaces:

process-views

Enterprises cooperate through process-views.

According to the different properties of a base pro-

cess, various approaches can be developed to derive a

process-view. A novel order-preserving approach to

derive a process-view from a base process has been

presented in [17] and is summarized in Section 3.1.

The order-preserving approach ensures that the orig-

inal execution order in a base process is preserved.

Our previous work [17] focuses only on the control
flow of process-views, thus data abstraction is further

proposed herein. Section 3.2 introduces the operations

that derive process-view relevant data from base

processes according to access privilege, content, and

presentation format.

3.1. Order-preserving process-view

The following summarizes the order-preserving

approach for deriving a process-view from a base

process. Notably, this summary only presents the case

that a base process does not contain loops. Please refer

to Ref. [17] for the case that a base process contains

loops. A legal virtual activity in an order-preserving

process-view must follow three rules:

Rule 1 (Membership). The member of a virtual

activity may be a base activity or a previously defined

virtual activity. The membership among base activ-

ities and virtual activities is defined transitively; that

is, if x is a member of y and y is a member of z, then x

is also a member of z.

Rule 2 (Atomicity). A virtual activity is an atomic

unit of processing.

1. A virtual activity is started if one member activity

is started, and is completed if all member activities

have been evaluated and each fired member

activity is completed.

Fig. 6. An example of a minimum virtual activity.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419406
2. In a process-view instance, a virtual activity is

evaluated as fired if one member activity is

evaluated as fired, and is evaluated as non-

fired if all member activities are evaluated as

non-fired.

3. The starting of a virtual activity implies that all its

preceding virtual activities have been evaluated

and each preceding fired virtual activity is

completed in the process-view instance.

Rule 3 (Ordering preservation). Given a process-view

VP as derived from a base process BP, for any two

different virtual activities vai and vaj, ax is a member

of vai and ay is a member of vaj: (1) ‘‘vai>vaj holds in

VP’’ implies that ‘‘ax>ay’’ for all ax and all ay.

‘‘ax>ay’’ must hold in BP for all ax and all ay. (2)

Statement 1 also applies to the ordering relations ‘‘ < ’’

and ‘‘l’’.

Based on the rules that a process-view should

comply with, virtual activities and virtual dependen-

cies in an order-preserving process-view are formally

defined as follows:

Definition 4 (Virtual activity). For a base process

BP= hBA, BDi, a virtual activity va is a 5-tuple hA, D,
SPLIT_flag, JOIN_flag, SCi, where

1. A is a nonempty set, and its members follow three

rules:

(a) Members of A are base activities that are also

members of BA or other previously defined

virtual activities that are derived from BP.

(b) va is started if one member activity is started,

and is completed if all member activities have

been evaluated and each fired member activity

is completed.

(c) For any xaBA, xgA, Ra{>, < , l}: if

existing a yaA such that xRy holds in BP,

then xRz holds in BP for all zaA. That means

the ordering relations between x and all

members (base activities) of A are identical

in BP.

2. D={dep(x, y, Cxy)jdep(x, y, Cxy)aBD and x,

yaA}.

3. SPLIT_flag may be ‘‘NULL’’ or ‘‘MIX’’. NULL

suggests that va has a single outgoing virtual

dependency while MIX indicates that va has

multiple outgoing virtual dependencies.
4. JOIN_flag may be ‘‘NULL’’ or ‘‘MIX’’. NULL

suggests that va has a single incoming virtual

dependency while MIX indicates that va has

multiple incoming virtual dependencies.

5. SC is the starting condition of va.

The SPLIT_flag and JOIN_flag cannot simply be

described as AND or XOR since va is an abstraction

of a set of base activities that may be associated with

different ordering structures. Therefore, MIX is used

to abstract the complicated ordering structures. A

WfMS evaluates SC to determine whether va can be

started. Members of A are called va’s member activ-

ities, and members of D are called va’s member

dependencies. To save space, the abbreviated notation

va = hA, Di is employed below to represent a virtual

activity.

Definition 5 (Virtual dependency). For two virtual

activities vai = hAi, Dii and vaj = hAj, Dji that are

derived from a base process BP= hBA, BDi, a

virtual dependency from vai to vaj is vdep(vai, vaj,

VCij)={dep(ax, ay, Cxy)jdep(ax, ay, Cxy)aBD, axaAi,

ayaAj}, where the virtual condition VCij is a

Boolean combination of Cxy.

Furthermore, essential activity is proposed to sim-

plify process-view design. Prior to defining a virtual

activity, a modeler must select the activities that are

essential to this virtual activity. These chosen activi-

ties are called essential activities, and form an essen-

tial activity set EAS. Given an EAS, a modeler must

identify a minimum virtual activity min_va(EAS)

which contains only the essential and adequate activ-

ities that are required to preserve the original ordering

relations in the base process. In Fig. 6, for example, a

modeler only wants to discover an abstraction that

contains a3 and a5, i.e., EAS={a3, a5}. The three

definitions, va1, va2, and va3, are legal and va1 is

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 407
the minimum virtual activity of EAS. In va1, a3 and a5
are the activities the modeler wishes to abstract, and

a4 is required for ordering preservation.

Fig. 7 shows the procedure of defining an order-

preserving process-view. A process modeler must

initially select essential activities. The process-view

definition tool then automatically generates a legal

minimal virtual activity that encapsulates these essen-

tial activities. The above two steps are repeated until

the modeler determines all required virtual activities.

The definition tool then generates all virtual depen-

dencies between these virtual activities as well as the

ordering fields (JOIN/SPLIT_flag) and starting condi-

tion (SC) of each virtual activity. [Ref. 17] presents

the algorithm that implements the process-view defi-

nition tool (the three gray blocks in Fig. 7).

3.2. Data abstraction

Base process relevant data defines the data objects

created and used within a base process [30]. Similarly,

the produced and consumed data of a process-view is

called process-view relevant data. The produced/con-

sumed data of a virtual activity may not be exactly the

same as the data that is produced/consumed by the

base activities that belong to the virtual activity, since a

process-view provides abstracted and aggregated in-

Fig. 7. Deriving a p
formation of a base process. A process modeler must

define process-view relevant data according to the

requirements of abstraction. The process-view relevant

data may be newly defined data that aggregates base

process relevant data, or a selected portion of base

process relevant data. Besides data contents, access

privileges and presentation formats of data objects in

process-views and base processes may also differ. This

work abstracts process-view relevant data from base

process relevant data by following four steps.

Step 1 (Determine data members). A base/virtual

activity has an input data set and an output data set.

The following notation is used for discussion.

. dx
In/ai/dx

Out/ai represents an input/output data object

of a base activity ai; Dx
In/ai/Dx

Out/ai represents the

input/output data set of ai.
. dx

In/vai/dx
Out/vai represents an input/output data object

of a virtual activity vai; Dx
In/vai/Dx

Out/vai represents

the input/output data set of vai.

Fig. 8a–c illustrates three policies for deriving the

input data set of a virtual activity. Just as a virtual

activity conceals its internal member dependencies,

the Conceal_Internal_Input policy hides the data flow

within a virtual activity. However, according to the

All_Input policy, the input data set of va1 comprises

rocess-view.

Fig. 8. Policies of data abstraction.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419408
all input data objects that are not produced within va1.

Finally, a modeler may partially select d1
In/a1 and d1

In/a2

as the input data objects of va1 (Partial_Input policy).

Notably, the All_Input policy derives the data

needed for completing a virtual activity, but the

Conceal_Internal_Input only derives the data needed

for starting a virtual activity. For example, in Fig. 4a,

which shows the process-view provided by a note-

book company for a LCD manufacturer, the notebook

company applies the All_Input policy to derive the

input data set to complete the virtual activity

‘‘sourcing LCD panels’’. However, the LCD manu-

facturer only needs to know the data that will enable

the virtual activity ‘‘sourcing other components’’;

thus, Conceal_Internal_Input is applied.

Formally, the following three policies are used to

derive the input data set of a virtual activity vai=

hAi, Dii.

. All_Input: DIn/vai={dx
In/aijai, ajaAi: dx

In/ai p d
y
Out/aj for

any y};
. Conceal_Internal_Input: DIn/vai={dx

In/aijaiaAi: Zaj
aAi such that ai < aj};
. Partial_Input: DIn/vai={dx
In/aijaiaAi: dx

In/ai satisfies

the condition C that is defined by a process

modeler}.

Similarly, the output data set of vai = hAi, Dii is

derived as follows. Fig. 8d–f illustrates the following

three policies, respectively.

. All_Output: DOut/vai={dx
Out/aijai, ajaAi: dx

Out/ai p
dy
In/aj for any y};

. Conceal_Internal_Output: DOut/vai={dx
Out/aijaiaAi:

Z ajaAi such that ai > aj};
. Partial_Output: DOut/vai={dx

Out/aijaiaAi: dx
Out/ai sat-

isfies the condition C that is defined by a process

modeler}.

Step 2 (Determine data contents). The derived input/

output data sets of virtual activity can be further

processed according to their contents. The following

three classes of operation provide high-level (abstract)

specifications for deriving process-view relevant data.

The abstract specifications may be associated with

several implementations responsible for data trans-

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 409
formation and processing, since various data types

exist in commercial environments.

. Aggregation: this class of operations aggregates

given data objects, including average, sum, and

count. For example, the total production time of a

virtual activity is computed by summarizing the

production time of its member activities. More-

over, this operation is applicable to non-numerical

data by using the concept hierarchies of an

ontology. An ontology offers a set of terms and

concepts for describing a specific domain. Accord-

ing to the generation/specialization relationship,

concepts in the ontology form a concept hierarchy.

By using ontologies, for example, the sum of the

capacities of factories in Taiwan and China Cities

may be viewed as the capacity of factories in Asia.
. Symbolization: consolidated data can be trans-

formed from numerical to symbolic data in order to

increase comprehensibility. This operation also

relies on ontology. Given a numerical datum, its

unit (e.g., amount, length, and weight) is a concept

in the ontology, and the value is the modifier of the

concept. A higher-level concept in the concept

hierarchy may be associated with symbolic modi-

fiers. For example, ‘‘19 inch’’ LCD panels can be

transformed into ‘‘large size’’ LCD panels since

‘‘size’’ is above ‘‘inch’’ in the concept hierarchy

and is associated with symbolic modifiers—large,

medium, and small.
. Granularity: consolidated data may require the

granularity of the measurement scale to be coarse,

as for example, in changing the scale on which

production time is measured from days to months.

Notably, the aggregation operation is applied to the

value of the data object, while the granularity

operation is applied to the scale of value of the data

object.

The above operations can be combined to generate

more complex abstractions. For example, the man-

power can be averaged, and its scale changed from 10

to 100 workers.

Following the example presented in Fig. 4, Fig. 9

illustrates the derivation of input/output data of the

virtual activity, ‘‘scheduling LCD production’’, which

represents an abstraction of two base activities—

‘‘receiving new order’’ and ‘‘scheduling production’’.
Only production data are described for clarity. First,

the Conceal_Internal_Input/output policy is applied

to derive the input/output data set of the virtual

activity. Then, the output data objects are further

aggregated. Therefore, partners only observe the

‘‘production amount’’ but do not know the production

details, including production distribution and stock

amount.

Step 3 (Determine access privileges). This step

authorizes a participant’s access to data objects in a

process-view. A process modeler must specify

permission according to the responsibilities of a

participatory role to prevent unwarranted access.

Basically, participant can read the data objects in

views. However, write and modify permissions are

restricted when these data objects are summarized

from multiple data objects in the base process.

Step 4 (Determine presentation formats). The

presentation of data objects in a process-view may

differ from that in a base process. Differences may

include input and output format, for example, by

displaying a set of data objects in a pie chart to

replace an original tabular form, or inputting data

using check boxes instead of pull-down menus. A

data object may be presented in many ways to adapt

to various operating platforms and user interfaces

(such as MS Windows, Mac OS, Motif, etc.), and

users’ preferences and needs. A process modeler must

specify the appropriate presentation of data objects in

process-views to facilitate the communication be-

tween participants.

Following Fig. 9, step 3 specifies that the access

privileges of the data objects, ‘‘purchase order’’ and

‘‘production amount’’ are ‘‘modify’’ and ‘‘read’’,

respectively. Then, step 4 decides that the presen-

tation formats of the purchase order and production

amount are ‘‘HTML.Form’’ and ‘‘HTML.Text_

Field’’, respectively.

3.3. Abstraction of control flow and data flow

As mentioned early, a process-view is an abstrac-

tion of a base process. This section further discusses

abstraction from the control and data flow aspects.

Through bottom-up aggregation of base activities, a

Fig. 9. Deriving input/output data of a virtual activity.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419410
process-view yields a higher-level view of control

flow of a base process. In several formal process

models, including process algebras and Petri nets

[1,19,24,27], the abstraction of a process refers to a

selected portion of activities. More specifically, a

desired abstraction is obtained by renaming some

activities as silent activities that are unobservable

from the outside. Conventional abstraction may be

considered as partial abstraction since it provides

partial observability of a process. Relative to partial

abstraction, the proposed approach is considered to be

aggregate abstraction, since it provides adaptable

granularity of a process via bottom-up aggregation,

i.e., a virtual activity may represent an aggregation of

a set of base activities.

Partial abstraction does not reveal the progress

status of the silent activities of a base process. For

example, if a view ‘‘a1! a3! a7’’ is partially ab-

stracted from the process shown in Fig. 6, then the

view does not expose the progress of silent activities

(i.e., a2, a4, a5, and a6). However, if the proposed
approach defines a process-view as ‘‘{a1}! {a2, a3,

a4, a5, a6}! {a7}’’, the progress of the virtual activ-

ity which contains a2. . .a6 expresses the aggregated

progress of these five base activities. In addition to

concealing sensitive details that partial abstraction can

provide, process-views also provide aggregated infor-

mation on a desired process.

Aggregate abstraction generally includes partial

abstraction. For example, given a virtual activity va1
which is an aggregation of base activities a1, a2, and

a3, if the weight of a1 and a3 are 0 and the weight of

a2 is 1, then va1 can be viewed as a partial abstraction

of a1, a2, and a3. The binary weight implies the notion

of visible/invisible or important/unimportant that is

the core of partial abstraction. Thus, partial abstraction

can be derived from aggregate abstraction by using

the concept of weight.

Moreover, the proposed order-preserving approach

provides one possible mechanism to derive aggregate

abstraction. Under the constraints of Rules 1–3, the

derived aggregation preserves original orderings of

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 411
base activities. Other approaches may be developed to

derive appropriate process abstractions based on the

different properties of business processes and com-

mercial contexts.

With respect to data flow, Section 3.2 offers

aggregate and partial data abstraction. Besides

addressing syntactic issues such as determining priv-

ilege and selecting input/output data objects, this work

alleviates semantic issues by using ontologies to

derive meaningful data.
4. Coordinating B2B workflows through virtual

states

This section describes the mechanism that coordi-

nates B2B workflows through activity/process states.

The state of a process or activity instance represents the

execution status of the instance at a specific point. A

virtual state abstract the execution states of base

activities/processes contained by a virtual activity/

process. During run-time, cooperative partners monitor

and control the progress of B2B workflows through the

virtual states of virtual activities/processes. First, the

states and operations of base activity/process are de-

scribed. Then, the state mapping rules to coordinate

base processes, process-views and integrated processes

during run-time are proposed.

4.1. Generic states and operations

A state transition diagram depicts the possible run-

time behavior of a process/activity instance. Currently,

both Workflow Management Facility (WMF) [22] and

Wf-XML [31] support the generic states as shown in

Fig. 10, in which WfExecutionObject is a generaliza-

tion of a process or activity instance [22]. Furthermore,

the hierarchy of states imposes super-state/sub-state

relationships between them.
Fig. 10. States of a WfExecutionObject [22].
After a WfExecutionObject is initiated, it is in the

open state; however, upon completion, it enters the

closed state. The open state has two sub-states:

running indicates that the object is executing, and

not_running suggests that the object is quiescent since

it is either temporarily paused (in the suspended state)

or recently initialized and prepared to start (in the

not_started state). The state completed indicates that

the object has been completed correctly. Otherwise,

the object stops abnormally, i.e., in the terminated or

aborted state.

A state transition diagram also includes a set of

operations for monitoring and controlling the prog-

ress of a base activity/process instance. The opera-

tions (e.g., suspend, terminate, and change_state)

that are used to control a WfExecutionObject change

the state of a WfExecutionObject as well as its

associated WfExecutionObjects. When a request of

state change fails, an InvalidState exception [22]

throws. The operation get_current_state, as defined

in WMF, returns the current state of a WfExecutio-

nObject instance. In the following section, state

function fs is used to substitute this operation for

brevity.

4.2. State mapping

Both base and virtual activities/processes support

the same set of the previously mentioned generic

states and operations. In this section, consistent map-

ping of the execution states between virtual processes/

activities and its member processes/activities is dis-

cussed. Two cooperation scenarios can trigger state

mapping. First, virtual activities/processes must re-

spond to the state change that occurred in base

activities/processes, i.e., the mapping occurs from

base activities/processes to virtual activities/processes.

Second, base activities/processes must react to the

request to change the state as triggered by virtual

activities/processes, i.e., the mapping occurs from

virtual activities/processes to base activities/processes.

Moreover, state mapping can be considered from

process level or activity level.

4.2.1. State mapping between a base process and a

process-view

The virtual state of a process-view simply equals

the state of its base process. For example, a

Table 1

State mappings between a virtual activity and its member activities

Virtual

activity

Member activities

Open At least one member activity is in the open state.

Closed All member activities have been evaluated, and

each fired member is stopped in the closed state.

Running At least one member activity is in the running state.

Not_running Each member activity’s state is either closed or

not_running, and at least one member activity is in

the not_running state.

Not_started Each member activity’s state is either closed or

not_started, and at least one member activity is in

the not_started state.

Suspended No member activity’s state is running, and at least

one member activity is in the suspended state.

Completed All member activities have been evaluated and each

fired member is stopped in the completed state.

Terminated All member activities have been evaluated, all fired

member are either stopped in the terminated or

completed state, and at least one member activity

is stopped in the terminated state.

Aborted At least one fired member activity is stopped in the

aborted state.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419412
process-view is in the suspended state if its base

process is also in the same state. However, state

mapping between virtual activities and its member

activities must follow atomicity rule (Rule 2) as

follows.

(i) Open state. Atomicity rule implies that a virtual

activity is in the open state if at least one

member activity is in the open state. Active

degree (or grade) is introduced to extend the

atomicity rule for state mapping. The open state

is more active than the closed state. Moreover,

according to active degrees, sub-states of the

open state are ranked as follows: running>sus-

pended>not_started. Since an activity has been

executed for a while prior to suspension, but

never runs before the not_started state, the

suspended state is more active than the not_started

state. Therefore, the atomicity rule is extended as

follows. If two or more member activities of a

virtual activity va are in the open state and states

of member activities compose a state set Q, then

the (virtual) state of va equals the most active

state in Q.

(ii) Closed state. Atomicity rule also implies that a

virtual activity is in the closed state if all

members have been evaluated and each fired

member is in the closed state. According to the

definition of the closed state and its sub-states in

Refs. [22,31], an execution object, WfExecution-

Object, is stopped in the completed state if all

execution objects contained within it are in the

completed state. Second, an execution object is

stopped in the terminated state if all execution

objects contained within it are either in the

completed or terminated state, and at least one is

in the terminated state. Finally, an execution

object is stopped in the aborted state if at least

one execution object contained within it is in the

aborted state. Therefore, based on these defi-

nitions, whether a virtual activity is stopped in

the closed state or its sub-state can be

determined.

In sum, a virtual activity responds to the state

change of member activities according to the follow-

ing rule. Notably, fs(a)/fs(va) denotes the state/virtual

state of a member activity a/virtual activity va.
Rule 4 (State abstraction). Given a virtual activity

va = hA, Di, let AV={ajaaA and a is fired}.

1. If aaaA, fs(a) = open or its sub-state, then let the

state set Q={ fs(a)jaaA}, fs(va) equals the most

active state in Q.

2. If a have been evaluated for all aaA, and

fs(aV) = completed for all aVaAV, then fs(va) =

completed.

3. If a have been evaluated for all aaA, and

fs(aV) = terminated or completed for all aVaAVand at

least one is terminated, then fs(va) = terminated.

4. If aaaAV, fs(a) = aborted, then fs(va) = aborted.

Table 1 lists examples of state mapping between a

virtual activity and its member activity(s). Fig. 11

depicts the state transitions of a virtual activity that

are triggered by the state transitions of its member

activities.

When invoking an operation of a virtual process/

activity object, the object propagates the operation

to underlying base process/activity object. A pro-

cess-view affects the entire base process, while a

virtual activity only affects its member activities.

For example, invoking create_process operation on

Fig. 11. State transitions of a virtual activity va= hA, Di.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 413
a process-view definition initiates a process-view

and its corresponding base process. However, apply-

ing suspend operation on a virtual activity only

suspends its member activity(s). If an external event

or API call alters the state of a virtual activity/

process, then the influence of state transition in base

activities/processes depends on the following rule:

Rule 5 (State propagation). Given a virtual activity

va = hA, Di. When requesting va to be in state s, if

there is a legal transition from state fs(a) to state s for

any activity aaA, then the state of a transfers from

fs(a) to s; otherwise, fs(a) is not changed. Next,

according to Rule 4, the state of va can be derived. If

fs(va) p s, then an InvalidState exception throws and

member activities rollback to their original states. If

fs(va) = s, then the state transitions of member

activities are committed. For a process-view PV, when

requesting PV to be in state s, if its base process BP

can transfer to s, then the state transitions of PV and

BP are committed; otherwise, an InvalidState ex-

ception are returned to the request and PV and BP

rollback to their original states.

Rule 4 indicates how to determine the execution

state and state transition of a virtual activity accord-

ing to the states of member activities. Rule 5

indicates how to propagate a request of state change

on a virtual activity to underlying member activities,

and ensures that state mapping between a virtual
activity and member activities is consistent follow-

ing the request. Therefore, a virtual activity can

express the execution status of its member activities

appropriately.

4.2.2. State mapping between an integrated process

and its underlying processes

Since each virtual activity in an integrated process

maps to an activity in the internal process or a

partner’s process-view, state mapping at the activity

level is direct (i.e., one-to-one mapping). If virtual

activity va’s underlying activities can transfer to state

s when requesting that va to be in state s, then the

transition is committed; otherwise, the transition fails.

However, at the process level, when requesting an

integrated process IP to be in state s, if the states of

activities within IP can be transferred such that IP can

be in state s, then the request is committed; otherwise,

the transition fails.
5. Prototype system

This section details the architecture and compo-

nents of our prototype system.

5.1. System architecture

The prototype is currently being implemented

mainly using the Java 2 platform, Enterprise Edition

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419414
(J2EE) [13]. J2EE offers rich and uniform application

programming interfaces (API) to access diverse busi-

ness systems. For example, the Java Database Con-

nectivity (JDBC) API gives a vendor-independent

interface to different DBMSs. Therefore, the proto-

type is independent of any specific implementation of

a DBMS, directory service, or messaging service. The

prototype is built on BEA WebLogic (our J2EE

server) [9], Microsoft SQL Server (our DBMS) [28],

and Microsoft Active Directory (MSAD, our directory

service) [18].

Fig. 12 shows the system’s architecture. The pro-

totype system uses the Java Naming and Directory

Interface (JNDI) API to locate participants that regis-

tered in MSAD. The role designer maps role defini-

tions onto the organizational units, groups, and users

defined in MSAD. The role definitions contain job

descriptions and obligations, and are consulted during

base/virtual process design. A process modeler

employs the role designer and the virtual/base process

definition tool to specify workflow participants (inter-

nal workers and trading partners), base processes,

process-views, and integrated processes. Section 3

elucidates the procedure for deriving a virtual process,

including control and data flow.

During run-time, the enactment module consults

MSAD to obtain clients’ responsibilities, and then

submits/receives messages to clients’ work-lists or

progress coordinators. In this prototype, the enactment

module communicates with the clients, the interoper-

ation module, and the invoked applications through

the Java Message Service (JMS) API. JMS supports

the publish/subscribe asynchronous communication
Fig. 12. Architecture of th
mechanism in the process-view model (described in

Section 5.2, WfRequest interface). The interoperation

module governs the sending/receiving of messages

through appropriate protocols that have been adopted

by the partners, such as e-mails and XML documents,

or through the adapters of partners’ messaging serv-

ers. Currently, the module only adopts XML docu-

ments for communication. The client-side work-list

presents the activities that must be performed by the

client. The progress coordinator displays abstracted

progress information of the workflow in which the

client participates (progress monitoring). Moreover, a

client can alter the execution state of a public process-

view via the coordinator (progress control). In B2B

cooperation, trading partners can monitor and control

the progress of internal processes through client-side

progress coordinators.

5.2. Major interfaces

Fig. 13 shows the major interfaces and their

relationships, revised from the WMF specification,

of the prototype system in UML (Unified Modeling

Language) notation. WfBaseProcessMgr/WfVirtual-

ProcessMgr represents a base/virtual process defini-

tion that generates and locates base/virtual process

instances. WfDataUtility provides common utilities

useable in data abstraction, as stated in Section 3.2.

For example, WfDataUtility.symbolize(19, inch,

LCD panel) returns ‘‘large size’’ as a symbolic

descriptor of LCD panels. The prototype uses the

Java binding of Open Knowledge Base Connectiv-

ity (OKBC) API [21] to access the ontology. An
e prototype system.

Fig. 13. Class diagram of process-view model.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 415
experimental ontology is constructed using Ontolin-

gua [23].

WfExecutableObject is an abstract base class that

defines common attributes, states, and operations for

WfBaseProcess and WfBaseActivity. WfBaseProcess

signifies a base process instance and WfBaseActivity

stands for a base activity in a base process. However,

a virtual process/activity is not inherited from WfEx-

ecutionObject since it is not actually performed but is

used to present abstracted progress status. WfInfor-

mativeObject defines common attributes, states, and

operations for WfVirtualProcess and WfVirtualActiv-

ity. Moreover, WfAssignment associates base activities

with necessary resources that are represented by

WfResource. Similarly, WfMonitor associates virtual

activities/processes with participants (trading part-

ners) that are represented by WfResource. Finally,

WfRequest is introduced to model the publish/sub-

scribe communication pattern [6] in distributed sys-

tems. A requester can subscribe to (receive) the

events published by a performer, and performer-

produced events are sent to all registered requesters.

Therefore, when the state of an activity/process is

changed, a status-change event, as modeled by WfAu-

ditEvent, is created to inform registered requesters.

The asynchronous message-based approach is suit-
able for loosely coupled B2B interoperation over the

Internet.
6. Discussion

Integration of B2B workflows has attracted con-

siderable interest. This section reviews related work

and standards, and discusses the strengths of the

process-view model.

6.1. Modeling B2B interactions

During cross-enterprise collaboration, each partic-

ipatory enterprise does not expose its internal pro-

cesses to preserve autonomy. However, successful

collaboration among multiple enterprises requires the

sharing of information. Therefore, modelers should

provide various external interfaces of an internal

process that not only conceal sensitive information

but also reveal that which is essential to cooperation.

External partners can monitor and control the progress

of an internal process via these external interfaces.

Modelers must also incorporate the process informa-

tion provided via partners’ external interfaces to

internal processes in order to automate B2B work-

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419416
flows. Furthermore, an ideal process model should

uniformly describe internal processes and external

interfaces to increase the comprehensibility of the

model. The following subsection reviews related work

and elucidates the decision support of the proposed

approach to B2B cooperation.

6.1.1. Conventional approaches

WfMC identifies four B2B interoperation mod-

els—chained service, nested sub-process, peer-to-peer,

and the parallel-synchronized model [29]. Currently,

most workflow related standards, e.g., Wf-XML [31]

and WMF [22], only support chained service and

nested sub-process models.

The nested sub-process model, also known as the

service activity model, employs an activity as an

external interface to abstract an entire process that is

implemented by another enterprise. Its notion is based

on service information hiding [2], that is, a consumer

does not need to know the internal process structure of

a provider. Therefore, the activity can be viewed as a

business service performed by an external partner.

Various investigations regarding B2B workflow man-

agement are based on the service activity model, for

example, Refs. [20,26]. A consumer can monitor

service progress via service activity states. However,

a service consumer only knows whether the invoked

process (enacted by the service provider) has started

or is completed. Such poor progress data increase the

uncertainty in the decision space and cause inefficient

coordination among the cooperating enterprises.

The typical service activity model prohibits exter-

nal partners from seeing the structure of internal

processes, such that a service consumer is notified

only at the end of the service provider’s process.

Kuechler et al. [15] proposed the monitored-nested

model, in which the sequence and states of activities

within a provider’s process are observable by service

consumers. A service consumer may choose interest-

ing states to be monitored. The consumer is automat-

ically notified when the monitored states are reached.

Therefore, cooperating enterprises can obtain more

progress information about one another to improve

coordination efficiency. However, trading partners can

see the structures of internal processes since the

monitored-nested model does not impose process

abstraction. In contrast, the process-view model only

shares abstracted processes that conceal sensitive
process information. Partners can obtain abstracted

progress data. Moreover, the process-view model

enables an enterprise to provide various views of an

internal process, each suited to one of the diverse

partners. Exposed progress data is thus customized to

satisfy partners’ needs.

The conventional service activity model only sup-

ports WfMC-specified activity states [29], e.g., ini-

tialized, running, suspended, completed, and aborted.

To semantically reveal the progress status of a service

provider’s process, Georgakopoulos et al. [8] pro-

posed the Collaboration Management Infrastructure

(CMI) which enables modelers to define application-

specific states that extend from standard activity ones.

Although only generic states and operations are ap-

plied in the process-view model, the adopted hierar-

chy of states facilitates further extension regarding

specific application domains as in CMI approach.

Casati and Discenza [3] introduced two types of

event nodes to explicitly define the tasks that ex-

change data with partners. Send nodes notify events

to partners’ processes, while request nodes demand

events from partners’ processes. Events that are

transmitted among enterprises are managed by an

event service. The authors aim at embedding the

interaction mechanisms into conventional activity-

based process models. However, different partners

may receive identical progress data since event nodes

are embedded in an internal process. Moreover, an

internal process becomes more complicated as the

number of event nodes increases. In contrast, each

process-view is unique to a partner, such that different

partners obtain different progress data. When cooper-

ation has ended, an enterprise needs only to delete

related process-views that will not affect internal

processes. Separating interoperation parts from inter-

nal processes keeps internal process definitions stable

and concise.

There are some similarities between the process-

view model and [4]. Although event nodes are not

explicitly specified in the process-view model, each

virtual activity may receive and send events to com-

municate with partners. A process-view functions as

an event adaptor between internal and partners’ work-

flows. That is, a process-view forwards the state-

change events, as activated by an internal process,

to partners (see Rule 4, state abstraction), and dis-

patches the state-change events, as requested by

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 417
partners, to an internal process (see Rule 5, state

propagation). Moreover, our implementation of the

process-view model also adopts the publish-subscribe

event model to exchange data among cooperating

workflows.

6.1.2. Process-view approach

The advantages of the process-view model are

outlined below.
. Supporting decision making for process mod-

elers. Process modelers must create a trade-off be-

tween autonomy and cooperation when designing

B2B workflows. Restated, they must determine how

much information is to be exposed in order to facil-

itate coordination. Conventional approaches, as dis-

cussed above, are restricted by the original granularity

of process definitions that is not intended for partners.

Therefore, determining which parts of internal pro-

cesses should be shared with partners is extremely

difficult. Namely, the exposed parts may be too

detailed or too rough to enable cooperation. The

process-view model enables a modeler flexibly and

systematically to generate various levels of abstraction

(granularity) of an internal process. A process-view

can be viewed as a compromise between privacy and

publicity.

Based on various commercial relationships, an

enterprise can use the process-view model to provide

partners with appropriate abstracted processes. There-

fore, participatory enterprises can obtain appropriate

and real-time progress information regarding trading

partners. In such a collaborative environment, enter-

prises are better able to make correct decisions in

rapidly changing markets.
. Uniform representation of interoperation in-

terfaces and internal processes. This work proposes

process-views as public interfaces for external part-

ners. The interfaces are represented as (virtual) pro-

cesses that are represented in the same way as internal

processes. Moreover, the mechanism for controlling

and monitoring the public interfaces, as provided by

partners, and internal processes are identical; that is,

using states and state transition functions. Such uni-

form representation and usage allows the process-

view model to be easily understood and adopted by

WfMS administrators and users.
. Providing integrated progress data of internal

and partners’ processes. Integrating internal process-
es and partner-provided interfaces is straightforward

since they are identically represented. An integrated

process creates a customized view of the supply chain

and presents progress data of both internal and part-

ners’ processes. Providing integrated progress data

facilitates decision-making and helps workflow ad-

ministrators to analyze and monitor the performance

of B2B workflows.

6.2. Process abstractions for B2B workflows

The ‘‘views’’ described in Koetsier et al. [14]

(contract view) and Chiu et al. [5] (workflow view)

provided partial visibility of a process to support

interorganizational workflows. That is, their view

includes some selected activities of a process. Al-

though those studies do not use the term ‘‘abstrac-

tion’’, their ideas are similar to partial abstraction as

stated in Section 3.3. Moreover, they do not focus on

systematic means to generate process abstractions and

to manage the state mappings between virtual and

base processes.

In contrast, a process-view is derived from bottom-

up aggregation of activities to provide various levels

of aggregate abstraction of a process. B2B workflows

are coordinated using virtual states of process-views.

The generic states/operations defined in existing

standards were adopted to utilize those standards as

a backbone in order to integrate heterogeneous and

distributed systems in multi-enterprise cooperation.

This work has developed a uniform approach to

manage state mappings between base processes/activ-

ities and virtual processes/activities. Moreover, the

adopted hierarchy of states can easily include the

notion of application-specific states (proposed by

CMI [8]) to express semantic progress information.

6.3. Composing virtual supply chains

WISE [16] proposed a framework for composing a

virtual business process by using the process inter-

faces as provided by cooperating enterprises. Addi-

tionally, CrossFlow [10] proposed a framework,

which is based on a service contract, to manage

WfMS cooperation between service providers and

consumers. Those projects focus on providing broker-

ing architectures to exchange business processes as

business services. This work contributes a systematic

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419418
approach from which external interfaces can be de-

rived. The process-view model can be extended to

support the trading architectures that WISE and

CrossFlow proposed.

Some standardization approaches, e.g., RosettaNet

[25], have defined a set of common processes, also

known as Partner Interface Processes (PIP), adopted

by trading communities, to enable supply chain inte-

gration. For example, RosettaNet specified a standard-

ized process for querying order status. Thus,

participatory enterprises can be coordinated through

common PIP. However, cooperating enterprises must

identify the relationships between internal processes

and the PIP. In such circumstances, the process-view

model acts as a wrapper program that maps existing

workflows to the PIP.

Conventional workflow-based approaches may use

a single global view to support the supply chain, as in

[12,20]. However, in our approach, each participatory

enterprise can establish its own integrated view of a

supply chain (personalized supply chain). The pro-

posed approach is more realistic since companies

often demand different supply chain information.
7. Conclusion

This work has presented a process-view-based

coordination model for B2B workflow management.

A process-view is an abstracted process that can be

viewed as an external interface of an internal pro-

cess. Representation and usage of process-views are

compatible with conventional activity-based process

models. This work also offers a systematic approach

for creating an interoperation interface, that is, a

process-view, which shares essential progress data

to support cooperation but conceals internal process

structures to preserve autonomy. In addition to mon-

itoring and controlling the progress of partners’

workflows via their process-views, an enterprise

can obtain personalized supply chain data from its

integrated process. Moreover, enterprises interact

through virtual states of process-views that conform

to interoperation standards. Therefore, distributed,

heterogeneous and autonomous WfMSs can be inte-

grated in an open environment. The proposed ap-

proach mitigates the shortcomings of inter-enterprise

workflow collaboration.
Our future work will address three themes. First, an

enterprise must verify the correctness of B2B work-

flows before enforcing cooperation. An integrated

process provides a proving ground for B2B workflow

integration. Future enhancement will support tools for

verifying integrated process definitions. Second, han-

dling the four WfMC interoperation models by using

process-views will be investigated. Finally, exceptions

(for example, suspension of production due to an

earthquake) always occur in commercial markets, so

that B2B workflows do not always operate as

expected. Some studies have proposed advanced

workflow models to manage exceptions in WfMSs,

including Refs. [4,11]. The process-view model

should incorporate exception-handling mechanisms

to establish a robust collaboration environment.
Acknowledgements

This research was supported by the National

Science Council of the Republic of China under the

grant NSC 91-2416-H-009-008.
References

[1] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge

Univ. Press, Cambridge, UK, 1990.

[2] A.P. Barros, A.H.M. ter Hofstede, Towards the construction of

workflow—suitable conceptual modeling techniques, Infor-

mation Systems Journal 8 (4) (1998) 313–337.

[4] F. Casati, A. Discenza, Modeling and managing interactions

among business processes, Journal of Systems Integration 10

(2) (2001) 145–168.

[3] F. Casati, S. Ceri, S. Paraboschi, G. Pozzi, Specification and

implementation of exceptions in workflow management sys-

tems, ACM Transactions on Database Systems 24 (3) (1999)

405–451.

[5] D.K.W. Chiu, K. Karlapalem, Q. Li, Views for inter-organi-

zation workflow in an E-commerce environment, Proceedings

of the 9th IFIP Working Conference on Database Semantics

(DS-9), Hong Kong, China, 2001.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pat-

terns: Elements of Reusable Object-Oriented Software, Addi-

son Wesley, Boston, MA, USA, 1995.

[7] D. Georgakopoulos, M. Hornick, A. Sheth, An overview of

workflow management—from process modeling to workflow

automation infrastructure, Distributed and Parallel Databases

3 (2) (1995) 119–153.

[8] D. Georgakopoulos, H. Schuster, A. Cichocki, D. Baker, Man-

aging process and service fusion in virtual enterprises, Infor-

mation Systems 24 (6) (1999) 429–456.

D.-R. Liu, M. Shen / Decision Support Systems 38 (2004) 399–419 419
[9] P. Gomez, P. Zadrozny, Professional J2EE Programming

with BEA WebLogic Server, Wrox Press, Birmingham,

UK, 2000.

[10] P. Grefen, K. Aberer, Y. Hoffner, H. Ludwig, CrossFlow:

cross-organizational workflow management in dynamic vir-

tual enterprises, Computer Systems Science and Engineering

15 (5) (2000) 277–290.

[11] C. Hagen, G. Alonso, Exception handling in workflow man-

agement systems, IEEE Transactions on Software Engineering

26 (10) (2000) 943–958.

[12] K. Hiramatsu, K. Okada, Y. Matsushita, H. Hayami, Inter-

workflow system: coordination of each workflow system

among multiple organizations, Proceedings of the 3rd IFCIS

International Conference on Cooperative Information Systems

(CoopIS’98), 1998.

[13] N. Kassem, Designing Enterprise Applications with the Java 2

Platform, Enterprise Edition, Addison-Wesley, Boston, MA,

USA, 2000.

[14] M. Koetsier, P. Grefen, J. Vonk, Contracts for cross-organiza-

tional workflow management, Proceedings of the 1st Interna-

tional Conference on Electronic Commerce and Web Technol-

ogies, London, UK, 2000.

[15] W. Kuechler, V.K. Vaishnavi, D. Kuechler, Supporting opti-

mization of business-to-business E-Commerce relationships,

Decision Support Systems 31 (3) (2001) 363–377.

[16] A. Lazcano, G. Alonso, H. Schuldt, C. Schuler, The WISE

approach to electronic commerce, Computer Systems Science

and Engineering 15 (5) (2000) 345–357.

[17] D.-R. Liu, M. Shen, Workflow modeling for virtual processes:

an order-preserving process-view approach, Information Sys-

tems 28 (6) (2003) 505–532.

[18] A.G. Lowe-Norris, Windows 2000 Active Directory, O’Reilly,

Cambridge, CA, USA, 2000.

[19] R. Milner, A calculus of communication systems, Lecture

Notes in Computer Science, vol. 92, Springer-Verlag, Berlin,

Germany, 1980.

[20] M.Z. Muehlen, F. Klien, AFRICA: workflow interoperability

based on XML-messages, Proceedings of the 1st International

Workshop on Infrastructures for Dynamic Business-to-Busi-

ness Service Outsourcing (IDSO’00), Stockholm, Sweden,

2000.

[21] OKBC, http://www.ksl.stanford.edu/software/OKBC.

[22] Object Management Group, Workflow Management Facility,

Document number formal/00-05-02, April 2000, http://

www.omg.org.

[23] Ontolingua, http://www.ksl.stanford.edu/software/ontolingua.

[24] L. Pomello, G. Rozenberg, C. Simone, A survey of equiva-

lence notions of net based systems, in: G. Rozenberg (Ed.),

Advances in Petri Nets 1992, Lecture Notes in Computer
Science, vol. 609, Springer-Verlag, Berlin, Germany, 1992,

pp. 410–472.

[25] RosettaNet, http://www.rosettanet.org.

[26] K. Schulz, Z. Milosevic, Architecting cross-organizational

B2B interactions, Proceedings of the 4th International Enter-

prise Distributed Object Computing Conference (EDOC

2000), Los Alamitos, CA, USA, 2000.

[27] R.J. van Glabbeek, W.P. Weijland, Branching time and ab-

straction in bisimulation semantics, Journal of the ACM 43

(3) (1996) 555–600.

[28] R. Vieira, Professional SQL Server 2000 Programming, Wrox

Press, Birmingham, UK, 2000.

[29] Workflow Management Coalition, The Workflow Reference

Model, Technical report WfMC TC-1003, Jan. 19, 1995,

http://www.wfmc.org.

[30] Workflow Management Coalition, Interface 1: Process Defi-

nition Interchange Process Model, Technical report WfMC

TC-1016-P, Nov. 12, 1998, http://www.wfmc.org.

[31] Workflow Management Coalition, Interoperability Wf-XML

Binding, Technical report WfMC TC-1023, May 1, 2000,

http://www.wfmc.org.
Duen-Ren Liu received the BS and MS

degrees in Computer Science and Informa-

tion Engineering from the National Taiwan

University, Taiwan, in 1985 and 1987,

respectively, and the PhD degree in Com-

puter Science from the University of Min-

nesota, in 1995. He is currently an associate

professor of the Institute of Information

Management, National Chiao Tung Univer-

sity, Taiwan. His research interests include

database systems, information systems,
electronic commerce, workflow systems, and Internet applications.

Dr. Liu is an associate member of the IEEE, and a member of the

ACM.
Minxin Shen is a PhD student at Institute of

Information Management, National Chiao

Tung University, Taiwan. He received his

Bachelor’s degree, with a double major in

Business Administration and Computer Sci-

ence, from Feng Chia University, Taiwan in

1998. His current research interests include

workflow management systems, computer

supported cooperative work, Web services,

and electronic commerce.

 http:\\www.ksl.stanford.edu\software\OKBC
 http:\\www.omg.org
 http:\\www.ksl.stanford.edu\software\ontolingua
 http:\\www.rosettanet.org
 http:\\www.wfmc.org
 http:\\www.wfmc.org
 http:\\www.wfmc.org

	Business-to-business workflow interoperation based on process-views
	Introduction
	Process-view-based coordination model
	Basic definitions: base process and process-view
	Process-view-based coordination
	Three-phase modeling

	Deriving interoperation interfaces: process-views
	Order-preserving process-view
	Data abstraction
	Abstraction of control flow and data flow

	Coordinating B2B workflows through virtual states
	Generic states and operations
	State mapping
	State mapping between a base process and a process-view
	State mapping between an integrated process and its underlying processes

	Prototype system
	System architecture
	Major interfaces

	Discussion
	Modeling B2B interactions
	Conventional approaches
	Process-view approach

	Process abstractions for B2B workflows
	Composing virtual supply chains

	Conclusion
	Acknowledgements
	References

