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We study the Chapman�Jouguet (CJ) model and the selfsimilar Zeldovich�
von Neumann�Do� ring (SZND) model in chemically reacting gas flows. We discover
some basic relationships among ignition temperature Ti , total chemical binding
energy Q, and the adibatic exponent # of polytropic gas. From these relations, we
can determine when temperatures along the SZND burning solutions are higher
than the ignition temperature Ti . We also study the all possible selfsimilar solutions
for the SZND-model. From these results, we can determine when selfsimilar solu-
tions for the CJ-model are the limits of selfsimilar solutions of the SZND model
when the reaction rate tends to infinity. � 1997 Academic Press

1. INTRODUCTION

Two well-known mathematical models have been used frequently to
study combustion phenomena in chemically reactive gas flows: the
Chapman�Jouguet (CJ) model and the Zeldovich�von Neumann�Do� ring
(ZND) model (see [2, 10]). In Lagrangian coordinates, the CJ-model is
expressed as

ut+px=0,

{t&ux=0,

(CJ) {Et+( pu)x=0,

q(x, t)=0 if sup0�s�t T(x, s)>Ti ;

=q(x, 0), otherwise,

where u, p, {, T, Ti , q, and E are respectively velocity, pressure, specific
volume, temperature, ignition temperature, chemical binding energy, and
specific total energy. More precisely, E=(1�2) u2+e+q, where e is the
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internal energy. For polytropic gases, the internal energy e=e(T )=
p{�(#&1), where # is the adiabatic exponent with # # (1, 5�3) for media
occurring. Temperature T satisfies Boyle and Gay-Lussac's law, p{=RT. R
is a constant that depends on the effective weight of particular gases. For
simplicity, we assume R and # remain unchanged during the reaction, and
that R=1. The CJ-model is based on two physical assumptions:

(i) the reaction rate is infinitely large (i.e., the reaction zones are
infinitely thin),

(ii) the effects of viscosity and heat conduction are negligible.

In the ZND-model, on the other hand, a finity but large reaction rate is
assumed although the effects of viscosity and heat condution are still
ignored. The ZND-model is expressed as

(ZND) {
ut+px=0,
{t&ux=0,
Et+( pu)x=0,
qt=&k.(T)q,

where

.(T)={1
0

if T>Ti ,
if T�Ti ,

(1.1)

and k is positive constant related to the reaction rate. It is natural to ask
whether or not the CJ-model is a limit of the ZND-model as k � �. The
question is still unsolved due to the mathematical difficulty of obtaining the
existence of global (in time) weak solutions for the ZND-model and then
studying their asymptotic behavior as k � �.

However, Ying and Terng [11] studied the following simplified scalar
combustion model

(A1) {(u+Qz)t+f (u)x=0,
zt=&k.(u)z.

They were able to prove the existence and uniqueness of a solution for the
Riemann problem. Furthermore, they proved the existence of limits on
the solutions as k � � and found that the limit function is a solution of the
Riemann problem for the corresponding scalar CJ-model. Later, Ja� ger,
Yang and Zhang [4] studied the following selfsimilar scalar ZND-model

(A2) {
(u+qz)t+f (u)x=0,

zt=&
k
t

.(u)z.
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They proved that all selfsimilar solutions for the scalar CJ-model are the
limits of the solutions of the Riemann problem stated in (A2). Based on
these results, Tan and Zhang [8] then studied the following selfsimilar
ZND (SZND) model

ut+px=0,

{t&ux=0,

(SZND) {Et+( pu)x=0,

qt=&
k
t

.(t)q.

Previously, Courant and Friedrichs [2] proved that any combustional
shock wave (deflagration and detonation) must satisfy Jouguet's rule.
However, only quite recently has a complete solution that satisfies
Jouguet's rule for the Riemann problem as it relates to the CJ-model been
obtained by Zhang and Zheng [13]. The number of solutions may be (at
most) nine for some initial data. Later, Tan and Zhang [8] proved that
these selfsimilar solutions for the CJ-model are limits of the SZND solu-
tions as k � � assuming the following:

(TZ-1) the selfsimilar solutions for the SZND-model are of a special
type; (we call them simple types in this paper),

(TZ-2) temperatures along the SZND burning solutions are higher
than the ignition temperature Ti .

Due to the discontinuity of . at Ti , initial-value problems involving
selfsimilar solutions for the SZND model may yield non-unique results at
T=Ti . In this paper, we discuss this issue in detail and identify the solu-
tions obtained in [8] as simple solutions.

We discovered the answers for assumption (TZ-2), lie in the relation-
ships among ignition temperature Ti , total chemical binding energy Q, and
the adiabatic exponent # of polytropic gas. More precisely, it depends on
the relation between Ti and Q

*
(#)=((1&9+4)�2+2)Q with +2=(#&1)�

(#+1). These are intrinsic properties of the CJ-model. We then divide all
unburnt states into three classes: A, B and C. (TZ-2) is always true for the
Jouguet diagrams of class A unburnt states (see Section 2 for further
details). (TZ-2) is only partially true for the Jouguet diagrams associated
with class B and C unburnt states. From these observations, we can deter-
mine when selfsimilar solutions for the CJ-model are the limits of simple
solutions of the SZND-model.

Since many studies of combustion theory exist, we mention only those
few that are closely related to our work.
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Based on the work of Ying and Terng [11], Liu and Zhang [6] obtained
a set of entropy conditions for the scalar CJ-model. This sect of entropy
conditions consists of two parts��pointwise and global, and they were able
to prove the existence and uniqueness of solutions. In [7], Majda studied
the combustional profile of scalar combustion model with finite reaction
rate and diffusion. Using singular perturbation methods, Wagner [9] and
Gasser and Szmolyan [3] studied combustional problems involving low
viscosity, heat induction and diffusion. In [1], Chen proved the existence
of global generalized solutions to the compressible Navier�Stokes equation
for a reacting mixture with discontinuous Arrhenius functions.

The paper is organized as follows. In Section 2, we study (CJ) and
obtain some new properties of it, including some relationships between Ti ,
Q and #. We then divide all unburnt states into three classes in order to
study temperatures along the burning solution. In Section 3, we study
(SZND) and establish the existence of global selfsimilar solutions. The
solutions at T=Ti are classified as simple and non-simple. The simple solu-
tions are used to approximate (CJ) as k � �. In Section 4, after improving
the strength of the results obtained by Tan and Zhang [8], we derive a
complete answer when the CJ-model is a limit of the SZND-model as
k � �.

2. SOME BASIC PROPERTIES OF THE CJ-MODEL

In this section we shall review some known properties of the CJ-model
and provide some new results which are interesting in themselves and also
useful in studying the SZND-model.

For a given burnt state (u0 , p0 , {0 , 0), all states (u, p, {, 0) that can be
linked by shock (S) or rarefaction waves (R) to (u0 , p0 , {0 , 0) are given by

R: p{#=p0{#
0 , 0<p�p0 , (2.1)

u=u0&
1&+4

+4 {1�2
0 p1�2#

0 ( p(#&1)�2#&p (#&1)�2#
0 ), (2.2)

S: ( p++2p0)({&+2{0)=(1&+4) p0{0 , p>p0 , (2.3)

u=u0&( p&p0)[(1&+2) {0 �( p++2p0)]1�2, (2.4)

where

+2=(#&1)�(#+1).

Here, Lax entropy conditions are assumed, see [5]. However, for a given
unburnt state (u0 , p0 , {0 , Q), in addition to the non-combustional shock
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waves (S) and rarefaction waves (R) (u, p, {, Q) given (2.1)t(2.4), we also
have combustional shock waves: detonation waves (DT) and deflagration
waves (DF) (u, p, {, 0) that can be linked to (u0 , p0 , {0 , Q) and lie on a
Hugoniot curve:

( p++2p0)({&+2{0)=(1&+4) p0{0+2+2Q. (2.5)

DT#DT(({0 , \0)) is the upper portion of the curve, i.e., p�pA , where

pA=p0+
:2

(1&+2) {0

(2.6)

and :=(2+2Q)1�2. DF#DF(({0 , p0)) is the lower portion of the curve, i.e.,
p�p0 . Furthermore, there is a unique Rayleigh line

&'2
c=

p&p0

{&{0

, 'c>0, (2.7)

which starts from ({0 , p0) and is tangent to DT at point ({c , pc). ({c , pc) is
called the Chapman�Jouguet detonation point (CJDT) of state ({0 , p0).

Moreover, the CJDT point ({c , pc) divides DT into two parts: strong
detonation (SDT) for p>pc and weak detonation (WDT) for pA�p<pc .
Similarly, there is a Chapman�Jouguet deflagration point (CJDF) ({c, pc)
on DF that divides DF into two parts: weak deflagration (WDF) for
pc<p�p0 and strong deflagration (SDF) for 0<p<pc. For details, see
[2, 8, 13] and Fig. 1.

For any ' # ['c , �), the associated Rayleigh line

&'2=
p&p0

{&{0

(2.8)

intersects SDT at ({('), p(')) and S at ({*('), p*(')) uniquely. ({*('),
p*(')) is called the von Neumann point. They are very important in our
study of the CJ-model and the explicit expressions of these points are given
below.

The Riemann problem stated below has material in a burnt state on the
left and material in an unburnt state on the right,

burnt state(&): (u& , p& , {& , 0) for x<0,

and

unburnt state(+): (u+ , p+ , {+ , Q) for x>0,

14 HSU AND LIN
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Fig. 1. Chapman�Jouguet's diagram.

with

T&#p&{&�Ti>T+#p+{+.

The state (&) of Hugoniot curve S(&) _ R(&) is given by (2.1)t(2.4)
with u0 , p0 and {0 being replaced by u&, p& , and {& , respectively.

Courant and Friedrichs [2] pointed out that the WDT and SDF are not
stable for the unburnt state (+). If we assume as in [8, 13] that the tem-
perature at the front WDF bank is exactly at the ignition temperature Ti ,
then Jouguet's rule implies three different kinds of wave series can be linked
to state (+):

(i) S(+) or R(+) (with q=Q) (containing no combustion waves);

(ii) (i )+WDF(i ) or (i )+CJDF(i )+R(CJDF(i )) (containing no
DT waves); and

(iii) SDT(+) or CJDT(+)+R(CJDT(+)).

Here i#i(+)#(ui , pi , {i , Q)#(ui (+), pi (+), {i (+), Q) is the state at
S(+) with ignition temperature Ti . (The symbol ``+'' between two states
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in (ii) and (iii) means ``followed by''.) Substituing states (+) and (i ) into
(2.1) and (2.3), we obtain the following expressions.

R(+): p{#=p+{#
+ , p<p+. (2.9)

S(+): ( p++2p+)({&+2{+)=(1&+4) p+{+ , p>p+. (2.10)

SDT(+): ( p++2p+)({&+2{+)=(1&+4) p+{++2+2Q, p>pc .

(2.11)

WDF(i ): ( p++2pi )({&+2{i )=(1&+4) Ti+2+2Q, pc
i <p�pi .

(2.12)

R(CJDT(+)): p{#=pc{#
c , p�pc . (2.13)

R(CJDF(i )): p{#=pc
i ({c

i )#, p�pc
i . (2.14)

Hence the set of all possible states can be linked to state (+) is

J(+)#R(+) _ S(+) _ JDT(+) _ JDF(+),

where

JDT(+)#SDT(+) _ R(CJDT(+))

and

JDF(+)#WDF(i ) _ R(CJDF(i )).

J(+) is called the Jouguet diagram just because it relates to Jouguet's rule
[2, 8, 13]. A typical Jourguet diagram is given in Fig. 2.

From the above observations, there are at most three solutions for our
Riemann problem, see [8, 13]. Our main task in this paper is to study
which one of them can be a limit of solutions for the SZND-model as
k � �.

From now on, for simplicity, we shall omit dependence on (+) wherever
the omission does not cause any confusion. We first establish some explicit
expressions for CJDT(+) and CJDF(+).

Proposition 2.1. The coordinates ({c , pc) and ({c, pc) of CJDT(+) and
CJDF(+) are given by

pc=p++
:(:+;)

(1&+2) {+

, {c={++
:(:&;)

(1++2) p+

, (2.15)

16 HSU AND LIN
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Fig. 2. Jouguet's diagrams.

and

pc=p++
:(:&;)

(1&+2) {+

, {c={++
:(:+;)

(1++2) p+

, (2.16)

where

:=(2+2Q)1�2 and ;=;(+)=[2+2Q+(1&+4) p+{+]1�2. (2.17)

Furthermore,

Tc#Tc(+)#pc{c=p+{++
2:(:++2;)

1&+4 &:2. (2.18)

Proof. On SDT(+), taking p=p({), it is easy to verify that

dp
d{

=&
p++2p+

{&+2{+

. (2.19)
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Since CJDT(+) is the point of tangency between the Rayleigh line and the
Hugoniot curve (2.11). ({c , pc) satisfies

pc&p+

{c&{+

=&
pc++2p+

{c&+2{+

. (2.20)

From (2.11) and (2.20), after a direct computation we can obtain

{c=(1++2) pc{+ �2pc&(1&+2) p+

and

(1&+2) {+ p2
c+[2(+2&1) p+{+&2:2] pc+(1&+2) p+( p+{++:2)=0.

Then (2.15) follows from the last two equations.
We can obtain (2.16) in similar fashion, thus the details are omitted, and

the proof is complete.

Next, it is useful to distinguish SDT(+) from WDT(+) by comparing
' with #p�{ as follows.

Lemma 2.2. If ({, p) # DT(+) and ' satisfies

&'2=
p&p+

{&{+

, (2.21)

then, on SDT(+), we have '2<#p�{, at CJDT(+), we have '2=#p�{, and
on WDT(+), we have '2>#p�{. Similarly, if ({, p) # DF(+) and ' also
satisfy (2.21), then on WDF(i ), we have '2<#p�{, at CJDF(i ), we have
'2=#p�{, and on SDF(i ), we have '2>#p�{.

Proof. On DT(+), taking p=p({) and '='({) on (2.21), we may
define

g({)=#p({)&'2({){

on (+2{+ , {+). Then it is easy to verify that

dg
d{

={({&{+)+({&+2{+)
(1&+2)({+&{) = p++2p+

{&+2{+

&{+

( p&p+)
({&{+)2

<
p++2p+

(1&+2)({&+2{+)
&{+

( p&p+)
({&{+)2=0,

18 HSU AND LIN
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which is strictly negative in (+2{+ , {+). Now, (2.20) and (2.21) implies

'2
c=

#pc

{c
,

i.e., g({c)=0. Hence, the result follows for DT(+). We can obtain the
results for DF(+) in similar fashion, and the proof is complete.

Explicit von Neumann points can also be computed as follows.

Lemma 2.3. For each ' # ['c(+), �) the von Neumann point ({*('),
p*(')) is given by

p*(')=p(')+
:2

{+&{(')
, (2.22)

and

{*(')={(')+
:2

p+&p(')
, (2.23)

where ({('), p(')) is the associated SDT(+) point. Furthermore, the tem-
perature at the associated von Neumann point ({*

c , p*
c ) with CJDT point

({c , pc) is

T *
c (+)#p*

c {*
c =p+ {++

4:(:++2;)
1&+4 &4:2. (2.24)

Proof. Since ({*('), p*(')) # S(+) and

&'2=
p*&p+

{*&{+

, (2.25)

we can easily obtain

p*=p+&'2({*&{+)

and

'2({*)2&(1++2)('2{++p+) {*+(1++2) p+{+++2'2{2
+=0.

From last two equations, we have

p*(')=(1&+2) '2{+&+2p+ , (2.26)

19RIEMANN PROBLEM IN COMBUSTION
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and

{*(')=(1++2)
p+

'2 ++2{+. (2.27)

Substituting (2.21) into (2.26) and (2.27), (2.22) and (2.23) then follow.
Finally, let '='c(+). We then have

T *
c (+)=\pc+

:2

{+&{c+\{c+
:2

p+&pc+ . (2.28)

(2.24) follows from (2.15) and (2.28). The proof is complete.

For convenience, we denote the set of all von Neumann points of state
(+) as

VN(+)#[({*('), p*(') | ' # ['c(+), �)].

From the explicit expressions above, we can easily recover the following
well-known result: SDT is composed of a shock wave followed by a weak
deflagration wave.

Proposition 2.4. For ' # ['c , �), let ({('), p(')) # SDT(+) and the
associated von Neumann point ({*('), p*(')) # VN(+). Then ({('), p(')) #
WDF(({*('), p*(')).

Proof. ({*('), p*(')) and ({('), p(')) satisfy (2.10) and (2.11) respec-
tively, i.e., we have

( p*++2p+)({*&+2{+)=(1&+4) p+ {+ ,

and

( p++2p+)({&+2{+)=(1&+4) p+{++2+2Q.

On the other hand, both of them also lie on the same Rayleigh line with
slope &'2, i.e.,

p*&p+

{*&{+

=
p&p*

{&{* =&'2.

By direct computation, we can obtain

( p++2p*)({&+2{*)=(1&+4) p*{*+2+2Q.

20 HSU AND LIN
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Since p<p* and {>{*, we have ({, p) # DF(({*, p*)). Furthermore,
'2<#p�{ and Lemma 2.2 imply ({, p) # WDF(({*, p*)). The proof is
complete.

Usually, the Hugoniot curve SDF(+) is parametrized by { # [+2{+, {c).
However, it can also be parametrized by ' # ['c(+), �) through (2.21). In
particular, as in (2.22) and (2.23), the von Neumann set VN(+) are
already parametrized by ' # ['c(+), �). We can also use (2.21) to
parametrize the von Neumann set VN(+) by { # [+2{+ , {c) whenever we
like. From now on, any quantity defined on SDT(+) or VN(+) can be
seen either as a function of { or '. For example, the temperature T=p{ can
be seen either as T({)=p({){ or T(').

It is known that temperatures along S(+) or SDT(+) strictly decrease
as { increases [12]. Indeed, we have:

Lemma 2.5. On S(+) and SDT(+), we have

dT
d{

({)<0. (2.29)

Furthermore, T and T * strictly increase in ('c , �), with

T *
c (+)>T+. (2.30)

Proof. By (2.19), we have

dT
d{

=&+2 \p{++p+{
{&+2{+ + .

Hence, (2.29) follows. From (2.29) and d{�d'<0, T and T * strictly
increase in ('c , �). Finally, (2.30) follows by (2.28). The proof is complete.

Definition 2.6. Given Q>0 and # # (1, 2), define

Q
*

=Q
*

(#)=
1&9+4

2+2 Q. (2.31)

The positive quantity Q
*

plays a very important role in studying the tem-
peratures T and T * along SDT(+) and VN(+), respectively. Indeed, we
have following theorem.

21RIEMANN PROBLEM IN COMBUSTION
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Theorem 2.7. Let Q and T+>0 be given. Then,

(i) T+<Q
*

if and only if T *
c (+)<Tc(+), (2.32)

(ii) T+=Q
*

if and only if T *
c (+)=Tc(+), (2.33)

(iii) T+>Q
*

if and only if T *
c (+)>Tc(+). (2.34)

Furthermore, in (i) and (ii),

T (')>T *(') on ('c(+), �).

In (iii), there exists '̂(+) # ('c(+), �) such that

T (')>T *(') in ('̂(+), �),

T ('̂(+))=T *('̂(+)),

and

T (')<T *(') in ('c(+), '̂(+)).

Proof. By (2.18) and (2.24), T *
c (+)<Tc(+) if and only if

4:(:++2;)
1&+4 &4:2<

2:(:++2;)
1&+4 &:2.

By (2.17) and a straightforward computation, the last inequality is shown
to be equivalent to T+<Q

*
. Similarly, (ii) and (iii) hold. It remains to

show that T and T * intersect at most once in ('c(+), �). Using (2.22)
and (2.23), we obtain

p{&p*{*=
:2G( p)

Z( p)( p&p+)({+&{)
,

where

Z( p)#p++2p+>0,

and

G( p)#( p&p+)[(1&2+2) p&p+] {++:2[(1&+2) p+&p]

are defined on ( pA , �), and pA is given in (2.6). Since G is quadratic in
(&�, �) and

G( pA)=
:2+2

1&+2 (+2p+&pA)<0,

22 HSU AND LIN
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pc>pA implies G has at most one zero in ( pc , �). Hence, the result
follows, and the proof is complete.

When p+=0 or {+=0, (2.17) then implies

:=;=(2+2Q)1�2.

In this case, by (2.18) and (2.28), we have

Tc(0)#Tc( p+{+=0)=2#+2Q, (2.35)

and

T *
c (0)#T *

c ( p+{+=0)=
8&+2

1&+2 Q. (2.36)

On the other hand, when T+=Q
*

, then Theorem 2.7(ii) implies
T *

c (+)=Tc(+). In this case, it can be computed that T *
c (+)=

(1&+4)�(2+2)Q, allowing us to denote

Tc(Q*
)=T *

c ( p+{+=Q
*

)=
1&+4

2+2 Q. (2.37)

By using (2.32), (2.33) and (2.34) and a straightforward computation, we
can obtain

Proposition 2.8.

T *
c (0)<Tc(0)<Q

*
<Tc(Q*

). (2.38)

As is known from the previous work of Tan and Zhang [8], it is important
to determine whether or not the temperatures T and T * along SDT(+) and
VN(+) are always higher than the ignition temperature Ti . We will show the
answer depends on the value relationships among Ti , Tc(0), and T *

c (0).
To begin with we divide all unburnt states ({+ , p+) into three classes

according only to the relationships among Ti , Tc(+) and T *
c (+) as

follows.

Definition 2.9. If T+=p+ {+<Q
*

(#), then the unburnt state ({+ , p+)
belongs to

class A if Ti�T *
c (+),

class B if Ti # (T *
c (+), Tc(+)],

class C if Tc(+)<Ti .
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Similarly, if T+>Q
*

(#), the unburnt state ({+ , p+) belongs to

class A if Ti�Tc(+),

class B if Ti # (Tc(+), T *
c (+)],

class C if Ti (+)>T *
c (+).

See Fig. 3, with T and T * along SDT(+) and VN(+), respectively.
For the fixed ignition temperature Ti , denote the set of all unburnt states

as

U#U(i )#[({+ , p+): 0�p+{+<Ti .

Now, we can have a complete classification of all unburnt states as follows.

Theorem 2.10. (I) If Ti�Q
*

(#), then we have three casses:

(i) if Ti�T *
c (0), then each state in U is of class A.

(ii) if T *
c (0)<Ti�Tc(0), the equi-temperature curve 1AB#1AB(i )#

[({+ , p+) # U : T *
c (+)=Ti ] divides U into two simply-connected sets,

UA and UB . Each state in UX is of class X for X=A and B.

(iii) if Tc(0)<Ti , then there are two disjoint equi-temperature
curves 1AB#1AB(i )#[({+ , p+) # U : T *

c (+)=Ti ] and 1BC#1BC (i )#
[({+ , p+) # U : Tc(+)=Ti ]. 1AB and 1BC divide U into three disjoint
simply-connected sets UA , UB and UC . Each state in UX is of class X for
X=A, B and C.

Similarly, for (II) Ti>Q
*

(#), we have two cases:

(i) if Ti<Tc(Q
*

), then there exist two disjoint equi-temperature
curves 1AB and 1BC defined as in (I)(ii) that divide U into three disjoint
simply-connected sets UA , UB , UC . Each state in UX is of class X for
X=A, B and C. Furthermore, the curve [({+ , p+) # U : T+=Q

*
] lies

in UA .

(ii) if Ti>Tc(Q
*

), then there exist two disjoint equi-temperature
curves 1� AB = [({+ , p+) # U : Tc(+) = Ti ] and 1� BC = [({+, p+) # U :
T *

c (+)=Ti] also divide U into three disjoint simply-connected sets UAUB

and UC . Each state in UX is of class X for X=A, B and C.

See Fig. 4.

Proof. (I) If Ti�Q
*

then any unburnt state ({+ , p+) satisfies
T+�Q

*
. Thus, by Theorem 2.7, we have

T *
c (+)�Tc(+) (2.39)
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Fig. 3. Temperatures along SDT(+) and VN(+).

for each ({+ , p+) # U. On the other hand, (2.24) implies

T *
c (Ti )#T *

c ( p+ {+=Ti )>Ti . (2.40)

(i) If T *
c (0)�Ti , then T *

c (+)>T *
c (0) implies T *

c (+)>Ti .
Hence each state of U is of class A.

(ii) If T *
c (0)<Ti�Tc(0), then the equi-temperature curve 1AB=

[({+ , p+) # U : T *
c (+)=Ti ] is non-empty. Furthermore, (2.40) implies

1AB/U. It is easy to verify that 1AB is an unbounded, continuous
Jordan curve in U. Therefore, 1AB divides U into two disjoint open sets,
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Fig. 3��Continued

UA and UB , such that UA=[({+ , p+) # U : T *
c (+)<Ti ] and UB=

[({+ , p+) # U : T *
c (+)>Ti ]. (2.39) now implies Tc(+)>Ti too. Hence,

each state in UX is of class X for X=A and B.

(iii) If Tc(0)<Ti , then 1AB and 1BC are non-empty in U. Now

UA=[({+ , p+) # U : T *
c (i )>Ti ],

UB=[({+, p+) # U : T *
c (+)<Ti<Tc(+)], and

UC=[({+ , p+) # U : Tc(+)<Ti ].

It is clear that each state in UX is of class X for X=A, B and C.
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Fig. 4. Classification of unburnt states.

(II) If Q
*

(#)<Ti , then the curve 1
*

=[({+ , p+) # U : T+=
Q

*
(#)]/U.

(i) If Ti�Tc(Q
*

), then each state in

U*=[({+ , p+) # U : T+>Q
*

(#)]

is of class A by virtue of Theorems 2.7(iii) and (2.18). Hence, it remains to
determine the states in

U
*

=[({+, p+) # U : T+<Q
*

(#)].
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Fig. 4��Continued

Again by Theorem 2.7(i), each state in U
*

satisfies

T *
c (+)<Tc(+).

Proposition 2.8 and Q
*

<Ti imply 1AB and 1BC are not empty in U
*

.
A similar argument as in (I) (iii) also holds in U

*
. Hence, the result

follows.

(ii) If Ti>Tc(Q
*

), then by Theorem 2.7(iii) and (2.38), each state in

U*=[({+ , p+) # U : T+>Q
*

]

satisfies

T *
c (+)>Tc(+).

On 1+= [({+ , p+) # U : T+= Q
*

], we have T *
c (+) = Tc(+) =

Tc(Q
*

)<Ti implying that there are two curves,

1� AB=[({+ , p+): Tc(+)=Ti]

and

1� BC=[({+ , p+): T *
c (+)=Ti ]

in U*, dividing U* into three regions:

UA=[({+ , p+) # U* : Tc(+)>Ti ],

UB=[({+ , p+) # U* : Tc(+)<Ti<T *
c (+)], and

U� C=[({+ , p+) # U* : T *
c (+)<Ti].
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In each set, the state is of the indicated class. Finally, in

U
*

=[({+ , p+) # U : T+<Q
*

],

each state has T *
c (+)<Tc(+) and Tc(+)<Tc(Q*

)<Ti . Hence each
state in U

*
is of class C. The results hold by letting

UC=U
*

_ U� C _ 1
*

.

The proof is complete.

For deflagration waves, we also have results similar to those from
Theorem 2.7.

Definition 2.11. Given Q>0 and # # (1, 2), denote

Q*#Q*(#)=
1&+4

2+2 Q.

The positive quantity Q* plays a role similar to that of Q
*

for detona-
tion waves. Indeed, we have the following theorem.

Theorem 2.12. Let Q and Ti be given. Then,

(i) T(CJDF(i (+)))>Ti if and only if Ti<Q*. (2.41)

(ii) T(CJDF(i (+)))=Ti if and only if Ti=Q*. (2.42)

(iii) T(CJDF(i (+)))<Ti if and only if Ti>Q*. (2.43)

See Fig. 5.

Fig. 5. Temperature along WDF.
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Proof. By Proposition 2.1, we have

T(CJDF(i (+))&Ti=:(2:&2+2;)�(1&+4)&:2. (2.44)

Thus the sign of T(CJDF(i (+)))&Ti is the same as the sign of Q*&Ti .
The proof is complete.

3. SELFSIMILAR SOLUTIONS OF SZND MODEL

In this section, we study the selfsimilar solutions for the SZND-model.
Indeed, let !=x�t, if solution (u, p, {, q) for (SZND) depends only on !,
then it satisfies the following equations:

!u$&p$=0, (3.1)

!{$+u$=0, (3.2)

!E$&(up)$=0, (3.3)

!q$=k.(T )q, (3.4)

where

.(T)={0,
1,

T�Ti ,
T>Ti .

(3.5)

The Riemann data becomes

(u, p, {, q)(&�)=(u& , p& , {& , 0), (3.6)

and

(u, p, {, q)(+�)=(u+ , p+ , {+ , Q). (3.7)

When !{0 and the solution is smooth, then (3.1)t(3.4) can also be
expressed as

{$=&
#&1

#p&!2{
q$, (3.8)

p$=&!2{$, (3.9)

q$=
k
!

.(T )q, (3.10)
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where #p&!2{{0. If #p&!2{=0, then we require q$=0. For any !0 # R1,
we may supply (3.8)t(3.10) with the initial conditions

{(!0)={0>0, p(!0)=p0>0, q(!0)=q0�0. (3.11)

When solution (u, p, {, q)(!) for the SZND-model has a discontinuity at
!=', it then satisfies the Rankine�Hugoniot condition,

(RH): '[u]=[ p], (3.12)

'[{]=&[u], (3.13)

[e+q]+
pr+pl

2
[{]=0, (3.14)

where [w]=wr&wl , wr=w('+0), and wl=w('&0).
By direct computation, we can determine (ul , pl , {l ) in terms of

(ur , pr , {r), ' and [q] as follows.

pl=
1
2

[(1&+2)('2{r+pr)]+
1
2

[((1&+2) '2{r&(1++2) pr)
2+8+2'2[q]]1�2,

(3.15)

{l={r+( pr&pl )�'2, (3.16)

ul=ur+
1
'

( pl&pr). (3.17)

When [q]=0, (3.15)t(3.17) can be simplified to

pl=(1&+2) '2{r&+2pr , (3.18)

{l=(1++2) pr�'2++2{r , (3.19)

ul=ur+(1&+2) '{r&(1++2) pr�'. (3.20)

Since state (&) is burnt, we may consider the solution (u, p, {, q) is also
burnt in (&�, 0), i.e. q(!)=0 for any ! # (&�, 0]. Then (3.4) is automati-
cally satisfied, and (3.1)t(3.3) is the classic, non-combustion equation.
Therefore, for any data at !=0,

{(0)={0>0, p(0)=p0>0, u(0)=u0 , q(0)=0. (3.21)

Then (3.1)t(3.3), (3.6) and (3.21) yield unique solutions, (see Chapter 3
in [12]). Therefore, the (SZND) Riemann problem is reduced to finding
suitable initial data (u0 , p0 , {0 , 0) at !=0 such that solutions for
(3.1)t(3.4), (3.7) and (3.21) exist in (0, �). Hence, it is necessary to study
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the initial-value problem (3.8)t(3.11) when !0�0. We first study the
existence of global smooth (continuous) solutions in (!0 , �), and then
study solutions with discontinuities at some '>!0 . The solutions for
(3.1)t(3.4) depend on k(>0). For simplicity we shall omit the depen-
dence of k wherever such omission does not cause confusion.

We first have the following simple observation.

Lemma 3.1. Let q(!) be the solution of (3.10) in (!0 , !1) with
q(!0)=q0�0. Then:

(i) If T>Ti in (!0 , !1] and ' # (!0 , !1 ], then

q(!)=q(') \!
'+

k

in (!0 , !1]. (3.22)

(ii) If T�Ti in (!0 , !1), then

q(!)=q0 in (!0 , !1). (3.23)

However, if T(!0)=Ti , then we may have a non-unique solution since . is
discontinuous at T=Ti . This is clarified below.

For more efficient study of (3.8)�(3.11), it is convenient to divide (R+)3

into different regions, then study the equations for each region separately.

Definition 3.2. On (R+)3, denote as

G=[({, p, !) : #p&!2{>0], I 0=[({, p, !) : p{=Ti ],

H=[({, p, !) : #p&!2{<0], I+=[({, p, !) : p{>Ti ],

P=[({, p, !) : #p&!2{=0], I&=[({, p, !) : p{<Ti],

G+=G & I+, etc...

Therefore, (R+)3 consists of 4 open regions, G+, G&, H+, H&, 4 surfaces,
P+, P&, G0, H0 and one curve, P0.

For simplicity, denote the solution of (3.8)t(3.10) as

X(!)=({(!), p(!), !), (3.24)

with initial condition

X(!0)=X0#({0 , p0 , !0). (3.25)

We have the following demonstration of solution existence and uniqueness
for all regions except G0 and P0.
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Proposition 3.3. Assume k>2. We then have:

(I) (i) If X0 # H&, then X(!)=X0 in (!0 , �).

(ii) If X0 # H 0, then X(!)=X0 in (!0 , �).

(iii) If X0 # H +, then there exists !1>!0 such that X(!) # H+

in (!0 , !1 ] and X(!1) # H 0.

(II) (i) If X0 # P&, then there exists a !1>!0 such that

p(!)=C1!(2#)�(#+1) and {(!)=C2!(&2)�(#+1) (3.26)

for ! # (!0 , !1] and X(!1) # P0, for some positive constants C1 and C2 .

(ii) If X0 # P+ and q0>0, then there exists !1>!0 such that
X(!) # H+ in (!0 , !1 ).

(III) (i) If X0 # G&, then there exists !1>!0 such that X(!)=X0 in
(!0 , !1] and X(!1) # P&.

(ii) If X0 # G+, then there exists a !1>!0 such that X(!) # G+

in (!0 , !1) and X(!1) # G0.

Proof. (I) (i) Since X0 # H&, T(!0)<Ti and #p0&!2
0{0<0, (3.10)

and (3.8) imply q$=0 and {$=0 for !>!0 . Hence, X(!)=X0 for !>!0 .

(ii) The proof is similar to that for (i).

(iii) When #p&!2{{0, we then have

d
d!

T(!)=&
(#&1)k

!
.(T )

p&!2{
#p&!2{

} q. (3.27)

If X(!) # H+, then (3.27) implies T$(!)<0. Furthermore, we also have

d
d!

(#p&!2{)=&2!{&(#+1) !2{$<0

in H+. Therefore, !1>!0 exists such that T(!1 )=Ti and X(!) # H+ in
(!0 , !1).

(II) (i) If X(!) # P&, we then have

#p&!2{=0. (3.28)

For polytropic gas we also have

p{#=C>0. (3.29)
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From (3.28) and (3.29), (3.26) follows. Since

T(!)=C1 C2 !2((#&1)�(#+1)), (3.30)

T(!1)=Ti for some !1>!0 . Hence, X(!1) # P0 and X(!) # P& in (!0 , !1).

(ii) Since X0 # P+, !0>0. If there exists !1>!0 such that X(!) # P+

in (!0 , !1), i.e., (3.28) holds, then (3.30) implies T(!)>Ti . q0>0 now
implies q$>0 in (!0 , !1), a contradiction, therefore the result holds.

(III) (i) Since X0 # G&, .(T )=0, thus X(!)=X0 in (!0 , !1 ],
where #p0&!2

1 {0=0.

(ii) If X(!) # G+, then {$<0. From (4.11) on p. 344 in [8], we
have

1
2 (#+1) !2{2(!)&# { p0+2 |

!

!0

{(s) ds= {(!)

+#p0{0+(#&1) |
!

!0

s{2(s) ds&q0(#&1)(!�!0)k=0. (3.31)

We may assume q0>0 in (3.31). Otherwise, we replace ({0 , p0 , q0) and !0

with ({(!� ), p(!� ), q(!� )) and !� in (3.31) for some !� >!0 , and closed to it with
q(!� )>0. Since k>2, it can be verified by using (3.31) that X(!) can not
stay at G+ forever. Thus, there exists !1>!0 such that X(!) # G+ in
(!0 , !1), and either X(!1) # G0, or X(!1) # P+. The latter case can be ruled
out according to Theorem 3.1 [8]. The proof is complete.

Now it remains to study the problem of X0 # P0 or G0.

Proposition 3.4. If X0 # P0, then either

(i) X(!)=X0 for !>!0 , and so, X(!) stays at H0 forever, or
(ii) X(!) # G+ for ! # (!0 , !1) some !1>!0 . In this case, we have

{(!)={0&C0(!&!0)1�2+o((!&!)1�2), (3.32)

p(!)=p0+C0!2
0(!&!0)1�2+o((!&!0)1�2), (3.33)

T(!)=Ti+C0 | p0&!2
0{0 | (!&!0)1�2+o((!&!0)1�2), (3.34)

for !t!+
0 , where

C0=[2(#&1) kq0 �(#+1) !3
0]1�2.

Proof. It can be verified that (3.32) and (3.33) hold for !t!+
0 .

X(!) # G+ is equivalent to T(!)>Ti which is guaranteed by (3.34). The
proof is complete.
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Similarly, we have a result for X0 # G0.

Proposition 3.5. If X0 # G0, then either

(i) X(!)=X0 in (!0 , !1) with X(!1) # P0, or

(ii) X(!) # G+ in (!0 , !1) for some !1>!0 , and (3.32)t(3.34) hold.

Proof. If (i) does not hold, then by an argument similar to that in
Proposition 3.2(III)(ii) we can prove (ii), the details are omitted. The proof
is complete.

The case of !0=0 is the most interesting to us, since we have to solve
the Riemann problem in (0, �). When !0=0, we always assume (3.21),
and then X0 # G + _ G0. If X(!) # G+, for !>0, then (3.10) implies

q(!)=q~ 0!k (3.35)

for !t0+, where q~ 0�0 is a parameter. In view of (3.35), we always have
the freedom to chose q~ 0 # [0, �) and it may be possible to find an
appropriate q~ 0 to fit the boundary conditions at some point '(��) when
it is needed. This is stated more precisely below. The following proposition
is very important in studying temperature of X(!) at G+, which was essen-
tially proven in [8].

Proposition 3.6. If !0>0, X(!0) # G+ and

T$(!0)=0, (3.36)

then there exists !1>!0 such that X(!) # G+

T$(!)<0 in (!0 , !1 ) and T(!1)=Ti , (3.37)

i.e., X(!1 ) # G 0.

Proof. By Theorem 3.2 in [8], there is no !� >!0 such that X(!) # G+

and T$(!� )=0. Therefore, T$(!)<0 as far as X(!) # G+. Now, according to
Proposition 3.2 (III)(ii), there exists !1>!0 such that T(!1 )=Ti . The
proof is complete.

Remark 3.7. If !0=0 and X0 # G+, then T$(0)=0, which does not
contradict Proposition 3.5. Furthermore, according to Proposition 3.5, the
temperature T(!) either strictly decreases or has exactly one maximum
in (0, !1 ) with X(!1 ) # G0, where !1 is the first ! such that T(!)=Ti .
Summarizing the above results, we have the following diagram for con-
structing the solutions starting at !0�0, see Fig. 6.
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Fig. 6. Routes in different regions.

Combining the results of Propositions 3.3, 3.4 and 3.5, we have the
following global existence of solutions for (3.8)t(3.10).

Theorem 3.8. Given {(0)>0, p(0)>0 and q(0)=0, then there is a
smooth (continuous) solution X(!) for (3.8)t(3.10) in (0, �). Furthermore,
there is !� �� such that q(!)�Q in (0, !� ) and q(!� )=Q if !� <�.

Due to the non-uniqueness of solutions when X0 # P0 _ G0, we shall pay
much more attention to the following simplest solutions which were con-
sidered in [8].

Definition 3.9. A solution X(!) for (3.8)t(3.10) is called simple

(i) if X(0) # G 0 _ G +, then X(!) can not jump to G+ in (0, !� ),

(ii) if X(0) # G&, then X(!) jumps exactly once in (0, !� ).

Otherwise, X(!) is called a non-simple solution.

Therefore, we have four types of simple solutions when q(!)�Q; see
Fig. 7. From (3.10), because q(!) never decreases, X(!) is a physical solu-
tion of (SZND), and it is necessary that q(!)�Q. It is possible to get a
non-simple solution while q�Q.

For type (i) solutions, in [8] Tan and Zhang considered q('0)=Q for
some '0>0. (3.8)t(3.10) are then equivalent to

{$=&
k(#&1)
#p&!2{ \

!
'0+

k&1 1
'0

, (3.38)

p$=&!2{$, (3.39)

36 HSU AND LIN



File: 505J 330428 . By:XX . Date:23:09:97 . Time:08:46 LOP8M. V8.0. Page 01:01
Codes: 966 Signs: 381 . Length: 45 pic 0 pts, 190 mm

Fig. 7. Typical diagrams for simple solutions.

where

q(!)=Q \ !
'0+

k

. (3.40)

Based on (3.38)t(3.40), Tan and Zhang were able to prove their results,
the details are presented in the next section.

4. LIMITS OF SZND

In this section, we shall study the limits of selfsimilar simple solutions of
(SZND) and the locate the states in J(+) which can be limits of (SZND)
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as k � �. The methods of proof are similar to those used in [8], here we
only sketch a necessary modification and omit other details.

Let

{k(0)={0k>0, pk(0)=p0k>0, qk(0)=0, (4.1)

and Xk(!)=({k(!), pk(!), !) be the solutions of (3.8)t(3.10).
Let 'k<� such that

qk('k)=Q. (4.2)

If Xk(!) # G+ in (0, 'k), i.e.,

Tk(!)>Ti in (0, 'k), (4.3)

Then

qk(!)=Q \ !
'k+

k

, (4.4)

and Xk(!) satisfies

{$k(!)=&
kQ(#&1)
#pk&!2{k \

!
'k+

k&1 1
'k

, (4.5)

p$k(!)=&
kQ(#&1)
#pk&!2{k

'k \ !
'k+

k+1

, (4.6)

and

u$k=
&kQ(#&1)
#pk&!2{k \ !

'k+
k

. (4.7)

Condition (4.3) implies the solution X(!) under consideration is
necessarily of type (i) or (ii). For type (iii) or (iv), (4.3) may be replaced by

Tk(!)>Ti in ('̂k , 'k),

with Tn('̂k)=Ti . All results obtained below for type (i) or (ii) can also be
applied to type (iii) or (iv) on ('̂k , 'k). Therefore, we only consider type (i)
or (ii) solutions.
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The problem of studying the limits of (4.4)t(4.7) as k � � is
necessarily a singularity problem. For example, for type (i) or (ii) solu-
tions, if

'k � '0(<�) as k � �,

then (4.4) implies

qk(!) � q*(!)=0 in (0, '0) as k � �, (4.8)

and

qk('k)=Q=q*('0) for all k.

Hence, the limit q* is 0 in (0, '0) and Q at '0 , a jump at '0 . This
phenomena is also brought to the limit ({*, p*) of ({k , pk) as k � �, when-
ever ({*, p*) exists. This is discussed in more detail below. We first state a
monotonicity result for {k and Tk in k when Xk # G+.

Proposition 4.1. Assume (4.1), (4.2), (4.3) and

({0k , p0k , 'k) � ({0 , p0 , '0) as k � �. (4.9)

Then for sufficient large k, the solution Xk satisfies

(i)
�{k

�k
�0 in (0, '0),

(ii)
�Tk

�k
�0 in ('~ , '0) for some 0<'~ <'0 .

Proof. (i) This can be proven by the same argument used in [8] since
(4.9) holds, the detail is omitted.

(ii) By (3.9), we have

pk(!)=&!2{k(!)+2 |
!

0
s{k(s) ds.

Now,

�pk

�k
(!)=&!2 �{k

�k
(!)+2 |

!

0
s

�{k

�k
(s) ds
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implies

�Tk

�k
(!)=( pk(!)&!2{k(!))

�{k

�k
(!)+2{k |

!

0
s

�{k

�k
(s) ds.

Then (ii) follows by (i) and Xk # G+. The proof is complete.

The above theorem enables us to define the limits of solutions Xk .

Definition 4.2. Let (4.1), (4.2), (4.3) and (4.9) hold, and Xk by type (i),
define

p*= lim
k � �

pk(!), {*(!)= lim
k � �

{k(!), in (0, '0),

p*('0)= lim
k � �

pk('k) and {*('0)= lim
k � �

{k('k).

For type (ii) solution, we also assume T('0)=Ti .

Proposition 4.3. Assume (4.1), (4.2), (4.3) and (4.9) hold.

(i) If '2
0�#p0 �{0 , then ({*, p*)=({0 , p0) in (0, '0) and the conver-

gence of ({k , pk) to ({*, p*) is uniformly in any compact subinterval of
[0, '0 ).

(ii) If '2
0>#p0 �{0 , and '~ 0=(#p0 �{0)1�2, then ({*, p*)=({0 , p0) in

[0, '~ 0] and a rarefaction wave given in (3.26) in ['~ 0 , '0).

Proof. The results can be obtained by an argument similar to that used
in [8], so details are omitted.

The main part of the following theorem was essentially proven in [8].

Theorem 4.4.(I)If ({0 , p0) # SDT(+) with &'2
0=( p0&p+)�({0&{+),

then

T *('0)�Ti , T('0)�Ti , {*('0)={*('0) and p*('0)=p*('0)

(4.10)

hold if and only if

lim
k � �

({0k , p0k , 'k)=({0 , p0 , '0) (4.11)

such that the associated solution Xk is of type (i).
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(II) If ({0 , p0) # R(CJDT(+)) with

&'2
c=

pc&p+

{c&{+

and '2
c>#p0 �{0 .

Case 1.

T0�Ti , (4.12)

T *('c)�Ti , {*('c)={*('c) and p*('c)=p*('c) (4.13)

hold if and if (4.11) holds such that Xk is of type (i).

Case 2.

T0<Ti (4.14)

and (4.14) hold if and only if (4.11) holds such that Xk is of type (iii).

(III) If ({0 , \0) # WDF(i (+)) with &'2
0=( p0&pi )�({0&{i ), the

&'*('0)={i and p*('0)=pi (4.15)

hold if and only if (4.11) holds such that Xk is of type (ii).

(IV) If ({0 , p0) # R(CJDF(i (+)) with

&('c)2=
pc&pi

{c&{i
and ('c)2>#p0 �{0 .

Case 1.

T0�Ti , {*('c)={i and p*('c)=pi (4.16)

hold if and only if (4.11) holds such that Xk is of type (ii).

Case 2. (4.14) and (4.16) hold if and only if (4.11) holds such that Xk

is of type (iv).

Proof. The proofs of (I), (II), and (III) are almost the same as those
given in [8]. However, 'k is not necessarily equal to '0 , and q('k) may be
less than Q in general, which is assumed in [8]. In proving (IV), we need
the following result:

Suppose ({c, pc) is the CJDF(i (+)) and ('c)2=&( pc&p+)�({c&{+).
Then (4.16) holds.

Indeed, by Lemma 2.1, we have ('c)2=(;&:)�(1&+2) {+. Then, from
[8], we have p*('c)=pc+'c: and {*('c)={c&:�'c. A direct computation
implies (4.16). The proof is complete.
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Now, combining the classification theorems in Section 2 and Theorem 4.4,
we obtain the following complete result for J(+).

Theorem 4.5. (I) Concerning JDT(+):

(i) If unburnt state (+) is of class A, then any state ({0 , p0) #
JDT(+) is a limit of the simple solution Xk of (SZND) as k � �. Further-
more, Xk is of type (i) when T0�Ti , and of type (iii) when T0<Ti .

(ii) If unburnt state (+) is of class B or C, then state ({0 , p0) #
SDT(+) is a limit of the simple solution Xk of (SZND) as k � � if and
only if

'0�'
*

, (4.17)

where

T *('
*

)=Ti . (4.18)

In this case, Xk is of type (i). Furthermore, any state in R(CJDT(+)) cannot
be a limit of the simple solution of (SZND).

(II) Concerning JDF(+):

(i) If Q*(#)�Ti then for any unburnt state (+), any state ({0 , p0) #
JDF(+) can be a limit of the simple solution Xk of (SZND) as k � �.
Furthermore, Xk is of type (ii) when T0�Ti , and of type (iv) when T0<Ti .

(ii) If Q*(#)<Ti and (+) is an unburnt state, then ({0 , \0) #
WDF(i (+)) is a limit of the simple solution Xk of (SZND) as k � � if and
only if

'0�'*, (4.19)

where

T('*)=Ti . (4.20)

In this case, Xk is of type (ii). Furthermore, any state in R(CJDF(i (+)))
cannot be a limit of the simple solution of (SZND).

Remark 4.6. It is of interest to study the limit of non-simple solutions
of (SZND) as k � �.
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