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Abstract

Populational conditional quantiles in terms of percentage � are useful as indices for identifying
outliers. We propose a class of symmetric quantiles for estimating unknown nonlinear regression
conditional quantiles. In large samples, symmetric quantiles are more e1cient than regression
quantiles considered by Koenker and Bassett (Econometrica 46 (1978) 33) for small or large
values of �, when the underlying distribution is symmetric, in the sense that they have smaller
asymptotic variances. Symmetric quantiles play a useful role in identifying outliers. In estimating
nonlinear regression parameters by symmetric trimmed means constructed by symmetric quan-
tiles, we show that their asymptotic variances can be very close to (or can even attain) the
Cramer–Rao lower bound under symmetric heavy-tailed error distributions, whereas the usual
robust and nonrobust estimators cannot.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the nonlinear regression model with observations

yi = g(xi; �) + �i; 16 i6 n;

where g(x; b) is a given function de<ned on an Euclidean space subset � × B, and
where � is in the interior of B and �i are independent realizations of a random variable
� with a distribution function F�(y), y∈R. In the nonlinear regression model with
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Table 1
Asymptotic variances of estimates

� LSE ‘1 TLSE C–R

3 1:80 1:803 1:295 1:256
10 10:9 1:896 1:431 1:229
25 63:4 1:922 1:466 1:171

∞ ∞ 1:938 1:489 1:114

normal errors, among all asymptotically normally distributed estimation sequences, the
LSE is known to have the best asymptotic covariance matrix (see Bunke and Bunke,
1989). However, the LSE is highly sensitive to small departures from normality and
to the presence of outliers. The development of robust alternatives for analyzing the
nonlinear regression model has been investigated in several papers. Oberhofer (1982),
Richardson and Bhattacharyya (1987) and Wang (1995) studied the ‘1-norm estimators.
The trimmed least squares estimator (TLSE) based on regression quantile was proposed
by Koenker and Bassett (1978). Many aspects of the TLSE have been explored by
ProchFazka (1988), Koenker and Park (1992), and JureGckovFa and ProchFazka (1994).
The consistency of M-estimator for nonlinear regression model has been studied by
Liese and Vajda (1994).

Are the available nonparametric estimators really e1cient when the error variable
has heavy-tailed distributions? The LSE, the ‘1-norm estimator and TLSE all have
asymptotic normal distributions with asymptotic covariance matrices equal to

�2Q−1 (1.1)

for some function �2, where

Q = lim
n→∞ n−1

n∑
i=1

@g(xi; �)
@�

@g(xi; �)′

@�
:

Under some regularity conditions imposed on the regression function g and the p.d.f.
f, the Cramer–Rao (C–R) lower bound for unbiased estimators of � also has the
form (1.1) with �−2 = E[(f′(�)=f(�))2] (see Bunke and Bunke, 1989; Cramer, 1989).
Consider the case where � has the mixed normal distribution 0:9N(0; 1) + 0:1N(0; �2)
and compare the asymptotic variances of the estimators mentioned above with the C–R
bound. Table 1 provides the values �2 of the estimators. The TLSE has the optimal
trimming in the sense that it has the smallest asymptotic covariance matrix.

It is obvious that none of these usual robust and nonrobust estimators have asymp-
totic variances close to the C–R lower bound. The TLSE under optimal trimming has
asymptotic variances relatively closer to the C–R lower bound than the other two esti-
mators. However, the discrepancies are still signi<cant when the contaminated variance
�2 is large.

Basically, the e1ciency of an estimator depends on the ability of the estimator to
deal with good observations and bad observations (outliers). It is well known that the
‘1-norm does not utilize the good observations su1ciently which results in a decrease
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in its e1ciency as is shown in the table. On the other hand, although the TLSE,
under optimal trimming, improves in e1ciency, the discrepancy between its asymptotic
variance and the C–R lower bound still shows inadequacy in utilizing observations (see
Table 2 in Section 3). This implies that regression quantiles used in detecting outliers
cannot precisely classify the observations into groups of good observations and outliers.
Thus, in the nonlinear regression problem it is still possible to improve the estimator’s
e1ciency by choosing an adequate construction process for data classi<cation.

The questions of interest are: (1) Is there another method to estimate the popula-
tion nonlinear regression quantile that can detect outliers more e1ciently? (2) Can
we construct nonparametric weighted means based on regression quantiles to estimate
regression parameters so that their asymptotic variances are close enough to the C–R
lower bound when the error variable has a heavy-tailed distribution? The purpose of
this paper is to address these questions. To do this, we <rst introduce the nonlinear
symmetric quantile by extending the idea of Kim (1992) and Chen and Chiang (1996).
In large sample studies, the representation of the nonlinear symmetric quantile shows
that it is consistent as an estimator of the population nonlinear symmetric quantile
which is the population regression quantile of Koenker and Bassett (1978) whenever
the underlying distribution is symmetric. Under a heavy-tailed distribution, the asymp-
totic variances of the symmetric regression quantiles of small and large percentage �
are smaller than those of the corresponding regression quantiles of Koenker and Bassett
(see JureGckovFa and ProchFazka (1994) for the nonlinear regression case). This is useful
in identifying outliers since they always fall below the small or above the large �th
nonlinear conditional quantiles. We demonstrate the e1ciency of the symmetric quantile
by considering two symmetric trimmed means. The asymptotic representation shows
that when the underlying distribution is asymmetric the symmetric trimmed mean has
an asymptotic bias with a form analogous to that of the trimmed mean in the linear
regression model (see (5.2) of Ruppert and Carroll, 1980). However, the asymptotic
bias disappears when the distribution is symmetric. The asymptotic variances of the
symmetric trimmed means are analyzed using heavy-tailed distributions. We demon-
strate that the asymptotic variances can be signi<cantly closer to the C–R lower bounds
in comparison with those of robust and nonrobust estimators. The trimmed mean based
on symmetric regression quantiles is shown to attain the C–R lower bound when the
random errors have a contaminated normal distribution.

The nonlinear symmetric quantile is introduced in Section 2 and its large sample
properties are investigated in Section 3. Examples of weighted mean constructed by
nonlinear symmetric quantile are studied in Section 4. The proofs of the theorems
are presented in Appendix. Many terms in the paper depend on the sample size n.
However, we have suppressed this index n in their notations for simplicity.

2. Symmetric type quantile

Recall that the nonlinear regression model for the observation (y; x) is y=g(x; �)+�:
For 0¡�¡ 1, the �th conditional regression quantile of y given x is

g(x; �) + F−1(�); (2.1)
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where F−1(�) is the ordinary quantile function of F . If the regression function g has a
constant additive term, that is g(x; �) = �0 + g0(x; �1) for some constant �0, the vector

�(�)=
(

�0(�)
�1

)
with �0(�)=�0 +F−1(�) is called the population regression quantile. In

this case, the vector �(�) has been studied by JureGckovFa and ProchFazka (1994) using
the technique of Koenker and Bassett (1978). When the regression function g does not

have a constant additive term, the population regression quantile is �(�)=
(

F−1(�)
�

)
. In

this case, the vector �(�) has been studied by Chen (1988) also using the technique
of Koenker and Bassett (1978). The estimator of �(�) by the technique of Koenker
and Bassett (1978) is called the regression quantile.

For 0¡�¡ 1 and a¿ 0, de<ne F̃(a) = P(|�|6 a) where � is the error variable.
De<ne the �th symmetric quantile of F as F̃−1(�) = inf{a : F̃(a)¿ �}, and the �th
nonlinear symmetric conditional quantile as

{g(x; �) − F̃−1(�); g(x; �) + F̃−1(�)}: (2.2)

If F is a continuous function, the nonlinear symmetric conditional quantile is easily
seen to satisfy

P(g(x; �) − F̃−1(�)6y6 g(x; �) + F̃−1(�)) = �:

Furthermore, if F is continuous and symmetric at 0, then, for 0¡�¡ 0:5,

F̃−1(1 − 2�) = F−1(1 − �):

In this case, the �th and (1 − �)th nonlinear conditional regression quantiles in (2.1)
and the (1 − 2�)th nonlinear symmetric conditional regression quantile in (2.2) all
coincide. The following theorem follows from Chen and Chiang (1996).

Theorem 2.1. If 0¡�¡ 1, then

F̃−1(�) = arg
a¿0

min EF(|y − g(x; �)| − a)(� − I{|y − g(x; �)|6 a|}): (2.3)

Let �̂I be an initial estimator of �. Following (2.3), consider the estimator of F̃−1(�)
de<ned by

â(�) = arg
a¿0

min
n∑

i=1

(|yi − g(xi; �̂I )| − a) (� − I{|yi − g(xi; �̂I )|6 a}): (2.4)

The symmetric population quantile is(
�0 + F̃−1(�)

�1

)
or

(
F̃−1(�)

�

)
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depending on whether the model has a constant additive term or not. It is estimated
by the symmetric regression quantile which, respectively, equals

�̂I +

(
â(�)

0p−1

)
and

(
â(�)

�̂I

)

in the <rst and second case.

3. Large sample properties of the symmetric quantile

The asymptotic distribution of the estimator of the population regression quantile
depends on both �̂I and â(�). Without loss of generality, we will consider the nonlinear
regression model with an additive constant term. The assumptions on error variable,
design vectors xi, and the nonlinear function g are presented in the Appendix. They are
assumed to hold in the rest of this paper. De<ne d̃i = [@g(xi; �)]=@�. The asymptotic
distribution of â(�) will be investigated with �̂I as an initial estimator.

De<ne

q0(�) = n−1=2
n∑

i=1

[� − I{|�i|6 F̃−1(�)}] − (f(F̃−1(�))

−f(−F̃−1(�))) ′n1=2(�̂I − �);

where  = limn→∞ n−1∑n
i=1 d̃i.

Theorem 3.1. (a) If 0¡�¡ 1, then

n1=2(â(�) − F̃−1(�)) = (f(F̃−1(�)) + f(−F̃−1(�)))−1q0(�) + op(1):

(b) Suppose that 0¡�¡ 0:5 and F is a symmetric distribution, then

n1=2(â(1 − 2�) − F−1(1 − �))

= (2f(F−1(1 − �)))−1n−1=2
n∑

i=1

[1 − 2� − I{|�i|6F−1(1 − �)}] + op(1):

The theorem implies the consistency of â(�) for F̃−1(�) which indicates that the

symmetric regression quantile �̂I +
(

â(�)
0p−1

)
is consistent for the population symmetric

regression quantile � +
(

F̃−1(�)
0p−1

)
.

When should symmetric regression quantiles be employed in statistical inference
in terms of their e1ciencies? We will attempt to answer this by studying (a) the
symmetric trimmed means (in Section 4) based on symmetric regression quantiles and
by (b) comparing the asymptotic variances of symmetric type quantiles and regression
quantiles.
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For simplicity, we study the following linear regression model:

yi = �0 + x′
i�1 + �i;

where F is symmetric and
∑n

i=1 xi = 0. Under this design, both quantiles are used to

estimate the population quantile
(

�0(�)
�1

)
. Recall that �0(�)=�0+F−1(�). The regression

quantile, denoted here by
(

�̂0(�)
�̂1(�)

)
has the following representation:

n1=2

((
�̂0(�)

�̂1(�)

)
−
(
�0(�)

�1

))

=f−1(F−1(�))

(
1 0

0 Q−1
11

)
n−1=2

n∑
i=1

(
1

xi

)
(� − I{�i ¡F−1(�)}) + op(1);

where Q11 = limn→∞
∑n

i=1 xix
′
i . The symmetric regression quantile is

(
�̂s0(�)
�̂s1(�)

)
with

�̂s0(�) = �̂0 + â(�) and �̂s1(�) = �̂1. Let the initial estimator �̂I =
(

�̂0

�̂1

)
be the ‘1-norm

estimator. Using (b) of Theorem 3.1 and the representation of the ‘1-norm estimator
(see Koenker and Bassett, 1978), we have, for 0:5¡�¡ 1,

n1=2(�̂s0(�) − �0(�)) = f−1(0)n−1=2
n∑

i=1

(0:5 − I{�i ¡ 0}) + 0:5f−1(F−1(�))n−1=2

×
n∑

i=1

(2� − 1 − I{−F−1(�)6 �i6F−1(�)}) + op(1);

and

n1=2(�̂s1(�) − �1) = f−1(0)n−1=2Q−1
11

n∑
i=1

xi(0:5 − I{�i ¡ 0}) + op(1):

Symmetric quantiles and regression quantiles employed to estimate �0(�) and �1 all
have normal asymptotic distributions. Those used to estimate �1 have asymptotic co-
variance matrices being Q−1

11 multiplied by diQerent constants. The e1ciencies of the
estimators can be compared by their constants. If the nonlinear regression model has a
general form, the asymptotic variance and covariance matrices of the symmetric quan-
tile and regression quantile are quite complicated and a direct comparison of their
asymptotic variances is di1cult. However, this di1culty does not occur for trimming
estimators as shown in the next section. Consider the case where the error variable has
the contaminated normal distribution

(1 − ")N(0; 1) + "N(0; �2):

The e1ciency of the symmetric quantile is de<ned as

Asymptotic variance of regression quantile
Asymptotic variance of symmetric regression quantile

:
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Table 2
E1ciencies of symmetric quantiles for estimating the quantile parameter �0(�)

� 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.98

" = 0:1
� = 1 0.87 0.84 0.84 0.84 0.87 0.92 1.01 1.21 1.47
3 0.91 0.89 0.90 0.92 0.98 1.09 1.30 1.84 1.90
5 0.91 0.90 0.91 0.94 1.01 1.15 1.44 2.39 2.02
10 0.90 0.89 0.90 0.93 1.01 1.16 1.49 2.70 2.03

" = 0:2
� = 3 0.88 0.87 0.88 0.92 1.00 1.14 1.40 1.78 1.98
5 0.89 0.88 0.91 0.97 1.08 1.28 1.68 2.04 2.00
10 0.89 0.89 0.93 1.01 1.16 1.45 1.98 2.10 2.03

Table 3
E1ciencies of symmetric quantiles for estimating the quantile parameter �1

� 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.98

" = 0:1
� = 1 1.02 1.05 1.10 1.18 1.30 1.50 1.86 2.87 5.38
3 1.07 1.12 1.19 1.31 1.51 1.88 2.78 7.14 43.0
5 1.07 1.13 1.21 1.35 1.59 2.07 3.40 15.5 331
10 1.06 1.11 1.20 1.35 1.62 2.17 3.92 42.9 1318

" = 0:2
� = 3 1.04 1.09 1.19 1.34 1.61 2.16 3.73 15.2 66.6
5 1.04 1.11 1.23 1.43 1.82 2.75 6.79 114 178
10 1.05 1.13 1.27 1.53 2.06 3.60 17.4 502 681

The parameters to estimate are �0(�) and �1, respectively. Tables 2 and 3 list the
e1ciencies for the cases "=0:1 and 0:2, where �=1; 3; 5; 10 and �=0:60; 0:65; 0:70; 0:75;
0:80; 0:85; 0:90; 0:95 and 0.98. Note that the results for � and 1 − � are identical.

Based on Tables 2 and 3, regarding the estimation of the population regression

quantile
(

�0(�)
�1

)
, we notice the following:

(a) In estimating �0(�), symmetric quantiles are more e1cient than regression quan-
tiles when � is small or large. Regression quantiles are more e1cient than symmetric
quantiles when � is close to 0.5 on either side.

(b) In estimating the slope parameters �1, symmetric quantiles are more e1cient
than regression quantiles uniformly in �.

(c) In estimating the population quantile vector
(

�0(�)
�1

)
, the symmetric quantile is

more e1cient than the regression quantile when � is either small or large. It seems that
symmetric quantiles are more suitable in classifying the data set into groups of good
data and outliers. With suitable choice of the trimming percentage, high e1ciency of
estimation is attainable by proper weighting of those observations lying outside the
estimated symmetric conditional quantile.



430 L.-A. Chen et al. / Journal of Statistical Planning and Inference 126 (2004) 423–440

Similar to the ordinary quantile function or the regression quantile, the symmetric
quantile has many applications in the study of inRuence functions. In the next section,
we consider its application in parameter estimation for the case of two weighted means.

4. Weighted means based on symmetric quantile

The weighted means are de<ned based on a linearized model. This linear approxima-
tion is a single step Gauss–Newton method (see Kennedy and Gentle, 1980) based on
a root-n consistent estimator. Estimation based on linear approximation can be found in
Fox et al. (1980) and Cook and Weisberg (1982). The one-step Huber’s M-estimator
by Bickel (1975) is an example of this technique for the linear regression model.

By the Taylor expansion theorem, there exists a function  i : Rp → R, 0¡ i ¡ 1,
such that

�0 + g(xi; �) = �̂0 + g(xi; �̂1) + (� − �̂I )′di

+ 0:5(�1 − �̂1)′ @
2g(xi; b)
@b@b′ |b=�i(�1 − �̂1);

where

�̂′
I = (�̂0; �̂′

1); �i = �1 +  i(�̂1)�̂1; and di =




1

@g(xi; �̂1)

@�̂1


 :

The approximate linearized regression model is

yi = �̂0 + g(xi; �̂1) + d′
i�

∗ + �∗i ;

where �∗ represents the term

� − �̂I and �∗i = �i + 0:5(�1 − �̂1)′ @2g(xi; b)
@b@b′

∣∣∣∣
b=�i

(�1 − �̂1):

The trimmed mean of � is de<ned based on this linearized regression model. Let
0¡�¡ 1 and y∗

i = yi − (�̂0 + g(xi; �̂1)). De<ne the trimming matrix

A = diag(ai : ai = I{−â� ¡y∗
i ¡ â�}; i = 1; : : : ; n):

In addition, denote

Dn =



d′

1

...

d′
n


 :
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The symmetric trimmed mean for estimating � is de<ned as

�̂t(�) = �̂I + Ln(�) with Ln(�) = (D′
nADn)−1D′

nAy
∗;

where the vector y∗ = (y∗
1 ; y

∗
2 ; : : : ; y

∗
n )′. The symmetric trimmed mean, de<ned through

a linearization of the nonlinear regression function and the residuals based on an initial
estimator has some advantages:

(a) This estimator is de<ned explicitly while most robust and nonrobust estimators
are de<ned implicitly.

(b) This estimator appears to be simpler to compute in comparison with the trimmed
means of JureGckovFa and ProchFazka (1994) for nonlinear regression and Koenker and
Bassett (1978) for multiple linear regression.

Denote

g(�) = F̃−1(�)(f(F̃−1(�)) + f(−F̃−1(�)))−1(f(F̃−1(�)) − f(−F̃−1(�)));

q1(�) = Q(f(F̃−1(�)) + f(−F̃−1(�)))F̃−1(�) − (f(F̃−1(�))

−f(−F̃−1(�)))g(�)  ′;

q2(�) = g(�) n−1=2
n∑

i=1

(� − I{|�i|6 F̃−1(�)});

q3(�) = n−1=2
n∑

i=1

d̃i(�iI{|�i|6 F̃−1(�)} − �):

Theorem 4.1. With q1(�), q2(�) and q3(�) as denoted above, we have

n1=2(�̂t(�) − (� + &)) = �−1Q−1{q1(�)n1=2(�̂I − �) + q2(�) + q3(�)} + op(1)

where & = �−1Q−1 � with

� =
∫ F̃−1(�)

−F̃−1(�)
� dF(�):

This result reveals that the symmetric trimmed mean �̂t(�) is not generally con-
sistent for regression parameter vector � where consistency holds only if, under our
assumptions, the term � disappears. The following corollary displays the desired results.

Corollary 4.2. Suppose that F is symmetric and � = 1 − 2� with 0¡�¡ 0:5. Then

n1=2(�̂t(1 − 2�) − �) = (1 − 2�)−1

[
2f(F−1(1 − �))F−1(1 − �)n1=2(�̂I − �)

+Q−1n−1=2
n∑

i=1

d̃i�iI{−F−1(1 − �)6 �i6F−1(1 − �)}
]

+ op(1): (4.1)
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Table 4
Asymptotic variances of estimates under G = N(0; �2)

" � LS ‘1 TLSE �̂t C–R

0.1 3 1.8 1.803 1.295(0.10) 1.305(0.02) 1.256
5 3.4 1.855 1.373(0.13) 1.287(0.03) 1.253

10 10.9 1.896 1.431(0.15) 1.229(0.04) 1.209
25 63.4 1.922 1.466(0.16) 1.171(0.05) 1.161

∞ ∞ 1.938 1.489(0.16) 1.114(0.05) 1.113

0.2 3 2.60 2.091 1.600(0.16) 1.632(0.04) 1.532
5 5.8 2.226 1.770(0.20) 1.605(0.06) 1.540

10 20.8 2.336 1.905(0.23) 1.492(0.08) 1.455
25 125 2.406 1.988(0.25) 1.377(0.09) 1.356

∞ ∞ 2.453 2.044(0.24) 1.256(0.10) 1.255

If we further assume that �̂I is the ‘1-norm estimator of �, then the representation
of ‘1-norm estimator (see Ruppert and Carroll, 1980) implies that

n1=2(�̂t(1 − 2�) − �) = (1 − 2�)−1Q−1n−1=2
n∑

i=1

d̃i[(�i + sgn(�i)f−1(0)

×f(F−1(1 − �)))I{|�i|6F−1(1 − �)}
+f−1(0)f(F−1(1 − �))F−1(1 − �)

×sgn(�i)I{|�i|¿F−1(1 − �)}] + op(1);

which has an asymptotic normal distribution with zero means and asymptotic covariance
matrix �2

s (�)Q−1, where

�2
s (�) = (1 − 2�)−2

[
(f(F−1(1 − �))F−1(1 − �)f−1(0))2 + 2

∫ F−1(1−�)

0
�2 dF

+ 4f(F−1(1 − �))F−1(1 − �))f−1(0)
∫ F−1(1−�)

0
� dF

]
:

Note that the symmetric trimmed mean also has an asymptotic normal distribution
with zero means and covariance matrix of form (1.1) with �2 =�2

s (�). Thus, in compar-
ing the e1ciencies of these estimators we only need to compare the values of �2 and
the C–R lower bound. Consider the error variable with standard normal distribution
contaminated by a distribution G with location parameter 0 and scale parameter �2,
that is, the error variable has the distribution

(1 − ")N(0; 1) + "G(0; �2):

We list in Table 4 the asymptotic variances for the ‘1-norm estimator, the TLSE, and
the symmetric trimmed mean �̂t . The values in parentheses are the trimming proportions
corresponding to the trimmed means which achieve the smallest asymptotic variances.
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Table 5
Asymptotic variances of estimates for G = Cauchy(0; �2)

" � ‘1 TLSE �̂t C–R

0.1 3 1.829 1.340(0.11) 1.246(0.02) 1.216
5 1.872 1.398(0.13) 1.244(0.03) 1.219

10 1.905 1.443(0.14) 1.207(0.04) 1.190
25 1.925 1.471(0.15) 1.161(0.04) 1.153

0.2 3 2.157 1.694(0.18) 1.518(0.05) 1.459
5 2.269 1.826(0.21) 1.523(0.06) 1.472

10 2.359 1.933(0.23) 1.449(0.08) 1.415
25 2.415 2.000(0.24) 1.356(0.09) 1.338

In Table 5, we list the asymptotic variances of the estimators considered above
except the LSE for G = Cauchy(0; �2).

From Tables 4 and 5 we draw several conclusions:
(a) For given ", the TLSE asymptotic variances increase with the variance of the

contaminated distribution, whereas the symmetric trimmed mean behaves in nearly
the opposite way. This interesting property implies that the power of the symmetric
quantiles to detect contaminated data gradually increases with �2.

(b) The symmetric trimmed mean is not only more e1cient than the ‘1-norm and
TLSE, but also has an asymptotic variance as small as the C–R lower bound when the
contaminated variance goes to in<nity.

Similar to the regression quantile of Koenker and Bassett (1978), symmetric quantiles
have many applications. We consider here a re<ned weighted mean based on symmetric
quantiles. We will show that the e1ciencies of symmetric trimmed means still can be
improved.

De"nition 4.3. Let 0¡�¡ 1; 06 b6 1 and â(�) be the solution of (2.4). The sym-
metric Winsorized mean indexed by (�; b) is de<ned as

�̂(�; b) = �̂I + ‘n(�; b);

with ‘n(�; b) = (D′
nADn)−1(D′

nAy
∗ + bâ(�)D′

nA
∗1sgn) and where 1sgn is n-vector of

sgn(y∗
i ) and A∗ = In − A.

The symmetric (�; b)th Winsorized mean and the symmetric �th trimmed mean has
the following relation:

�̂(�; b) = �̂t + bâ(�)(D′
nADn)−1D′

nA
∗1sgn :

Denote by

g∗
1 (�) = 2(1 − b)f(F−1(1 − �))F−1(1 − �)Q;
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Table 6
Asymptotic variances of estimators based on symmetric quantile

� & �̂t �̂w C–R & �̂t �̂w C–R

3 0.1 1.305 1.274 1.256 0.2 1.632 1.566 1.532
5 1.287 1.277 1.253 1.605 1.586 1.540

10 1.229 1.227 1.209 1.492 1.490 1.455

and

g∗
2 (�) = n−1=2

n∑
i=1

d̃i[�iI{|�i|6F−1(1 − �)}

+ bF−1(1 − �) sgn(�i)I{|�i|¿F−1(1 − �)}]:

Theorem 4.4. Let � = 1 − 2� with 0¡�¡ 0:5. If F is symmetric around 0, then

n1=2(�̂(1 − 2�; b) − �) = (1 − 2�)−1Q−1{g∗
1 (�)n1=2(�̂I − �) + g∗

2 (�)} + op(1):

Let �̂I be the ‘1-norm estimator. From JureGckovFa and ProchFazka (1994), it is seen
that n1=2(�̂(1 − 2�; b) − �) has the normal asymptotic distribution with zero means and
covariance matrix �2

wQ
−1, where

�2
w = (1 − 2�)−2 [2�(bF−1(1 − �) + (1 − b)f−1(0)F−1(1 − �)f(F−1(1 − �)))2

+ 2
∫ F−1(1−�)

0
�2 dF + 4(1 − b)f−1(0)F−1(1 − �)

×f(F−1(1 − �))
∫ F−1(1−�)

0
� dF + (1 − 2�) (1 − b)2(f−1(0)

× F−1(1 − �)f(F−1(1 − �)))2] :
We now give the asymptotic variances of two weighted means associated with the C–R
lower bound in Table 6.

An inspection of the estimators’ asymptotic variances reveals that the e1ciencies of
the symmetric trimmed means have improved. It is shown that the high e1ciencies
of the symmetric trimmed mean and the symmetric Winsorized mean depend only on
optimal settings of the turning constants � and b. The adaptive estimator selected with
the smallest bootstrap estimate of the <nite sample variance can also achieve high
e1ciency (see LFeger and Romano (1990) for information on the adaptive trimmed
mean for location estimation).

The following theorem shows that the asymptotic variance of the symmetric trimmed
mean can attain the C–R lower bound (as indicated in Table 4) when � has a contam-
inated normal distribution.
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Theorem 4.5. Suppose that the error variable � has the contaminated normal distri-
bution

(1 − ")N(0; �2) + "N(0; &�2) (4.2)

for &¿ 0 and some known ", 0¡"¡ 1. In addition, assume that �̂I has a bounded
in9uence function. Then the asymptotic covariance matrix of �̂t(1 − ") attains the
C–R lower bound

n−1(1 − ")−1�2Q−1; (4.3)

as & → ∞.

Theorem 4.5 has a practical meaning only in the rare cases where the level of
contamination is known.
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Appendix

We now list the assumptions employed in the paper.
(a.1) n−1∑n

i=1 d̃id̃′
i =Q+o(1) and n−1∑n

i=1 d̃i = +o(1) where Q is positive de<nite
and  is a <nite vector.
(a.2) n−1∑n

i=1(@g(xi; �)=@�j)4 = O(1), n−1∑n
i=1(@2g(xi; �)=@�j�k)2 = O(1).

(a.3) n−1max‖�‖6b
∑n

i=1 |@g(xi; �)=@�j|2 = O(1) for some b¿ 0.

n−1=4max‖�‖6b |@g(xi; �)=@�j| = O(1);

n−1=2 max‖�‖6b |@2g(xi; �)=@�j@�k | = O(1);

n−1=2 max‖�‖6b |@3g(xi; �)=@�j@�k@�h| = O(1):

(a.4) The probability density function f of � is bounded away from 0 in a neighborhood
of F−1(�) and F̃−1(�), for some 0¡�¡ 1. In addition, � has a <nite fourth population
moment.
(a.5) n1=2(�̂I − �) = Op(1).

To prove Theorem 3.1, we need several lemmas. Let, by replacing di and
[@2g(xi; b)]=@b@b′ by di(b) and Gi(b), respectively,

hi(c; t1; t3) =

(
c

di(� + n−1=2t3)

)′

t1;

gi(t2; t3) = t′2Gi(� + n−1=2t3)t2;



436 L.-A. Chen et al. / Journal of Statistical Planning and Inference 126 (2004) 423–440

and

S(t1; t2; t3) = n−1=2
n∑

i=1

(� − I{−F̃−1(�) + n−1=2hi(−1; t1; t3)

− 0:5n−1gi(t2; t3)6 �i6 F̃−1(�) + n−1=2hi(1; t1; t3)

− 0:5n−1gi(t2; t3)}):

Lemma A.1. For any b¿ 0,

max
‖tj‖6b; j=1;2;3

∣∣∣∣∣S(t1; t2; t3) − S(0; 0; 0) + n−1
n∑

i=1

[f(F̃−1(�))hi(1; t1; t3)

−f(−F̃−1(�))hi(−1; t1; t3) + (f(F̃−1(�))

−f(−F̃−1(�)))0:5n−1=2gi(t2; t3)]

∣∣∣∣∣= op(1):

Proof. Let �1 = P(�¡ − F̃−1(�)) and

S1(t1; t2; t3) = n−1=2
n∑

i=1

(� + �1 − I{�i6 F̃−1(�)

+ n−1=2hi(1; t1; t3) − 0:5n−1gi(t2; t3)})

and

S2(t1; t2; t3) = n−1=2
n∑

i=1

(�1 − I{�i6− F̃−1(�) + n−1=2hi(−1; t1; t3)

−0:5n−1gi(t2; t3)}):

So, S(t1; t2; t3) = S1(t1; t2; t3) − S2(t1; t2; t3).
Let F0 satisfy �0 = P(�¡F0) and

Sa(t1; t2; t3) = n−1=2
n∑

i=1

(�0 − I{�i6F0 + n−1=2hi(c; t1; t3) − 0:5n−1gi(t2; t3)}):

From JureGckovFa (1984) and Chen (1988, pp. 72–75),

max
‖tj‖6b; j=1;2;3

∣∣∣∣∣Sa(t1; t2; t3) − Sa(0; 0; 0) + n−1f(F0)
n∑

i=1

[hi(c; t1; t3)

− 0:5n−1=2gi(t2; t3)]

∣∣∣∣∣= op(1): (A.1)

Substituting (�0; F0) by (�+�1; F̃−1(�)) and then by (�1;−F̃−1(�)) in (A.1), we obtain
the representations of S1(t1; t2; t3) and S2(t1; t2; t3), respectively. Combining these two
representations, we then have the lemma.
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Lemma A.2. n−1=2∑n
i=1(� − I{|y∗

i |¡â(�)}) = op(1).

Proof. We follow Ruppert and Carroll (1980). Let

G(c) =
n∑

i=1

(|y∗
i | − (â(�) + c))(� − I{|y∗

i |6 â(�)}):

The right derivative of G at c is

G+(c) = (1 − �)
n∑

i=1

I{|y∗
i |6 â(�) + c} − �

n∑
i=1

I{|y∗
i |¿â(�) + c}:

We need to show that n−1=2G+(0) = op(1): Clearly, G+(c) is nondecreasing. So, for
small "¿ 0;

G+(−")6G+(0)6G+("):

Since G achieves its minimum at 0; we have

G+(0)6 lim
"→0+

(G+(") − G+(−")) =
n∑

i=1

I{|y∗
i | = â(�)}: (A.2)

The lemma follows since the term on the right-hand side of (A.2) is bounded.

Lemma A.3. If 0¡�¡ 1, then n1=2(â(�) − F̃−1(�)) = Op(1).

Proof. The following inequality holds:

P(|n1=2(â(�) − F̃−1(�))|¿ k)

6P

(
min
|t0|¿k

n1=2

∣∣∣∣∣
n∑

i=1

(� − I{|�i − n−1=2di(�̂I )′T1|

6 n−1=2t0 + 0:5n−1�̃′
IGi(�̂I )�̃I})

∣∣∣¡0

)

+P

(
n−1=2

∣∣∣∣∣
n∑

i=1

(� − I{|�i − n−1=2di(�̂I )′T1|

6 (â(�) − F̃−1(�)) + n−1�̃′
IGi(�̂I )�̃I})

∣∣∣¿ 0

)
; (A.3)

where T1 is an arbitrary sequence of random vectors with T1 =Op(1) and �̃I =n1=2(�̂I −
�). Using the method of JureGckovFa (1977, Lemma 5.2) and Lemma A.1, one can
show that for "¿ 0 there exist numbers 0; k and N0 such that for n¿N0, the <rst
term on the right-hand side of (A.3) is less than or equal to ". The proof follows by
Lemma A.1.
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Proof of Theorem 2.2. From Lemma A.3,

n1=2

((
â(�)

�̂I

)
−
(
F̃−1(�)

�

))
= Op(1):

Then Lemmas A.1 and A.3 imply that

−n−1=2
n∑

i=1

(� − I{−F̃−1(�)6 �i6 F̃−1(�)})

=n−1
n∑

i=1


(f(F̃−1(�))

(
1

di(�̂I )

)
− f(−F̃−1(�))

( −1

di(�̂I )

))′

× n1=2

(
â(�) − F̃−1(�)

�̂I − �

)+ op(1);

from which the theorem follows.

Proof of Theorem 4.1. From the setting of Ln(�); we have

n1=2(�̂t − �) = (n−1D′
nADn)−1n−1=2D′

nA�:

Also, the following representation can be found in Ruppert and Carroll (1980) or
JureGckovFa (1984)

n−1D′
nADn = �Q + op(1): (A.4)

It is not hard to show that n−1=2D′
nA� = n−1=2D̃′

nA� + op(1) with

D̃n =




d̃′
1

...

d̃′
n


 :

Let

Uj(t1; t2; t3) = n−1=2
n∑

i=1

d̃ij�iI{�i ¡a + n−1=2hi(c; t1; t2) − 0:5n−1gi(t2; t3)};

where d̃ij represents the jth element of d̃i and (a; c) is either (F̃−1(�); 1) or
(−F̃−1(�);−1). Along the line of Chen (1988) and JureGckovFa (1984), we see that

Uj(T1; T2; T3) − Uj(0; 0; 0) = n−1af(a)
n∑

i=1

d̃i[hi(c; T1; T2) − 0:5n−1gi(T2; T3)]

+ op(1): (A.5)



L.-A. Chen et al. / Journal of Statistical Planning and Inference 126 (2004) 423–440 439

for any sequence T = (T ′
1; T

′
2; T

′
3)′ with T = Op(1). Using (A.5), the theorem follows

by imposing T1 = n1=2
(

â(�)−F̃−1(�)
�̂I−�

)
, T2 = n1=2(�̂1 − �1) and T3 = n1=2(�̂I − �) in the

following representation:

n−1=2D̃′
nA� = n−1=2

n∑
i=1

d̃i�i[I{�i ¡ F̃−1(�) + n−1=2hi(1; T1; T2) − 0:5n−1gi(T2; T3)}

− I{�i ¡ F̃−1(�)}] − n−1=2
n∑

i=1

d̃i�i[I{�i ¡ − F̃−1(�)

+ n−1=2hi(−1; T1; T2) − 0:5n−1gi(T2; T3)} − I{�i ¡ − F̃−1(�)}]

+ n−1=2
n∑

i=1

d̃i�iI{−F̃−1(�)¡�i ¡ F̃−1(�)}: (A.6)

Proof of Theorem 4.4. Clearly,

n1=2(�̂(1 − 2�; b) − �) = (n−1D′
nADn)−1(n−1=2D′

nA� + n−1=2bâ(1 − 2�)D′
nA

∗1sgn):

By Theorem 3.1, (A.4) and (A.6), we only need to consider n−1=2D̃′
nA ∗ 1sgn with

n−1=2D̃′
nA ∗ 1sgn = n−1=2

n∑
i=1

d̃i(I{y∗
i ¿ â(1 − 2�)} − I{y∗

i ¡ − â(1 − 2�)}:

By using arguments similar to those of (A.5) and (A.6), we obtain

n−1=2D̃′
nA ∗ 1sgn = −n−1=22f(F−1(1 − �))Qn1=2(�̂I − �)

+ n−1=2
n∑

i=1

d̃i sgn(�i)I{|�i ¿F−1(1 − �)}:

The proof of Theorem 4.4 follows.

Proof of Theorem 4.5. Denote by g̃& the contaminated distribution (4.2). The C–R
bound for � is

(1 − ")−1

(
Eg̃&

(
@ ln g̃&(�)

@�

)2
)−1

Q−1

which converges to the C–R lower bound given in (4.3) as & → ∞. On the other hand,
the contaminated normal distribution of (4.2) satis<es �f(�) → 0 as � → ∞. Since,
�̂I has a bounded inRuence function, from (4.1), the asymptotic covariance matrix of
�̂s(1 − ") is

n−1Q−1(1 − ")−2Eg��
2I{|�|6F−1

� (1 − "=2)};
where g� is distribution of N(0; �2). However, as & → ∞; F−1

� (1−"=2) → ∞. Then the
above variance is also the quantity of (4.3). This completes the proof of the theorem.
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