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Abstract
In this paper, we propose a simple two-dimensional (2D) analytical
threshold voltage model for deep-submicrometre fully depleted SOI
MOSFETs using the three-zone Green’s function technique to solve the 2D
Poisson equation and adopting a new concept of the average electric field to
avoid iterations in solving the position of the minimum surface potential.
Firstly, we obtain the 2D potential distribution in the Si-film region by using
the Green’s function technique to solve the 2D Poisson equation. Then, by
applying Gauss’s law at the Si–SiO2 interface, the initial expression of the
threshold voltage is obtained. Eventually, we introduce a modified factor to
compensate for the errors resulting from the charge-sharing effect in the
derivations of the final threshold voltage model. The proposed model is
validated against the results obtained by 2D numerical analysis and
experimental data, and excellent agreements are obtained. The proposed
model has an explicit expression and can be implemented into the circuit
simulator.

Nomenclature

εsi (εox) the dielectric permittivity of Si (SiO2)
q the elementary charge
ρ(x, y) the two-dimensional charge density
tsi the thickness of silicon film
tfox (tbox) the thickness of front (back) gate oxide
ni the intrinsic carrier concentration of Si

semiconductor
L(W) the effective channel length (width)
Cfox (Cbox) the capacitance per unit area of the front

(back) gate oxide
Csi the capacitance per unit area of the silicon

film
VGS (Vgs) the external (intrinsic) gate–source voltage
VDS (Vds) the external (intrinsic) drain–source voltage
VBS (Vbs) the external (intrinsic) back gate–source

voltage

V
f

FB

(
V b

FB

)
the flat band voltage of the front (back)
gate

V ′
gs (V ′

bs) V ′
gs = Vgs − V

f

FB

(
V ′

bs = Vbs − V b
FB

)
Vbi (y) the built-in potential of the source

(drain)/body junctions in zone II
NBf (y) the doping profile in zone II, wheref (y) is

a doping profile function
ND the doping concentration in the source–

drain region
ki
n the eigenvalue of zone i (i = I, II, III).

kI
n = ((n − 1/2)π)/tfox for zone I,

kII
n = nπ/tsi for zone II and kIII

n =
((n − 1/2)π)/tbox for zone III

km the eigenvalue in all zones km = mπ/L

Dsf (x) (Dsb (x)) the electric displacement at the front (back)
Si–SiO2 interface

φi(x, y) the 2D potential distribution in zone
i (i = I, II, III)

Ei
y(x, y) the 2D vertical electric field distribution in

zone i (i = I, II, III)
φII

sf (x)
(
φII

sb (x)
)

the front (back) surface potential in
zone II
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Qn
B

(
Q0

B

)
the Fourier coefficient of the bulk charge
density with the integer n(n = 0) in
zone II:

Qn
B = 2

tsi

∫ tsi

0
(−qNBf (y)) cos kII

n y · dy

Q0
B = 1

tsi

∫ tsi

0
(−qNBf (y)) · dy

Dm
sf

(
Dm

sb

)
the Fourier coefficient of the electric
displacement at the front (back) surface:

Dm
sf = 2

L

∫ L

0
Dsf (x) sin(kmx) · dx

Dm
sb = 2

L

∫ L

0
Dsb (x) sin(kmx) · dx

AS
n

(
AD

n

)
the Fourier coefficient of the boundary
potential at the source (drain) side in
zone I:

AS
n = 2

tfox

∫ tfox

0
φI(0, y) cos kI

ny · dy

AD
n = 2

tfox

∫ tfox

0
φI(L, y) cos kI

ny · dy

BS
n

(
BS

0

)
the Fourier coefficient of the source
boundary potential with the integer
n (n = 0) in zone II:

BS
n = 2

tsi

∫ tsi

0
Vbi (y) cos kII

n y · dy

BS
0 = 1

tsi

∫ tsi

0
Vbi (y) · dy

BD
n

(
BD

0

)
the Fourier coefficient of the drain boundary
potential with the integer n (n = 0) in
zone II:

BD
n = 2

tsi

∫ tsi

0
(Vbi (y) + Vds) cos kII

n y · dy

BD
0 = 1

tsi

∫ tsi

0
(Vbi (y) + Vds) · dy

CS
n

(
CD

n

)
the Fourier coefficient of the boundary
potential at the source (drain) side in
zone III:

CS
n = 2

tbox

∫ tbox

0
φIII (0, y) cos kIII

n y · dy

CD
n = 2

tbox

∫ tbox

0
φIII (L, y) cos kIII

n y · dy

φf,inv the front surface potential at the onset
of strong inversion: φf,inv = 2φfp =
2
(

kBT
q

)
ln

(
NB

ni

)

1. Introduction

Fully depleted (FD) silicon-on-insulator (SOI) CMOS
technology is becoming another major technology for the next
generation of VLSI [1–3]. This is because FD SOI CMOS
transistors provide superior electrical characteristics over bulk
CMOS devices [4–6] such as reduced source–drain junction

capacitances [7], increased carrier mobility [8], suppressed
short channel effect [9], improved subthreshold slope [10],
improved latch-up immunity [11] and better radiation hardness
[12]. However, the coupling effect between the front gate
and back gate becomes complicated, especially for short
channel devices. Therefore, it is difficult to develop a simple
and accurate analytical model for circuit design and device
characterization.

In general, the threshold voltage of a MOS transistor is a
very important physical parameter in the device design. On the
other hand, the accuracy of the threshold voltage model plays
a more important role in the device optimization and circuit
design. The analytical modelling of the threshold voltage
of the FD SOI MOS transistor has already been proposed
by numerous authors [13–16]. In a paper by Young [13],
the potential distribution in the Si film was approximated
by a simple parabolic function. This simplified assumption
underestimates the coupling effect of the source–drain region
and may cause a significant error in the prediction of threshold
voltage when the channel length continues to scale down. In
a paper by Veeraraghavan and Fossum [14], the threshold
voltage model was developed based on the conventional
charge-sharing scheme and it predicted a 1/Leff dependent
threshold voltage shift. In the range of submicrometre channel
length, the assumption of constant surface potential of the
charge-sharing model is invalid. In a paper by Woo et al
[15], the work was done by decomposition of the 2D Poisson
equation into a 1D Poisson equation and a 2D Laplace
equation. In a paper by Guo and Wu [16], an accurate 2D
analytical threshold voltage model was developed by means of
the three-zone Green’s function solution technique. Although
an explicit form of the threshold voltage is derived, the
calculation is too complicated to be further implemented in
the derivation of the I–V model for a simulator such as SPICE.
Therefore, to consider an efficient computation, the simplified
and explicit expression of the threshold voltage of the FD SOI
MOS transistor is necessary.

In this paper, in order to derive the threshold voltage
model, the three-zone Green’s function technique [16] is used
to solve the 2D Poisson equation. Based on the concept of the
average vertical electric field, a simple and explicit expression
of the threshold voltage is obtained and described in section 2.
Comparisons between the 2D numerical analysis, experiments
and the proposed analytical threshold voltage model are shown
in section 3. Finally, the conclusions are summarized in
section 4.

2. Derivation of the analytical threshold
voltage model

2.1. The basic analysis

The conventional structure of an FD SOI MOS transistor for
2D numerical simulation is presented in figure 1. A simplified
domain has been used for solving the 2D Poisson equation
and indicated by the bold lines in figure 1. The domain for
solving the 2D Poisson equation is further divided into three
sub-domains (zones I, II and III) to avoid the complexity of
calculating the equivalent charge density between the regions
with different dielectrics. Zone I is the front gate oxide,
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Poly Si

Region I: Gate oxide 02 =∆ Iφ

Region II: Si film
( )

si

BII yqN

ε
φ =∆2
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Vb

y

(0, -tfox)
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(0, tsi)
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(L, -tfox)
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x

Region III: Buried oxide

02 =∆ IIIφ

Figure 1. Schematic diagram of a fully depleted SOI MOSFET,
where the simplified domains for analytically solving the 2D
Poisson equation are indicated by the bold lines.

Table 1. List of the boundary conditions relating to the fully
depleted SOI MOSFET shown in figure 1.

Zone I :




φI (L, y) = Vbi (0) + Vds +
Vbi (0)+Vds−V ′

gs
tfox

y

φI (0, y) = Vbi (0) +
Vbi (0)−V ′

gs
tfox

y

φI (x,−tfox) = Vgs − Vfb,f = V ′
gs

Dsf (x, 0) = εoxE
I
y(x, 0)

Zone II :




φII (L, y) = Vbi (y) + Vds

φII (0, y) = Vbi (y)

Dsf (x, 0) = εsiE
II
y (x, 0)

Dsb (x, tsi) = εsiE
II
y (x, tsi)

Zone III :




φIII (L, y) = Vbi (tsi) + Vds − Vbi (tsi)+Vds−V ′
bs

tbox
(y − tsi)

φIII (0, y) = Vbi (tsi) − Vbi (tsi)−V ′
bs

tbox
(y − tsi)

φIII (x, tsi + tbox) = Vbs − Vfb,b = V ′
bs

Dsb (x, tsi) = εoxE
III
y (x, tsi)

zone II represents the Si film and zone III is the buried oxide.
The boundary conditions used for each zone are enumerated
in table 1. It should be noted that the boundary potential in the
y-direction in zones I and III is assumed to vary linearly [15].

Based on the assumption that the front gate oxide and
buried oxide are well grown and no charge resides there, the
2D Poisson equations in zones I and III can be reduced to
two 2D Laplace equations. Substituting the Green’s function
solutions, listed in table 2, into Green’s theorem [17], which
is given as

φ(x, y) =
∫ ∫

ρ(x ′, y ′)
ε

G(x, y : x ′, y ′) dx ′ dy ′

+
∫

G(x, y : x ′, y ′)
∂φ

∂n′ dS ′ −
∫

φ(x ′, y ′)
∂G

∂n′ dS ′, (1)

where G(x, y : x ′, y ′) is the Green’s function satisfying
∇2G = −δ(x − x ′)δ(y − y ′), n′ is the outward normal
direction on the boundary surface, and neglecting the free
carriers, the general form of the 2D potential distribution in

each zone can be obtained as follows [16]:

φI(x, y) =
∞∑

m=odd

4V ′
gs

mπ

cosh kmy

cosh kmtfox
sin kmx

−
∞∑

m=1

Dm
sf

εox

sinh km(tfox + y)

km cosh kmtfox
sin kmx

+
∞∑

n=1

cos kI
ny

sin kI
nL

[
AS

n sinh kI
n(L − x) + AD

n sinh kI
nx

]
, (2)

φII(x, y) = Q0
B

2εsi
x(L − x) +

∞∑
n=1

Qn
B

εsi

cos kII
n y(

kII
n

)2

×
[

1
sinh kII

n x + sinh kII
n (L − x)

sinh kII
n L

]
+ Bs

0

(
1 − x

L

)

+ BD
0

x

L
+

∞∑
n=1

cos kII
n y

sinh kII
n L

× [
BS

n sinh kII
n (L − x) + BD

n sinh kII
n x

]
+

∞∑
m=1

sin kmx

εsi kmsinh kmtsi

× [
Dm

sf cosh km(tsi − y) − Dm
sb cosh kmy

]
, (3)

φIII (x, y) =
∞∑

m=odd

4Vbs

mπ

cosh km(y − tsi)

cosh kmtbox
sin kmx

+
∞∑

m=1

Dm
sb

εox

sinh km(tbox + tsi − y)

km cosh kmtbox
sin kmx

+
∞∑

n=1

cos kIII
n (y − tsi)

sin kIII
n L

× [
Cs

n sinh kIII
n (L − x) + CD

n sinh kIII
n x

]
, (4)

where the definitions of the Fourier coefficients As
n, Ad

n, BS
0 ,

BD
0 , BS

n , BD
n , CS

n , CD
n , Dm

sf , Dm
sb, Q0

B and Qn
B are given

in the nomenclature. In order to obtain the 2D analytical
solution of the potential distribution at zone II, first Dm

sf and
Dm

sb must be solved. Dm
sf and Dm

sb can be obtained by equating
equations (2) and (3) at y = 0 and equations (3) and (4) at
y = tsi. The related expressions are given in table 3. It should
be noted that the above equations are exact in the sense that
any arbitrary doping profile in the Si film can be treated. In
the following analysis, uniformly doped Si film is assumed for
simplicity. Therefore, the 2D potential distribution at zone II
can be further reexpressed as follows [16]:

φII (x, y) = −qNB

2εsi
x(L − x) +

∞∑
m=1

sin kmx

εsikm sinh kmtsi

× [
Dm

sf cosh km(tsi − y) − Dm
sb cosh kmy

]
+ Vbi +

x

L
Vds.

(5)

2.2. A new approach for the development of the
threshold voltage model

Since the FD SOI MOS transistor under consideration is
normally-off type (enhancement mode), the front surface
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Table 2. The solution of Green’s function for zones I, II and III.

Zone I :




GI
x (x, y; x ′, y′) = 2

L

∑∞
m=1 sin kmx sin kmx′ cos kmy sinh km(tfox+y′)

km cosh kmtfox
, y ′ < y

GI
x (x, y; x ′, y′) = 2

L

∑∞
m=1 sin kmx sin kmx′ cos kmy′ sinh km(tfox+y)

km cosh kmtfox
, y < y ′

GI
y (x, y; x ′, y′) = 2

tfox

∑∞
n=1 cos kI

ny cos kI
ny

′ sinh kI
nx sinh kI

n (L−x′)
kI
n sinh kI

nL
, x < x ′

GI
y (x, y; x ′, y′) = 2

tfox

∑∞
n=1 cos kI

ny cos kI
ny

′ sinh kI
nx′ sinh kI

n (L−x)

kI
n sinh kI

nL
, x′ < x

Zone II :




GII
x (x, y; x ′, y′) = 2

L

∑∞
m=1 sin kmx sin kmx′ cos kmy cosh km(tsi−y′)

km sinh kmtsi
, y ′ < y

GII
x (x, y; x ′, y′) = 2

L

∑∞
m=1 sin kmx sin kmx′ cos kmy′ cosh km(tsi−y)

km cosh kmtfox
, y < y ′

GII
y (x, y; x ′, y′) = c

tsi

∑∞
n=1 cos kII

n y cos kII
n y′ sinh kII

n x sinh kII
n (L−x′)

kII
n sinh kII

n L
, x < x ′

GII
y (x, y; x ′, y′) = c

tsi

∑∞
n=1 cos kII

n y cos kII
n y′ sinh kII

n x′ sinh kII
n (L−x)

kII
n sinh kII

n L
, x′ < x

c = 1 for n = 0; c = 2 for n > 0.

Zone III :




GIII
x (x, y; x ′, y′) = 2

L

∑∞
m=1 sin kmx sin kmx′ cos km(y−tsi) sinh km(tbox+tsi−y′)

km cosh kmtbox
, y′ < y

GIII
x (x, y; x ′, y′) = 2

L

∑∞
m=1 sin kmx sin kmx′ cos km(y′−tsi) sinh km(tbox+tsi−y)

km cosh kmtbox
, y < y ′

GIII
y (x, y; x ′, y′) = 2

tbox

∑∞
n=1 cos kIII

n (y − tsi) cos kIII
n (y ′ − tsi)

sinh kIII
n x sinh kIII

n (L−x′)
kIII
n sinh kIII

n L
, x < x ′

GIII
y (x, y; x ′, y′) = 2

tbox

∑∞
n=1 cos kIII

n (y − tsi) cos kIII
n (y ′ − tsi)

sinh kIII
n x′ sinh kIII

n (L−x)

kIII
n sinh kIII

n L
, x ′ < x

Table 3. The expressions of the Fourier coefficients Dm
sf , Dm

sb and related parameters.

Dm
sf = εsikm

dm
0

[
dm

2
sinh(kmtsi)

− dm
1

(
1

tanh(kmtsi)
+ εsi

εox
tanh(kmtbox)

)]
Dm

sb = εsikm

dm
0

[
− dm

1
sinh(kmtsi)

+ dm
2

(
1

tanh(kmtsi)
+ εsi

εox
tanh(kmtfox)

)]
dm

0 = 1
[sinh(kmtsi)]2 −

(
1

tanh(kmtsi)
+ εsi

εox
tanh(kmtfox)

) (
1

tanh(kmtsi)
+ εsi

εox
tanh(kmtbox)

)
dm

1 = −φm
q +

(
2V ′

gs

mπ

) (
1−(−1)m

cosh(kmtfox)

)
+ hI

m

dm
2 = −φm

q +
(

2V ′
bs

mπ

) (
1−(−1)m

cosh(kmtbox)

)
+ hIII

m

hI
m = ∑∞

n=1
1
2 t I

mn

[
AS

n + (−1)m+1AD
n

]
hIII

m = ∑∞
n=1

1
2 t III

mn

[
CS

n + (−1)m+1CD
n

]
t I
mn = 4

mπ

[
1 + L2(n−0.5)2

t2
foxm2

]−1

t III
mn = 4

mπ

[
1 + L2(n−0.5)2

t2
boxm2

]−1

φm
q = 2

mπ

[
(1 − (−1)m)

(
− qNB

εsi

L2

(mπ)2

)
+ (1 − (−1)m)Vbi + (−1)m+1Vds

]

potential distribution of the Si film is usually used to monitor
the turn-on status of FD SOI MOSFETs. From equation (5),
the potential distribution along the front surface of the Si film
can be derived as

φII (x, 0) = −qNB

2εsi
x(L − x) +

∞∑
m=1

sin kmx

εsikm sinh kmtsi

× [
Dm

sf cosh kmtsi − Dm
sb

]
+ Vbi +

x

L
Vds. (6)

The accuracy of the derived front surface potential distribution
in the Si film has been verified by 2D numerical analysis
as shown in [16]. In the paper by Guo [16], to develop an
analytical threshold voltage model, the minimum potential
along the front surface of the Si film has to be calculated first.
By differentiating equation (6), the position of the minimum
potential along the front surface of the Si film can be calculated,

∂φII (x, 0)

∂x

∣∣∣∣
x=xmim

= ∂φII
sf (x)

∂x

∣∣∣∣
x=xmim

= 0, (7)

where xmin is the position of the minimum surface potential
and φII

sf (x) represents the potential distribution along the front
surface of the Si film. By introducing the value of xmin into
equation (6), the minimum surface potential φII

sf,min can be
obtained. However, the position of the minimum surface
potential xmin can only be solved iteratively and no explicit
form of xmin can be obtained. Therefore, calculation of the
minimum front surface potential is too complicated to be
further implemented in the derivations of the analytical I–V
model for a circuit simulator such as SPICE.

A new approach for development of the threshold
voltage model is described in the following. Firstly, by
differentiating equation (3) with respect to y, the normal
electric field along the front Si-film surface can be obtained
and expressed as

Esf (x) = −∂φII (x, y)

∂y

∣∣∣∣
y=0

=
∞∑

m=1

Dm
sf

εsi
sin kmx. (8)
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Then, by integrating equation (8) with respect to x from x = 0
to x = L, the total charge density controlled by the front gate
can be obtained and expressed as

Qfg = −
∫ L

0
εsiEsf(x) dx = −

∞∑
m=1

Dm
sf

km

[1 − (−1)m]. (9)

By applying Gauss’s law at the front SiO2–Si interface, we
obtain

Esf (x) = Cfox
(
Vgs − V

f

FB − φII
sf (x)

)
εsi

. (10)

From equation (10), the threshold voltage can be obtained as

VTH = V
f

FB + φf,inv +
εsiEsf (xmin)

Cfox
, (11)

where the threshold voltage is defined as the value of gate
voltage Vgs for which φII

sf,min = φf,inv = 2φfp. However,
the derivation of equation (11) is still complicated and
computationally inefficient due to the calculation of xmin.
Therefore, in this work, the average normal electric field
along the front surface of the Si film Esf is used to substitute
the Esf (xmin). From equation (9), Esf can be obtained and
expressed as

Esf =
∞∑

m=1

Dm
sf

εsikmL
[1 − (−1)m]. (12)

Then, the threshold voltage can be redefined as

VTH = V
f

FB + φf,inv +
εsiEsf

Cfox
. (13)

Due to the effect of the lateral electric field originating
from the source–drain junctions, the average normal electric
field along the front surface of the Si film is expected to
be smaller than the normal electric field at the position of
minimum potential. Therefore, in order to compensate the
error results from the charge-sharing effect, a modification to
equation (13) is necessary.

Figure 2 shows the normal electric field along the front
SiO2–Si interface of the FD SOI MOSFETs, where the case
of the average surface normal electric field is shown in (a)
and the case of the surface normal electric field accounting for
the charge-sharing effect is shown in (b). In figure 2(a), the
total depletion charges Qdepl,1 in the Si film that terminate the
average surface normal electric field originating from the gate
can be expressed as

Qdepl,1 = εsiEsfWLtsi. (14)

The charge-sharing effect is due to the loss of control ability of
the gate over the depletion charge under it. In other words, the
depletion charge controlled by the gate is no longer equal to
Qdepl,bulk (Qdepl,bulk = qNByd max, for bulk MOSFETs, where
yd max is the maximum depletion width of the depletion region
under the gate), but to a fraction of it. The reduction of the
depletion charge is due to the presence of the source–drain
junctions and the surface normal electric field is disturbed
by the lateral electric field originating from the source–drain
junctions, as shown in figure 2(b). According to the charge-
sharing scheme shown in figure 2(b), the effective depletion
charge controlled by the gate can be obtained as

Qdepl,2 = W

(∫ L

0
εsiEsf(x) dx

)
tsi

2L
(2L − �L1 − �L2)

= WQfg
tsi

2L
(2L − �L1 − �L2) (15)

n+ n+

Po

Vg

Vs

Vg

Vs Vd

Vd

ly Si

Substrate

Front gate oxide

Buried oxide

s fE

(a)

(b)

tsi

n+ n+

Poly Si

Substrate

Front gate oxide

Buried oxide

( )xEsf

tsi

1L∆ 2L∆
L

Figure 2. Schematic diagram of a fully depleted SOI MOSFET,
where the arrows in (a) represent the average surface normal electric
field and the arrows in (b) represent the surface normal electric field
and lateral field originating from source–drain junctions.

where

�L1 ≈ Ws =
[

2εsi (Vbi − φf,inv)

qNB

]1/2

,

�L2 ≈ Wd =
[

2εsi (Vbi + Vds − φf,inv)

qNB

]1/2

,

where Ws and Wd are the depletion widths of the source- and
drain-substrate junctions at the surface.

By equating equations (14) and (15), the relationship
between Qfg and Esf can be obtained as

Qfg = εsiEsfβ, (16)

where

β = 2L2

2L − �L1 − �L2
= L

{
1 − �L1 + �L2

2L

}−1

.

Therefore, in order to compensate for the errors caused by
the charge-sharing effect, we add the modified factor β into
equation (13) and obtain the final expression of the analytical
threshold voltage model:

VTH = V
f

FB + φf,inv +
εsiEsf

Cfox
β. (17)
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Table 4. Expressions for the coefficients Gm, F m
b , F m

d and F m
g .

Gm =
[

Pm
2

sinh(kmtsi)
− P m

1

(
1

tanh(kmtsi)
+ εsi

εox
tanh(kmtbox)

)]
F m

g = −
[

1
tanh(kmtsi)

+ εsi
εox

tanh(kmtbox)
] [

P m
3 + 2

mπ

1−(−1)m

cosh(kmtfox)

]
F m

b = 1
sinh(kmtsi)

[
P m

4 + 2
mπ

1−(−1)m

cosh(kmtbox)

]
F m

d =
[

Pm
5

sinh(kmtsi)
− P m

6

(
1

tanh(kmtsi)
+ εsi

εox
tanh(kmtbox)

)]
P m

1 = − 2
mπ

[1 − (−1)m]
(
Vbi − qNB

εsi

L2

(mπ)2

)
+

∑∞
n=1

t I
mn

tfoxkI
mn

[1 − (−1)m+1]
[
Vbi sin

(
n − 1

2

)
π − Vbi

tfox

(
tfox sin

(
n − 1

2

)
π

) − 1
kI
n

]
P m

2 = − 2
mπ

[1 − (−1)m]
(
Vbi − qNB

εsi

L2

(mπ)2

)
+

∑∞
n=1

t III
mn

tboxkIII
mn

[1 − (−1)m+1]
[
Vbi sin

(
n − 1

2

)
π − Vbi

tbox

(
tbox sin

(
n − 1

2

)
π

) − 1
kIII
n

]
P m

3 = ∑∞
n=1

t I
mn

t2
foxkI

n
[1 − (−1)m+1]

(
tfox sin

(
n − 1

2

)
π − 1

kI
n

)
P m

4 = ∑∞
n=1

t III
mn

t2
boxkIII

n
[1 − (−1)m+1]

(
tbox sin

(
n − 1

2

)
π − 1

kIII
n

)
P m

5 = ∑∞
n=1

t III
mn

tboxkIII
n

(−1)m+1
[
sin

(
n − 1

2

)
π − 1

tbox

(
tbox sin

(
n − 1

2

)
π − 1

kIII
n

)]
− 2

mπ
(−1)m+1

P m
6 = ∑∞

n=1
t I
mn

tfoxkI
n
(−1)m+1

[
sin

(
n − 1

2

)
π − 1

tfox

(
tfox sin

(
n − 1

2

)
π − 1

kI
n

)]
− 2

mπ
(−1)m+1

After some mathematical manipulations, equation (17)
can be further expressed in terms of the terminal voltage as

VTH = V
f

FB + X

{
φf,inv +

εsiβ

Cfox

∞∑
m=1

1

dm
0

[1 − (−1)m]

×(
Gm + Fm

b V ′
bs + γFm

d Vds
)}

, (18)

X =
{

1 − εsiβ

Cfox

∞∑
m=1

1

dm
0

Fm
g [1 − (−1)m]

}−1

,

where the coefficients Gm, Fm
b , Fm

d and Fm
g are listed in

table 4 and γ is an empirical constant assumed to account for
the errors resulting from the drain-induced barrier lowering
effect.

3. Model verifications

In order to verify the accuracy of the derived equations, the
analytical model of the VTH, given in equation (18), has been
compared with the results obtained by the 2D numerical
device simulator Medici [18] and experimental data [19].
The threshold voltages of the results obtained by the 2D
numerical simulator are defined by the relationship between
the drain current and external gate–source voltage as follows.
In general, the drain current in the non-saturation region can
be expressed as

IDS = WeffCfoxµeff

Leff

(
VGS − VTH − 1

2
VDS

)
VDS. (19)

For the long channel length devices operating at low VDS (e.g.,
VDS = 50 mV), using the extrapolation method on the IDS–
VGS curve at VGS equal to the voltage at which the maximum
dIDS/dVGS occurs, the threshold voltage can be obtained by
the intercept on the VGS-axis:

VTH = VGS,intercept − 1
2VDS. (20)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-0.1

0.0

0.1

0.2

0.3

0.4

0.5
t
fox

 =11 nm, t
box

 = 330 nm,  N
B
 = 1 x 10

17
 cm

-3
,V

BS
 = 0 V, VDS = 0.05 V.

Lines: Model Simulation Results

Symbols: 2D Numerical Analysis

tsi = 50 nm

tsi = 70 nm

T
hr

es
ho

ld
 v

ol
ta

ge
, V

T
H
 (

vo
lt

s)

Effective channel length, Leff (µm)

tsi = 90 nm

Figure 3. The calculated threshold voltage as a function of effective
channel length with the thickness of the Si film as a parameter.

Additionally, when VGS = VTH, the normalized drain current
is defined as a reference current,

Ireference = IDS,normalized = Leff

Weff
IDS,longL (21)

where Ireference is the reference current, IDS,normalized is the
normalized drain current and IDS,longL is the drain current of
the long channel device. When the channel length is very
short, the maximum transconductance extrapolation method
would fail due to the significant short channel effect. Thus,
the threshold voltage of the short channel device is extracted by
equating the normalized drain current to the reference current,
which is determined by the long channel device. For high VDS

operation, VTH is extracted from the parallel shift of ln(IDS)

versus VGS in the subthreshold region, as mentioned in [19].
Comparisons of the threshold voltage versus effective

channel length of the fully depleted SOI MOSFETs with
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Figure 4. The calculated threshold voltage as a function of effective
channel length with the thickness of the front gate oxide as a
parameter.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

NB = 5 x 1016 cm-3

NB = 1 x 1017 cm-3

NB = 2 x 1017 cm-3

t
si

 = 70 nm, t
box

 = 330 nm,  t
fox

 = 11 nm, V
BS

 = 0 V, VDS = 0.05 V.

Lines: Model Simulation Results

Symbols: 2D Numerical Analysis

T
hr

es
ho

ld
 v

ol
ta

ge
, V

T
H
 (

vo
lt

s)

Effective channel length, L
eff

 (µm)

Figure 5. The calculated threshold voltage as a function of effective
channel length with the doping concentration of the bulk Si film as a
parameter.

11 nm front gate oxide, 330 nm buried oxide and 1×1017 cm−3

bulk doping concentration for different Si-film thicknesses are
shown in figure 3 when VDS = 0.05 V and VBS = 0 V. In
this figure, it is seen that the roll-off of the threshold voltage
is more severe in the case of thicker Si film due to the short
channel effect. In other words, the VTH roll-off starts to occur
at larger gate lengths in the MOS transistors with thicker Si
films. Additionally, it is clearly seen that the calculated results
using the present model agree very well with the 2D numerical
analysis.

Figure 4 shows comparisons of the threshold voltage
versus effective channel length for the devices of 70 nm Si
film, 330 nm buried oxide and 1 × 1017 cm−3 bulk doping
concentration with front gate oxide as the parameter. From this
figure, it is seen that the devices with thinner front gate oxides
can significantly retard the roll-off of the VTH as the channel
length gets shorter. This is because with thinner front gate
oxide, the control ability of the gate over the depletion region
under it becomes better. It is also seen that a good agreement
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Figure 6. The calculated threshold voltage as a function of effective
channel length with the back gate bias voltage as a parameter.
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Figure 7. The threshold voltage roll-off versus effective channel
length for different back gate biases from the present model and
experiment.

is obtained between the simulated results and 2D numerical
analysis. Figure 5 shows comparisons of the threshold voltages
obtained by the proposed model with those extracted from 2D
numerical analysis. From this figure, a satisfying agreement
is obtained.

Figures 6 and 7 compare the roll-off of the threshold
voltages for different back gate voltages with 2D numerical
analysis and experimental data. As can be seen, the present
model correctly predicts the VTH roll-off for different back
gate biases. Figure 8 shows the effect of the drain voltage
on the roll-off of the threshold voltage of the devices with
1.6 nm front gate oxide, 400 nm buried oxide, 21 nm Si film
and 1.5 × 1018 cm−3 bulk doping concentration. It is seen
that at larger drain bias, the encroachment field from the
drain becomes more significant, especially at small channel
length. From this figure, accurate predictions of the severe
threshold voltage roll-off by the proposed model are obtained,
even for the devices with 0.07 µm channel length. Figure 9
shows comparisons of the threshold voltages obtained by
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Figure 8. The calculated threshold voltage as a function of effective
channel length with the drain bias voltage as a parameter.

the present model with experimental data for the devices
biased at different drain voltages. In this figure, it is seen
that a good agreement is obtained between the simulated
results and the experimental data. The present model is
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Figure 10. The calculated threshold voltage as a function of effective channel length with (a) VBS, (b) VDS, (c) tfox, and (d) tsi as the
parameters.
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Figure 9. The threshold voltage roll-off versus effective channel
length for different drain biases from the present model and
experiment.

compared with the numerical data used in [16] (figures 5–7)
and the compared results are shown in figure 10. From the
figure, it is seen that a good agreement is obtained and it
evaluates the validity of the modified model.
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4. Conclusions

In this paper, we propose an analytical threshold voltage
model for deep-submicrometre FD SOI MOSFETs using
the three-zone Green’s function technique to solve the 2D
Poisson equation and adopting a new concept of the average
electric field to avoid iterations in solving the position of the
minimum surface potential. Firstly, we obtain the 2D potential
distribution in the Si-film region by using the Green’s function
technique to solve the 2D Poisson equation. By applying
Gauss’s law at the Si–SiO2 interface, the initial expression
of the threshold voltage is obtained. Then, we introduce a
modified factor to compensate for the errors resulting from the
charge-sharing effect in the derivations of the final threshold
voltage model. The proposed model is validated against the
data obtained from 2D numerical analysis and experimental
data and excellent agreements are obtained. From the above
discussions, it can be seen that the present model predicts the
threshold voltage well and has no iteration problem in the
calculation that exists in the previous work [16].
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