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Abstract

Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are

studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using

numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions

can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth

wave, and kxjxj term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of
the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial syn-

chronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic phenomena are observed widely in many physical systems. It is interesting because of its apparent ran-

domness and unpredictable behavior which is due to sensitive dependency on initial conditions.

Anticontrol is an interesting, new and challenging phenomenon [6–22]. It has a great potential for application to

biological systems for future applications, such as control of heart beating and neuronal system [1].

Chaos synchronization has been studied extensively during the past two decades [2,3,24–37]. Traditionally, syn-

chronization has been limited to periodic signals only. Now, chaotic signals can also be used for synchronization of

either identical or different chaotic systems. Chaos synchronization has potential applications in such as chaos control,

information processing, and secure communication.

In this paper, we will present the blushless dc motor system (BLDCM), which is transformed to a nondimension-

alized form at the beginning. Then we study the behavior of BLDCM via adding various terms. By applying the

numerical results such as phase portrait, and bifurcation diagram, a variety of the phenomena of the chaotic motion can

be presented. Furthermore, chaotic motion can be checked by Lyapunov exponents. Anticontrol of chaos is studied via

a constant torque, a xjxj term, and a periodic wave, i.e. the square wave, the triangle wave, or the sawtooth wave. Then,
we study the synchronized behavior of two different order systems, i.e. the BLDCM system and rate gyroscope system

by various coupling terms, and linearization of error dynamics. Finally, the conclusions of the whole paper are briefly

stated.
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2. Description of the three time scales brushless DC motor differential equations of motion

2.1. Description of brushless DC motor system and its differential equation of motion

The system considered here is shown in Fig. 1. The brushless DC motor (BLDCM) is an electromechanical system.

Its dynamic equations of electrical part can be described by [4,5]
d

dt
iq ¼

1

Lq
½�Riq � nxðLdid � ktÞ þ vq� ð2:1Þ

d

dt
id ¼

1

Ld
½�Rid þ nLqxiq þ md � ð2:2Þ
and the dynamic equation of mechanical part is
d

dt
x ¼ 1

J
½T ðI ; hÞ � T‘ðtÞ� ð2:3Þ
where

Ld , Lq: the fictitious inductance on the direct-axis and quadrature-axis,

vd , vq: the direct-axis and quadrature-axis voltage,
id , iq: the direct-axis and quadrature-axis current,
n: number of permanent pole pairs,
x: the rotor angular speed,
R: winding resistance,
J : the inertia momentum,
kt ¼

ffiffi
3
2

q
ke: ke is the permanent-magnet flux constant,

h: the displacement variable,
I ¼ ½iqid �T.

T‘ðtÞ is the external torque caused by cogging and friction imposed on the shaft of the motor. If viscous damping is
considered, then the external torque
T‘ ¼ bx þ TL
Fig. 1. Typical brushless dc motor and its commutation.
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where b is the viscous damping coefficient, TL the additional terms such as external load, cogging effects, coulomb
friction, etc. and h is eliminated by transforming the motor dynamics to the rotating frame, the electromagnetic torque
T ðI; hÞ is given by
T ðiq; idÞ ¼ n½ktiq þ ðLd � LqÞiqid �
So we can get
d

dt
x ¼ 1

J
½n½ktiq þ ðLd � LqÞiqid � þ

1

J
ðbx þ TLÞ ð2:4Þ
2.2. Three time scales representation of equations of motion and the computational analysis

In this section, Eqs. (2.1), (2.2) and (2.4) will be transformed to another statespace model and it can reduce the

number of system parameters [4]. The multiple time scales are s1, s2, and s3, where
s1 ¼
Lq

R
: the first electrical time constant

s2 ¼
Ld

R
: the second electrical time constant

s3 ¼
JR
k2t
: the mechanical time constant
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Fig. 2. Phase portrait with different g.
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After transforming, the equations of motion are
s1
d

dt
¼ Vq � x1 � x2x3 � x3

s2
d

dt
¼ Vd þ x1x3 � x2

s3
d

dt
¼ rx1 þ qx1x2 � gx3 � eTL

ð2:5Þ
where the nondimentional variables are
x1 ¼
Lq

kt
ffiffiffi
d

p iq; x2 ¼
Lq

ktd
id ; x3 ¼

nLq

R
ffiffiffi
d

p x; Vq ¼
Lq

ktR
ffiffiffi
d

p vq; Vd ¼
Lq

ktRd
vd ;

r ¼ n2; q ¼ ð1� dÞn2; g ¼ Rb
k2t

; ~t ¼ t
t3
; eTL ¼

nLq

k2t
ffiffiffi
d

p TL; d ¼ Lq

Ld
The period of autonomous system is hardly found, so we will modify the choice of Poincar�e section for different inputs
in Section 3. Almost the same bifurcation diagrams are obtained, because we only adjust a few positions of x1 and x3
axis from the original system. In addition, three time scales BLDCM is nondimensionalized. This means that all the

inputs which we added are dimensionless. If we change them to the original system, all inputs have their physical

meanings.

We will show the computational results such as phase portrait, bifurcation and Lyapunov exponents. Fig. 2 shows

the phase portrait of various g. The motion is periodic for g ¼ 2:5, 2.36, and for g ¼ 2:1, 1.6 the motion is chaotic, and
g ¼ 2:34 is a critical value. Fig. 3 shows the bifurcation diagram and Lyapunov exponent. We observed that Lyapunov
exponents k > 0 where chaos presents in this figure.
Fig. 3. Bifurcation diagram and Lyapunov exponents for three time scales system.



Z.-M. Ge et al. / Chaos, Solitons and Fractals 22 (2004) 1165–1182 1169
3. Anticontrol of chaos

In the following subsections, we will show the anticontrol by means of addition of a constant torque, a xjxj term [12],
and various periodic waves [11], such as the square wave, the triangle wave and the sawtooth wave.

3.1. Anticontrol of chaos by addition of a constant torque

One can add a constant torque U to anticontrol the regular dynamics to chaos dynamics in the following nonlinear

autonomous system. The system is written as:
s1
d

dt
x1 ¼ Vq � x1 � x2x3 � x3

s2
d

dt
x2 ¼ Vd þ x1x3 � x2

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 �fTL þ U

ð3:1Þ
When U ¼ �2:0, the bifurcation diagram is shown in Fig. 4. The corresponding Lyapunov exponent is plotted in Fig. 5.
Comparing Figs. 3 and 4, the chaotic behavior increases.

3.2. Anticontrol of chaos by addition of a periodic term

3.2.1. Adding a periodic square wave

First, a periodic square wave input U is added. Consider U of period 2p=x is written as:
U ¼
a; when 06 t < p=x

�a; when p=x6 t < 2p=x

�
¼ �auðtÞ þ 2a

X1
k¼0

ð
�
�1Þku t

�
� kp

x

	
 ð3:2Þ
where a is the amplitude of square wave, x the frequency of square wave, uðtÞ the unit step function.
The system equations are
s1
d

dt
x1 ¼ Vq � x1 � x2x3 � x3

s2
d

dt
x2 ¼ Vd þ x1x3 � x2

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 � eTL � auðtÞ þ 2a

X1
k¼0

ð
�
�1Þku t

�
� kp

x

	
 ð3:3Þ
For x ¼ 1, and a ¼ 1, the bifurcation diagram is shown in Fig. 6, and the corresponding Lyapunov exponent is shown
in Fig. 7. Comparing with Fig. 3, the chaotic range has increased in some degree.
Fig. 4. Bifurcation diagram for constant torque U ¼ �2.



Fig. 6. Bifurcation diagram for periodic square wave U with x ¼ 1, a ¼ 1.
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Fig. 5. Lyapunov exponents for constant torque U ¼ �2.
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Fig. 7. Lyapunov exponents for periodic square wave U with x ¼ 1, a ¼ 1.
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3.2.2. Adding a periodic saw tooth wave

In this section, a periodic sawtooth wave input U is added. Consider U of period 2p=x is written as:
U ¼ ax
2p

t; when 06 t < 2p=x

¼ axt
2p

uðtÞ �
X1
k¼0

u t
��

� 2ðk þ 1Þp
x

	
 ð3:4Þ
where a is the amplitude of sawtooth wave, x is the frequency of sawtooth wave, uðtÞ is the unit step function.
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The system equations are
s1
d

dt
x1 ¼ Vq � x1 � x2x3 � x3

s2
d

dt
x2 ¼ Vd þ x1x3 � x2

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 � eTL þ

axt
2p

uðtÞ �
X1
k¼0

u t
��

� 2ðk þ 1Þp
x

	
 ð3:5Þ
For x ¼ 1, and a ¼ 1, the bifurcation diagram is shown in Fig. 8, and the corresponding Lyapunov exponent is shown
in Fig. 9. Comparing with Fig. 3, the chaotic range has increased in some degree.
3.2.3. Adding a periodic triangle wave

Finally, a periodic triangle wave input U is added. Consider U of period 2p=x is written as:
U ¼
ax
p t; when 06 t < p=x

a� ax
p t � p

x

� �
; when p=x6 t < 2p=x

(

¼ � ax
p

tuðtÞ þ
X1
k¼0

ð
�
�1Þk 2axt

p

�
� 2ka

	
u t
�

� kp
x

	
 ð3:6Þ
where a is the amplitude of triangle wave, x is the frequency of square wave, uðtÞ is the unit step function.
Fig. 8. Bifurcation diagram for periodic sawtooth wave U with x ¼ 1, a ¼ 1.
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Fig. 9. Lyapunov exponents for periodic sawtooth square wave U with x ¼ 1, a ¼ 1.
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The system equations are
s1
d

dt
x1 ¼ Vq � x1 � x2x3 � x3

s2
d

dt
x2 ¼ Vd þ x1x3 � x2

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 � eTL �

ax
p

tuðtÞ þ
X1
k¼0

ð
�
�1Þk 2axt

p

�
� 2ka

	
u t
�

� kp
x

	
 ð3:7Þ
For x ¼ 1, and a ¼ 1, the bifurcation diagram is shown in Fig. 10, and the corresponding Lyapunov exponent is shown
in Fig. 11. Comparing with Fig. 3, the chaotic range has increased in some degree.
Fig. 10. Bifurcation diagram for periodic triangle wave U with x ¼ 1, a ¼ 1.
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Fig. 11. Lyapunov exponents for periodic triangle wave U with x ¼ 1, a ¼ 1.
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3.3. Anticontrol of chaos by addition of kxjxj

Similar to Section 3.2, kxjxj can be added instead of periodic wave. We will apply it to each of system equations.

Consider U ¼ k1x1jx1j, where k is the intensity constant. The equations can be written as:
s1
d

dt
x1 ¼ Vq � x1 � x2x3 � x3 þ k1x1jx1j

s2
d

dt
x2 ¼ Vd þ x1x3 � x2

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 � eTL

ð3:8Þ
Fig. 13. Bifurcation diagram for U ¼ k1x1jx1j, k1 ¼ 0:42.

Fig. 12. Bifurcation diagram for g ¼ 2:1, k1 ¼ �0:85 � 0:5.
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The physical meaning of U in the first equation is the external quadrature-axis voltage on the electric circuit. Without

any inputs, when g ¼ 2:1, the system is chaotic, and its bifurcation diagram versus k1 is shown in Fig. 12. By choosing
Fig. 14. Bifurcation diagram for g ¼ 2:1: (a) k2 ¼ �0:5 � 0 and (b) k2 ¼ 0 � 0:0163.
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k1 ¼ 0:42, the bifurcation diagram is plotted in Fig. 13. Comparing with the original system, the chaotic behavior has
been increased effectively.

Next, we add U ¼ k2x2jx2j in the second equation of the system. Here U means the external direct-axis voltage on the
electrical circuit. Without any inputs, when g ¼ 2:1, the system is chaotic, and its bifurcation diagram versus k2 is shown
in Fig. 14. By choosing k2 ¼ �0:05 and k2 ¼ 0:014, the bifurcation diagram is plotted in Fig. 15, and the corresponding
Lyapunov exponent is shown in Fig. 16. Comparing with the original system, the chaotic behavior has increased in

some degree.

Third, we add U ¼ k3x3jx3j in the third equation of the system. Here U means the external torque on the rotator.

Without any inputs, when g ¼ 2:1, the system is chaotic, and its bifurcation diagram versus k3 is shown in Fig. 17. By
choosing k3 ¼ 0:02, the bifurcation diagram is plotted in Fig. 18, and the corresponding Lyapunov exponent is shown in
Fig. 19. Comparing with the original system, the chaotic behavior has been increased effectively.
Fig. 15. Bifurcation diagram for U ¼ k2x2jx2j: (a) k2 ¼ �0:05 and (b) k2 ¼ 0:014.



Fig. 17. Bifurcation diagram for g ¼ 2:1, k3 ¼ �0:05 � 0:028.
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Fig. 18. Bifurcation diagram for U ¼ k3x3jx3j, k3 ¼ 0:02.
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Fig. 19. Lyapunov exponents for U ¼ k3x3jx3j, k3 ¼ 0:02.
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4. Chaos synchronization of different order systems

Third order BLDCM system and second order rate gyroscope system are used to achieve synchronization. The

original three time scales BLDCM is the drive system
s1
d

dt
x1 ¼ Vq � x1 � x2x3 � x3

s2
d

dt
x2 ¼ Vd þ x1x3 � x2

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 � eTL

ð2:5Þ
The response chaotic system, rate gyroscope, is written as [23]:
_y1 ¼ y2
_y2 ¼ �2ay2 � y1 � b sin 2y1 þ b sin 2y1 cos 2xt � c cos y1 sinxt

ð4:1Þ
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4.1. Synchronization of different order coupled chaotic systems

For the above systems, we choose x3 to synchronize y2. The coupling term kðx3 � y2Þ is added to the response system,
so the rate gyroscope system can be written as:
_y1 ¼ y2
_y2 ¼ �2ay2 � y1 � b sin 2y1 þ b sin 2y1 cos 2xt � c cos y1 sinxt þ kðx3 � y2Þ

�
ð4:2Þ
Fig. 20 shows
R t1
t2
jejdt=ðt2 � t1Þ ¼

R t2
t1
jx3 � y2jdt=ðt2 � t1Þ versus intensity k, where jej changes slowly in t1 � t2

interval. When k ¼ 10, 100, and 1000, the time histories of errors are shown by Fig. 21(a)–(c). In Fig. 20, it is observed
that

R t2
t1
jejdt=ðt2 � t1Þ � 5:5 around. Comparing (a)–(c) of Fig. 21, the larger the k, the smaller the ripple of errors, but

more times spent to achieve generalized synchronization.

If we replace the drive and the response systems, that means we add the coupling term kðy2 � x3Þ in BLDCM system,

the result is shown in Figs. 22 and 23. Fig. 22 shows
R t2
t1
jejdt=ðt2 � t1Þ versus k. It presents that the larger k gives the

smaller ripples of error, and two different systems approach generalized synchronization.
4.2. Synchronization of different order systems by linearization of error dynamics

Similar to Section 4.1, we use the same systems to obtain synchronization. First, we add a state x4 for original
BLDCM system. We define s3x4 as the angle of the motor, then we have the angular velocity
x ¼ dðs3x4Þ
dt

¼ s3
d

dt
x4 ¼ x3 ð4:3Þ
So the total three time scale BLDCM system can be written as:
s1
d

dt
x1 ¼ Vq � x1 � x2x3 � x

s2
d

dt
x2 ¼ Vd þ x1x3 � x

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 � ~TL

s3
d

dt
x4 ¼ x3

ð4:4Þ
which is a system with four state variables.

Then we add U in the rate gyroscope system to achieve synchronization by linearization [24]. Let
e ¼ x4 � y1; _e ¼ _x4 � _y1 ¼ s3x3 � y2
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Fig. 20.
R t2
t1
jejdt=ðt2 � t1Þ versus intensity k for different order synchronization of coupled term in _y2.
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Fig. 21. Time histories of x3 � y2 of different order synchronization of coupled term in _y2: (a) k ¼ 10, (b) k ¼ 100 and (c) k ¼ 1000.

100 101 102 103 104
0

1

2

3

4

5

6

7
Coupling term k(y2 -  x2) in Eq. (4.2)

k

Fig. 22.
R t2
t1
jejdt=ðt2 � t1Þ versus intensity k for different order synchronization of coupled term _x3.

Z.-M. Ge et al. / Chaos, Solitons and Fractals 22 (2004) 1165–1182 1179
€e ¼ s3ðrx1 þ qx1x2 � gx3 � TLÞ þ 2ay2 þ y1 þ b sin 2y1 � b sin 2y1 cos 2xt þ r cos x1 sinxt þ U

¼ �e� g _eþ ½ð2a � gÞyx1x2 þ x4 þ s3qx1x2 � s3eTL þ b sin 2y1 � b sin 2y1 cos 2xt þ c cos x1 sinxt� � U

¼ �e� g _eþ s0eðx; y; tÞ � U
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where
Fig. 2
s0eðx; y; tÞ ¼ ð2a � gÞyx1x2 þ x4 þ s3qx1x2 � s3eTL þ b sin 2y1 � b sin 2y1 cos 2xt þ c cos x1 sinx
Let
e1 ¼ e ¼ x4 � y1; e2 ¼ _e ¼ s3x3 � y2
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_e1 ¼ e2
_e2 ¼ �e1 � ge2 þ s0eðx; y; tÞ � U

�
ð4:5Þ
And let U ¼ s0eðx; y; tÞ þ k1e1 þ k2e2, Eq. (4.5) can be written as
_e ¼ _e1
_e2

� 

¼ 0 1

�1� k1 �g � k2

� 

e1
e2

� 

¼ Ae
If the all eigenvalues of A are less than 0, eðtÞ converges to zero. We take both eigenvalues of A as 20, )20, we get
k1 ¼ 399, k2 ¼ 57:9, and UðtÞ ¼ s0eðx; y; tÞ þ 399e1 þ 57:9e2.
Fig. 24 shows e2 versus the time. The system can be partially synchronized with a small error, i.e. the systems are

practically synchronized.
5. Conclusions

First, we present the blushless dc motor (BLDCM) system that is transformed to a nondimensionalized form. Then

we study the behavior of BLDCM via numerical simulation. After applying the numerical results such as phase portrait,

and bifurcation, a variety of the phenomena of the chaotic motion can be presented. Furthermore, Lyapunov exponents

can also be used to check the chaotic motion. Anticontrol of chaos is studied via adding a constant torque, a xjxj term,
and various periodic waves, such as the square wave, the triangle wave, and the sawtooth wave. Finally, the chaos

synchronization of two different order systems, i.e. the BLDCM system and rate gyroscope system, can be achieved via

various coupling terms, and linearization of error dynamics.
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