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The photoluminescence (PL) spectrum of the ZnTe/ZnSe quantum dot (QD) structure which has a type II 
band alignment was investigated. A broader structure peaking at 2.180 eV together with the features of 
the ZnSe buffer layer located at 2.820 eV in the PL spectrum at 10 K were observed. The broadness of the 
PL attributes to the spatial inhomogeneity of the QD sizes. The PL spectrum was a normal distribution 
with a variance of 0.002 eV2. However, the dot size distribution was a deformed Gaussian. Using only one 
set of data of dot size distribution measured by the Atomic Force Microscopy (AFM), the statistical esti-
mates with standard errors were evaluated using the bootstrap methodology. The probability distribution 
was inferred by calculating the means, percentiles and correlation coefficients of the base diameter and the 
height of the QDs. We concluded that the dot distributions were indeed a deformed Gaussian and the cor-
relation coefficient of the diameter and the height of the QDs was 0.49 ± 0.01. The uniformity of the dot 
size distribution was poor. To infer the dot size distribution from the PL spectrum, we numerically solved 
the Schrödinger equation by elaborating on the orthogonal periodic functions (OPF) approximation for the 
type II lens shaped QDs. The convergence of the probability density was discussed in a great detail. We 
found that the band edge discontinuities inside the dot acts as a barrier with ∆Ec = 315 meV for the con-
duction band and as a well with ∆Ev = 735 meV for the valence band. In the AFM measurement, the offset 
in dot height is 14 Å and the aspect ratio is 0.04. We employed the Schrödinger equation to correlated the 
PL spectrum (intensity versus optical energy) to the AFM data (number of QDs versus dot size) and the 
agreement was excellent. 

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Recent advances in semiconductor technology such as molecular beam epitaxy (MBE) together with 
very accurate lithographic techniques made it possible to fabricate quasi-one-dimensional semiconductor 
structures to confine electrons known as the quantum wire [1, 2]. Reed et al. [3] achieved complete quan-
tization of free electron motion by trapping electrons in a quasi-zero-dimensional semiconductor quan-
tum dot (QD). Using high strain epitaxy technique for the production of quasi-zero-dimensional QDs, the 
Stranski–Krastanov (S–K) growth method [4, 5] is the most popular. The semiconductor QDs formed in 
the S–K phase transition are called self-organized or self-assembled dots (SADs). Using various crystal 
growth methods and conditions, different dot shapes have been grown and reported. Dots in the shape of 
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pyramids [6], cylinders or disks [2, 7, 8], cones [9] and lenses [4, 10] have been studied, although actual 
determinations of the shapes have not been definite. Using MBE, GaN QDs in an AlN matrix were suc-
cessfully grown on Si (111) by the molecular beam epitaxy [11]. Stacking of QD planes with properly 
chosen dot sizes were demonstrated to emit white light. Furthermore, light-emitting diodes made from 
the II–VI compound semiconductor QDs were reported [12]. Although a large amount of effort placed 
on the fabrication of opto-electronic devices based on QDs, the focus of interest remains on the novel 
physical properties exhibited in the material systems of QDs. Time evolution of dot shapes during and 
after growth remains a problem [13, 14]. Neither the growth dynamics nor the phase diagram of the 
whole II–VI compound semiconductor family is fully understood. Every real ensemble of nanocrystals 
dispersed in some environment possesses unavoidable inhomogeneities and for the majority of matrices, 
this is the size distribution. The photoluminescence (PL) spectra of ZnSe/ZnS QDs with [15, 16] or 
without [17] cap layers were investigated to reveal QD size distributions. In order to correlate the dot 
size with the photon energy of the PL spectrum, Tawara et al. [17] adopted an infinite well model for 
quantum boxes to estimate the quantum confinement sub-band energies by solving the Schrödinger equa-
tion. A histogram of the size distribution was obtained from a PL spectrum by mapping the intensity into 
the number of QDs measured by the Atomic Force Microscopy (AFM). Lee et al. [18] investigated the 
PL spectra of ZnTe/ZnSe QDs to correlate the dot size with the photon energy by adopting a finite well 
model for cylindrical QDs by solving the Schrödinger equation together with the first-order perturbation 
correction. Unfortunately, in reference [18], only the theoretical predictions were presented without 
AFM measurements. 
 The theoretical calculations of the basic properties of the two-dimensional electron or hole systems in 
quantum wells were well developed. However, the geometry of SADs with additional degrees of quantum 
confinement (due to the finite potential barriers) imposes boundary conditions that complicate the problems 
in solving the Schrödinger equation. If the shape of SADs is spherical, the solutions can be obtained ana-
lytically [19]; otherwise, numerical methods [20, 21] must be applied. Gangopadhyay et al. [19] suggested 
a numerical method by extending the orthogonal periodic functions (OPF) to effectively evaluate the eigen-
energies of SADs with a parallelopiped shape. Califano et al. [22–24] extended this method to study py-
ramidal, cuboidal, and cubic SADs. In order to calculate energy levels of pyramidal shaped InAs/GaAs 
dots, a 6859 × 6859 matrix was solved and was the minimum number required to achieve convergence 
for the eigenvalues to within less than 1 meV [24]. Wojs et al. [25] focused on lens-shaped SAD with the 
adiabatic approximation. When the valence band mixing and the spatial variation of the confining poten-
tials are significant due to strain, the confinement energy levels must be evaluated by using those more 
sophisticated models [26–29] such as an 8 × 8 Hamiltonian from the eight-band k.p theory. 
 It is well known that since semiconductor lasers are often heavily doped and operate at high injected 
carrier densities, it is necessary to consider the effects of these high doping densities on the density of 
states, the energy band profiles, and the binding energies. Depending on the doping profiles of the semi-
conductors, many-particle interactions can cause band bendings and deform the energy band profiles. For 
the QD lasers with type II materials, the holes may reside inside the dots while the electrons may reside 
in the matrix materials. Due to the screened Coulomb interaction between the electrons and holes, a band 
bending effect can occur. The screening effect plays an important role in the calculation of the optical 
gain for the strained GaAsSb/GaAs quantum-well lasers [30]. 
 The main purpose of this paper is to report the results of our investigation on the size distributions of 
type II ZnTe QDs on a ZnSe buffer layer. This paper is an extension of reference [18]. Important pa-
rameters of the QD distributions were inferred by simulating PL spectra. The means, the percentiles and 
the correlation coefficients of the dot sizes were estimated with the Bootstrap methodology [31, 32]. A 
brief discussion of the bootstrap is in section 4. In section 2, the growth of the ZnTe/ZnSe QDs and the 
PL measurements are described. In section 3, main steps of how to correlate the PL spectrum with the 
dot size distributions are presented. Section 4 presents the results of our numerical calculations and de-
scribes how to infer the dot size distributions from the PL spectra. Discussions focus on the reliability 
and the physical implications of the numerical results. A summary is presented in section 5. In Appendix 
A, the OPF approximation [19, 22–24] is further elaborated for the type I and II symmetroidal QDs and 
is applied to study the lens shaped QDs. 
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2 Experiment 

Self-assembled type II ZnTe QDs were grown on the GaAs substrate with a ZnSe buffer layer by MBE. 
The ZnSe buffer layer includes several MLs grown by the migration enhance epitaxy (MEE) [33] and a 
thickness of 20 nm grown by the conventional MBE growth mode. The average roughness of the ZnSe 
buffer layer is about 0.28 nm. Followed the deposition of flat ZnSe buffer layer, the growth of self-
assembled ZnTe QDs started. The average coverage of ZnTe for samples was 3 mono-layers (MLs). For 
the PL study, a ZnSe cap layer of 50 nm was grown. The 351 nm line of an Argon ion laser was used to 
excite the PL spectra and a SPEX 1403 double-grating spectrometer was used to analyze the PL spectra. 
Slit widths were set to 100 µm to yield a spectrum resolution better than 0.1 meV. 
 We begin our discussion with a PL spectrum of a 3 MLs ZnTe QD at 10 K as shown in Fig. 1. A near 
band edge emission, free and impurity bound excitons, of ZnSe buffer layer was observed at 2.820 eV. A 
broader PL structure peaking at 2.180 eV was observed and enlarged with a higher resolution as shown 
in Fig. 2. The dotted curve shown in Fig. 2 was obtained by fitting the PL line shape with a Gaussian 
curve and is discussed in section 4. The broadness of the PL implies the spatial inhomogeneity of the QD 
sizes [34, 35]. To directly investigate the spatial inhomogeneity, the height and diameter measurement 
was carried out immediately after the growth without a cap layer on top of the ZnTe QDs. The NT-MDT 
SOLVER P47 AFM was used for the morphology study and the measurement was carried out using the 
semi-contact mode. The scan step in the x, y directions were both 4.8 nm and the resolution in the  
z-direction is 0.01 nm. The shape of silicon tip is conic. The diameter and height of the tip were 30 and 
70 nm (i.e. the aspect ratio, α = H/D = 7/3), respectively. The aspect ratio of silicon tip is much lager 
than that of the ZnTe QDs grown in current study. The measured dot size distribution, NQD, is presented 
in Fig. 3 and discussed in Section 4. 

3 PL spectrum and dot size distribution 

We realized that the broadness of the PL comes from the spatial inhomogeneity of the QD sizes and that 
the dot size distribution and the photon energy of the PL spectrum must be correlated. In our experiment, 
since all samples are undoped and the optical pumping power is low, the screening effect due to the 
many-particle interactions is neglected in this paper. We estimate the quantum confinement sub-band 
energies of the type II QDs by elaborating the well-known OPF approximation [19, 22–24] as described 
in Appendix A for reference. By substituting Eq. (A16) into Eqs. (A12)–(A15) together with the matrix 
elements Eq. (A17) in Appendix A, the quantum confinement energies and corresponding wavefunctions 
for the type II materials with lens shaped QDs were obtained. 

Fig. 1 Photoluminescence spectrum of 
the type II ZnTe/ZnSe QDs at 10 K. The 
average coverage of ZnTe is 3 MLs. 
 

Fig. 2 High resolution photoluminescence spectrum 
of the type II ZnTeZnSe QDs 3 MLs sample. The 
vertical axis is the optical intensity I in arbitrary units 
(a.u.). The dotted line was fitted to the Gussian curve.
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 A schematic of the band alignment of the type II ZnTe/ZnSe QD along the z-axis with r = 0 is plotted 
for the conduction (valence) band edge, Ec (Ev), in Fig. 4. Referring to Fig. A2 for the geometry of a lens, 
the lens height, hlens, varies with r (see Eq. (A16)). For r = 0, we have z = h0, where h0 is the maximum 
height of the lens. Note that because of the lattice mismatch, the system is highly strained. 
 Figure 4 shows that for the type II ZnTe/ZnSe structure inside the QD region (0 ≤ z ≤ h0), the conduc-
tion electrons see a barrier with a barrier height of ∆Ec

0 + ∆Ec
ε for the conduction band while the heavy 

holes see a well with a well height of ∆Ev
0 + ∆Ev

ε for the valence band. ∆Ec
0 (∆Ev

0) is the conduction (va-
lence) band offset when the system is unstrained. Due to the strain effect, the amount of the energy shift 
for the conduction (valence) band edge is ∆Ev

ε (∆Ev
ε). In the matrix regions (–H/2 ≤ z and h0 < z ≤ H/2), 

the electrons see wide wells while the holes see wide barriers. 
 The particle in the QD can be an electron in the conduction band or a heavy-hole. Because we are 
interested in knowing the optical transitions, we have to evaluate both energy shifts. In the QD region, let 
Eg

0 = Ec
0 – Ev

0 be the energy difference of the bulk conduction band edge (Ec
0) and the bulk valence band 

edge (Ev
0), then the energy gap with strain is Eg = Eg

0 + ∆Ec
ε – ∆Ev

ε . If ∆Ec
ε – ∆Ev

ε  is negligible, then Eg can 
be approximated by Eg

0. In this paper, we assume that ∆Ec
ε almost completely cancels ∆Ev

ε  and Eg ≈ Eg
0 

holds. Let Ee and EH be the confinement energies for the electron and heavy-hole, respectively, as shown 
in Fig. 4. The corresponding envelope functions are Ψe and Ψh. For the electron–heavy-hole transitions, 
the optical energy EeH is defined as: 

 EeH = Ee + EH + Eg
0 – ∆Ec

0 . (1) 

 We assume that the intensity I of a PL spectrum is proportional to the total number of dots, NQD, of the 
same size and is given by 

 I = CONQD , (2) 

where C is a constant and O is the overlap integral related to Ee and EH. Note that NQD is an implicit func-
tion of the optical energy. Since O varies slowly with the dot size, it is a good approximation to assume 
that I is directly proportional to NQD: 

 I = CNQD . (3) 

The intensity I as a function of the optical energy was shown in Fig. 2 and the dot size distribution NQD as 
functions of D and h0 measured by the AFM was shown in Fig. 3. Equation (3) correlates the dot size 
distribution to the intensity of the PL spectrum and is experimentally justified in Section 4. 

Fig. 3 (online colour at: www.pss-b.com) Dot size 
distribution: number of QDs NQD versus base diameter D
and height h0 in Å measured by AFM. There are 5187 
dots in an area of 3 × 3 µm2. 

Fig. 4 Schematics of the band alignment of the 
type II ZnTe/ZnSe QDs along the z-axis at r = 0. 
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4 Numerical results and discussion 

This section consists of two sub-sections. In sub-section 4.1, we estimate the dot size distribution and the 
dot size statistics to obtain input parameters for the Schrödinger equation; in sub-section 4.2 we discuss 
the confinement energies for the type II QDs and their correlation to the PL spectrum. 

4.1 Dot size distribution and statistics 

Since we treat the dot sizes as input parameters to the Schrödinger equation, we need to study the dot 
size distribution first. From the AFM observations, we conclude that the shape of the dot looks more like 
a lens. There are 5187 dots in an area of 9 µm2 which leads to an average distance of 417 Å between 
dots. In Fig. 3, the most probable NQD value is 435 located at D = 164 Å and h0 = 25 Å. Thus, it is rea-
sonable to assume that there are no carrier communications between dots. The lens shaped QDs are char-
acterized by a base diameter D = 2ρ and a height h0, as indicated in Fig. A2 in Appendix A. Figure 5 
shows that a linear correlation between D and h0 is calculated to be h0 = 0.04D + 14 in Å with a  
R-squared value of 0.24 by using the least squares estimate. R-squared is related to the χ-squared. Set Nh 
to be the total number of dots with the same height despite the magnitude of the diameter D. Nh as a 
function of h0 is plotted in Fig. 6. Clearly we see that the distribution of Nh versus h0 is a deformed Gaus-
sian shape and has a peak around 25 Å. A deformed Gaussian implies that the variation of the energy 
with the dot size obtained from the Schrödinger equation is non-linear. 
 Note that because we had only one set of data for the size distribution measured from the AFM, there 
would be no formula to provide estimated standard errors if we wanted to acquire statistical estimators 
other than the mean. Any statistical estimator without the standard error is less meaningful. Hence we 
adopted the bootstrap method to estimate the standard errors. Bootstrap is a modern statistical technique; 
it is a computer-based method of inference that can answer many crucial statistical questions without 
assuming a particular functional form for the underlying probability density function. The bootstrap is a 
computer-based method for assigning measures of accuracy to statistical estimates [31]. Various statis-
tics of the dot sizes with the standard deviations of the sample means were calculated with 100 bootstrap 
samples which were generated by randomly sampling with replacement from the data set as shown in 
Fig. 5. One hundred bootstraps were used to ensure the convergence of the estimates. The calculated 
mean of the base diameter 〈D〉 is 165 ± 1 Å while the mean of the height 〈h0〉 is 24.59 ± 0.06 Å. The 50% 
percentile (i.e. the medians) for D is 159 ± 1 Å and for h0 is 24.70 ± 0.04 Å. The 99% percentile for D  
is 333 ± 6 Å and for h0 is 35.72 ± 0.30 Å. The slight deviations of the means, the medians and the  
0.99 percentiles for the D and h0 indicate that the distribution is a deformed Gaussian distribution and is 
consistent with the distribution as shown in Fig. 6. The sample correlation coefficient for D and h0 is   
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Fig. 5 Linear correlation between h0 and D
in an area of 3 × 3 µm2. 

Fig. 6 Histogram of number Nh versus h0. Nh 
is a sum of the number of dots over all possible 
D’s with the same height h0. 
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0.49 ± 0.01 which implies that when the linear relationship h0 = 0.04D + 14 (Å) as shown in Fig. 5 is 
used to correlate D and h0, there is a probability of 0.51 in error because of strong fluctuations of D ver-
sus h0. Finally, note that in the AFM experiment, D and h0 are measured from an arbitrary reference point 
on the ZnTe surface. Therefore, the linear relationship h0 = 0.04D + 14 (Å) indicates that there is an 
offset of 14 Å in h0 and the convolution radius of the silicon tip is excluded in D. After both offsets in h0 
and D are excluded, the relation h0 = 0.04D holds and the aspect ratio α = h0/D = 0.04 is defined for later 
applications. 

4.2 Confinement energies of type II QDs and PL spectrum 

The energy levels and wavefunctions for lens shaped QDs can be numerically evaluated for the type II 
ZnTe/ZnSe QDs as mentioned earlier in section 3. The eigenvalues of the matrix equation are obtained 
by using appropriate sub-routines in the Integrated Mathematical Statistical Library (IMSL). The low 
temperature band gaps of 2.820 eV and 2.400 eV were used for ZnSe and ZnTe, respectively [36, 37]. 
The energy gap difference between the gap of the ZnSe and the gap of the ZnTe is ∆Eg

0 = 0.420 eV. The 
symbol Eg

0 used in Eq. (1) is the energy gap of the QD, i.e., Eg
0 = 2.400 eV. For the type II ZnTe/ZnSe 

structure inside the dots, the conduction electrons see a barrier with a barrier height of ∆Ec
0 = q ∆Eg

0 for 
the conduction band and the heavy holes see a well with a well height of ∆Ev

0 = (1 + q) ∆Eg
0 for the  

valence band where q is a positive parameter. The following parameters [36, 37] are used in our calcula-
tions: m0 for the free electron mass, me* (= 0.124m0) for the electron effective mass of ZnTe, 
me*′ (= 0.15m0) for the electron effective mass of ZnSe, mh* (= 0.64m0) for the heavy hole effective mass 
of ZnTe, mh*′ (= 0.8m0) for the heavy hole effective mass of ZnSe. 
 Because sufficiently large numbers of component functions (see Eq. (A9) in Appendix A) must be 
taken to ensure that the eigenenergies approach their asymptotic values, we begin our discussion with the 
determination of the matrix dimension N. We choose the radius of the outer cylinder ρ 0 to be 400 Å and 
the height of the outer cylinder H to be 150 Å (see Fig. A1). By examining how fast the wave functions 
or the probability densities converge, so long as they converge in a range where they are much smaller 
than the inter dot distance, 417 Å, measured from AFM as mentioned earlier, our choice of the outer 
cylinder size (ρ 0 and H) is justified. We discuss the convergence of the probability densities later. Set 
h0 = 11 Å, D = 275 Å (ρ = 0.04) and arbitrarily choose q = 2. The ground state energies of the heavy hole 
(electron), EH (Ee), confined by a lens shaped ZnTe QD (by the infinite barriers) as a function of the ma-
trix dimension N are obtained by solving the matrix equation and are presented in Fig. 7. Here, we see 
that when N is 900, the ground state energies EH converge to a value of 256.77 meV and the variation of 
Ee with N is slow (13.75 < Ee < 13.82). To ensure the convergence of the confinement energies, we 
choose N = 900 in the following calculations. 
 Although the barrier height ∆Ec

0
 and the well depth ∆Eh

0 of a QD is not known, the value of q can be 
determined by examining the PL spectrum. On the one hand, we observed that the PL spectrum peaked 
around Eop = 2.185 eV and the line shape can be well described by a Gaussian with a mean of 
〈E〉 = 2.185 eV and a variance of σ2 = 0.002 eV2: 

 I = 7500 exp [–(Eop – 〈E〉)2/2σ2] , (4) 

as shown by the dotted curve in Fig. 2. Here, Eop is the optical energy. On the other hand, we knew that 
on average the dot height distribution peaked around h0 = 25 Å as indicated in Fig. 6. Recall that the 
offset of h0 is 14 Å. To search a value of q such that Eop = EeH (see Eq. (1)) is located at 2185 meV with 
h0 = 25 – 14 = 11 (Å) and D = 275 Å (α = 0.04), we solved a 900 × 900 matrix for the sub-band energies 
as a function of q, and plotted the result in Fig. 8. Unexpectedly, we find that when q ranges from 0.6 to 
1.4, Eop as a function of q is linear: 

 Eop (meV) = –377.5q + 2592.9 . (5) 

Thus, for Eop = 2185 meV, a roughly approximated value of q is 1.1 and yields band edge discontinuities 
of  ∆Ec

0 = 315 meV (barrier)  for  the conduction band and ∆Ev
0 = 735 meV (well)  for  the valence band.  
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When q is 1.1, the ground state energies are calculated to be Ee = 13.6 meV, EH = 226.7 meV and the 
corresponding probability densities are plotted in Fig. 9. The wave functions are normalized in the 
atomic units as mentioned in APPENDIX A. Refer to Figs. A1 and A2 for a lens shaped QD and recall 
that lens height hlens decreases as r increases (see Eq. (A16)). The variations of the ground state probabil-
ity density as a function of z with r = 0, 60, 80 and 100 Å for the electron are presented in Fig. 9(a) and 
with r = 0, 24, 32 and 40 Å for the heavy-hole are presented in Fig. 9(b). Inside the type II ZnTe/ZnSe 
QDs, electrons see a barrier (∆Ec

0) while holes see a well (∆Ev
0); therefore, we expect that most of the 

electrons must reside outside the QDs as indicated in Fig. 9(a) and most of the holes must reside inside 
the QDs as indicated in Fig. 9(b). Figure 9(a) shows that when r is 0 and 0 ≤ z ≤ hlenz = h0 = 11 Å (inside 
QD), the probability density possesses a dip (a local minimum) located at z = 7 Å. Although most elec-
trons reside in the matrix material, the region without QD (z < 0) is populated more. These results be-
come even more evident when r increases and hlenz decreases. When r is 60, 80 and 100 Å, the dip which 
shifts towards the z-axis locates at z = 5, 4 and 3 Å, and the corresponding probability density increases 
rapidly which means that most electrons prefer to reside outside the QD. When r is greater than the  
lens base radius (D/2 = 137.5 Å), the dip in the probability density diminishes (not shown in Fig. 9). Fi-  
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Fig. 9 Variation of the probability densities as a function of z with r located at (a) r = 0, 60, 80 and 100 Å for the 
conduction electron and (b) r = 0, 24, 32 and 40 Å for the heavy hole. 

Fig. 7 Convergence of the ground state con-
finement energies for the heavy hole EH and for 
the electron Ee as a function of the matrix di-
mension N with q = 2, h0 = 24 Å and D = 275 Å. 

Fig. 8 Variation of the optical energy Eop

with q for h0 = 24 Å and D = 275 Å. 

(a) (b) 
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gure 9(b) shows that when r increases from 0 to 40 Å, the probability density rapidly decreases and most 
holes are localized inside the QD (0 ≤ z ≤ .11 Å). Although the outer cylinder was arbitrarily set to have 
a large size of ρ 0 = 400 Å and H = 150 Å, the probability densities converge within a range of ∆z = 25 Å 
(� H) in the z-direction and ∆r = 60 Å (� ρ 0) in the r-direction. Therefore, the choice of the size of the 
outer cylinder is justified. Recall that the inter dot distance is 417 Å which is much larger than ∆z and ∆r, 
thus our earlier assumption that there are no carrier communications between dots holds. 
 To infer the dot size distribution from the spectrum, we calculate the ground sub-band energies as a 
function of h0 for both the conduction electron and the hole with q = 1.1, D = h0/α, α = 0.04, H = 150 Å 
and ρ0 = 400 Å. For each value of h0, we solve the matrix equation of Eq. (A10) to obtain a correspond-
ing value of Eop = EeH from Eq. (1). Using Eq. (3), we convert the PL spectrum (I as a function of Eop) as 
shown in Fig. 2 to a relation of NQD = Nh as a function of h0 and is marked in Fig. 10 with squares. Al-
though the PL line shape is a Gaussian, the dot size distribution Nh is a deformed Gaussian because the 
eigenenergies obtained from the Schrödinger equation as a function of h0 are definitely non-linear. By 
shifting a 14 Å offset in h0, AFM measured data as shown in Fig. 5 is plotted in Fig. 10 with a solid 
curve. Here, we see that the agreement between data obtained from the PL (squares) and the AFM (solid 
curve) as shown in Fig. 10 are excellent. Therefore, we conclude that the result of the PL spectrum  
(I versus Eop) can be interpreted as the result of the AFM measurement (NQD versus dot size) via the 
Schrödinger equation. 

5 Summary 

We have studied the PL spectrum, which indicates that the ZnTe/ZnSe QD structure belongs to a type II 
band alignment. Besides the main features of the ZnSe buffer layer located at 2.820 eV, a broader struc-
ture peaking at 2.185 eV was observed in the PL spectrum at 10 K. The broadness of the PL represents 
the spatial inhomogeneity of the QD sizes. The PL spectrum was determined to be a normal distribution 
with a variance of 0.002 eV2. However, the dot size distribution is a deformed Gaussian because the 
energy as a function of the dot size obtained from the Schrödinger equation is definitely non-linear. 
Based on only one set of data of dot size distribution or sample measured by AFM, statistical estimates 
with standard errors were evaluated using the bootstrap method. Means, percentiles and correlation coef-
ficients for the base diameter and the height of the QDs were used to infer the probability distributions. 
We concluded that the dot distributions were indeed a deformed Gaussian distribution and the correlation 
coefficient of the diameter and the height of the QDs was 0.49 ± 0.01. The uniformity of the dot size 
distribution was poor. In order to infer the dot size distribution from the PL spectrum, we numerically 
solved the Schrödinger equation in the OPF approximation for the type II lens shaped QDs. The conver-
gence of the probability density was discussed in a great detail. Our analyses concluded that the band 
edge discontinuities inside the dot is a barrier with ∆Ec

0 = 315 meV for the conduction band and is a well 
with ∆Ev

0 = 735 meV for the valence band. In the AFM measurement, the offset in dot height is 14 Å and 
the aspect ratio is 0.04. By converting the PL spectrum (I versus Eop) to the AFM data (NQD versus dot 

Fig. 10 Comparison of Nh versus h0-14 obtained from the AFM 
measurement as shown in Fig. 5 (solid curve) and the PL spec-
trum as shown in Fig. 2 (squares). 
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size) through the Schrödinger equation, the agreement between these two sets of data was excellent. 
Therefore, we conclude that the result of the PL spectrum can be interpreted as the result of the AFM 
measurement. 
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Appendix:  
OPF approximation for the type I and II symmetroidal QDs 

Consider a large cylinder of a barrier material with radius ρ0 and height H that surrounds a QD of a well 
material with the shape of the symmetroid determined by rotating the curve z = f(r) on the r–z plane 
about the z axis, as shown in Fig. A1. Suppose that a particle with an effective mass m*(r, z) is confined 
by a finite potential barrier V(r, z) because of the shape of the dot in the cylindrical coordinates (r, φ, z). 
We take the band edge of the well region as the energy reference. Therefore, if the particle is inside  
the QD (well) region, we assign m*(r, z) = mw and V(r, z) = 0; otherwise we assign m*(r, z) = mb, 
V(r, z) = V0 and on the outer boundary we have V(r, z) = ∞. The subscripts w and b in mw and mb refer to 
the well and the barrier, respectively. For convenience, we adopt the Rydberg Ry = 13.56 eV as the unit 
for the energies and the Bohr radius rB = 0.53 Å as the unit for the lengths. The free electron mass is me. 
By using these units, the three-dimensional time-independent Schrödinger equation for the envelope 
function in the effective mass approximation becomes dimensionless and is given by: 

 ( , , ) ( , ) ( , , ) ( , , )
*( , )

em
r z V r z r z E r z

m r z
Ψ Ψ Ψ

⎛ ⎞
− ∇ ⋅∇ + =⎜ ⎟
⎝ ⎠

φ φ φ   (A1) 

and 

 
 

1
ˆ ˆ ˆ

 r ze e e
r r z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
φ

φ
  (A2) 

where E and Ψ are the eigen-energy and the eigen-function, respectively. Eqs. (A1) and (A2) ensure that 
the Hamiltonian operator is Hermitian and the current probability density is continuous even for a space-
dependent effective mass m*(r, z) at the interface of the heterojunction. 
 The envelope function of a QD, Ψ(r, φ, z), is then expanded in terms of a set of OPF, ψnml(r, φ, z), 
where quantum numbers n, m and l are positive integers. Suppose that in Fig. 1 the QD is as large as the 
cylinder and the effective mass m* is me. Then ψnml(r, φ, z) must satisfy the Helmholtz’s equation, a 
cylindrical problem with infinite barrier height, 

 2 2 0nml nmlKψ ψ∇ + =   (A3) 

 

)(rfz =QD

O

0ρ

r 
∞=V

z

H
2

1

∞=V
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2

1
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0ρ

 
Fig. A1 Coordinates and symbols of a symmetroidal quantum dot (QD) 
surrounded by a cylindrical barrier material. 
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with the following boundary conditions: ψnml = 0 at r = ρ0 or z = ±H/2. The OPF, ψnml(r, φ, z), are given 
by: 
 φψ ψ Φ= l( , , ) ( ) ( ) ( ) ,nml nm mr z R r Z z  (A4) 

 φ φ φΦ = ≤ ≤ π

π

1
( ) exp ( ) , 0 2 ,

2
m im   (A5) 

 0
0 1 0

2
( ) ( ) , 0 ,

( )
nm m n

m n

R r J k r r
J k

ρ
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where Rnm, Zl and Φm are orthonormal functions. The boundary conditions acquire a relation 

 
π⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

2
2 2 ,n

l
K k

H
  (A8) 

where Jm(x) is the Bessel function of order m and knρ0 is the n-th root of Jm(knr) at r = ρ0 (i.e., 
Jm(knρ0) = 0). The envelope function is finally expressed as a series by adopting ψnml(r, φ, z) as bases 
with appropriately chosen coefficients as follows: 

 
, ,

( , , ) ( , , ) ,nml nml
n m l

r z B r zΨ ψ= ∑φ φ   (A9) 

where Bnml are the linear coefficients. 
 Substituting expression (A9) into Eq. (A1), multiplying the left side by ψ*n′m′l′, and finally integrating 
over the volume of the cylinder yields the matrix equation 

 
´ ´ ´ ´ ´ ´

0 .nmln m l nn mm llA Eδ δ δ− =   (A10) 

The matrix elements are given by [19, 22–24] 
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where the element of volume in cylindrical coordinates is dΩ = r dr dφ dz. We split the integral into three 
parts, within each of which the effective mass is constant: first, we take an integral with m* = mb over the 
whole cylinder (i.e., barrier plus QD well regions); second, we subtract the integral with m* = mb over 
the QD well region; and third, we add the integral with m* = mw over the QD well region. Taking advan-
tage of the azimuthal symmetry of the QDs, the triple integrals in Eq. (A11) can be simplified to be the 
single integrals 
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 The matrix elements can be evaluated numerically as long as the shape or profile of a QD, i.e. z = f(r), 
is defined. A schematic picture of a lens-shaped QD as a part of a sphere of radius R is shown in Fig. A2. 
For convenience, let’s take the center of the lens base O as a reference. The lens has a height h0 and a 
base radius ρ. A relation between z and r can be obtained from the geometry of the shape: 

 2 2 2 2
lens( ) 0 ,   .z r h R r R rρ ρ= = − − − ≥ ≤   (A16) 

Substituting Eq. (A16) into Eqs. (A12–A15) together with Eq. (A11), the matrix elements for a lens-
shaped type I QD are determined. 
 For the type II structure, we take the material with the lower energy band edge as the energy refer-
ence, hence we have to replace V as –V in Eq. (A1). Accordingly, the matrix elements in Eq. (A11) are 
modified as 
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