
Some issues of designing genetic algorithms for traveling
salesman problems

H.-K. Tsai, J.-M. Yang, Y.-F. Tsai, C.-Y. Kao

Abstract This paper demonstrates that a robust genetic
algorithm for the traveling salesman problem (TSP)
should preserve and add good edges efficiently, and at the
same time, maintain the population diversity well. We
analyzed the strengths and limitations of several well-
known genetic operators for TSPs by the experiments. To
evaluate these factors, we propose a new genetic algorithm
integrating two genetic operators and a heterogeneous
pairing selection. The former can preserve and add good
edges efficiently and the later will be able to keep the
population diversity. The proposed approach was evalu-
ated on 15 well-known TSPs whose numbers of cities range
from 101 to 13509. Experimental results indicated that our
approach, somewhat slower, performs very robustly and is
very competitive with other approaches in our best sur-
veys. We believe that a genetic algorithm can be a stable
approach for TSPs if its operators can preserve and add
edges efficiently and it maintains population diversity.

Keywords Edge assembly crossover, Heterogeneous
pairing selection, Genetic algorithm, Neighbor-join
mutation, Traveling salesman problem

1
Introduction
The traveling salesman problem (TSP) is a well-known
NP-hard optimization problem which requires the deter-
mination of the shortest route passing through a set of M
cities under the condition that each city is visited exactly

once. TSPs raise important issues because many problems
in science, engineering, and bioinformatics fields, such as
routing, scheduling problems, flexible manufacturing
systems, physical mapping problems [1], and phylogenetic
tree construction [14] can be formulated as TSPs.

A large number of approaches have been developed for
solving TSPs. A very promising direction is the genetic
algorithm (GA) [8]. It is based on the ideas borrowed from
genetics and natural selection. A genetic algorithm is a
generally adaptable concept for problem solving. It is
especially well suited for solving difficult optimization
problems, where traditional optimization methods are less
efficient. However, general problem-independent GAs are
not very efficient in solving TSPs, especially for large
problems.

To further improve the GAs for TSPs, many approaches
have been proposed. Among these approaches, designing
TSPs-specific operators, incorporating domain-specific
local searches, and keeping population diversity are con-
sidered as promising strategies. Designing TSPs-specified
crossovers, such as cycle crossover [20], edge recombi-
nation crossover [29], maximally preserving crossover
[18], edge assembly crossover [19] and inver-over opera-
tors [27], could raise the performances of GAs for solving
TSPs. Incorporating domain-specific local search
techniques into GAs [12–13, 17] possess both the global
optimality of the GAs as well as the convergence of the
local search. Keeping population diversity is useful to
avoid premature convergences [5, 23].

Several issues responsible for improving the solution
quality of GA for solving TSPs were discussed. Here we
addressed these issues by analyzing the behaviors of some
crossover and mutation operators on some well-known
TSPs. We found that genetic algorithms for TSPs should at
least have three mechanisms: powerful genetic operators
which can preserve and add ‘‘good edges’’ (i.e., the edges
in the optimal tour) as well as a mechanism to keep the
population diversity. Based on these factors we designed a
new genetic algorithm for TSPs. It was evaluated on 15
well-known traveling salesman problems [22] whose
numbers of cities range from 101 to 13509 cities. The
experimental results indicated that the solution quality of
the proposed GA stays within 0.00043 from the optima for
testing problems. It is more robust than comparative
approaches.

The rest of this paper is organized as follows. In Sect. 2,
some issues of designing GA for TSP are discussed by
analyzing crossover operators, mutation operators, and
the mechanism of keeping population diversity. Section 3

Original paper Soft Computing 8 (2004) 689–697 � Springer-Verlag 2003

DOI 10.1007/s00500-003-0317-8

Published online: 24 November 2003

H.-K. Tsai (&)
Department of Computer Science and Information Engineering,
National Taiwan University,
Taipei 106, Taiwan
e-mail: d7526010@csie.ntu.edu.tw

J.-M. Yang
Department of Biological Science and Technology &
Institute of Bioinformatics,
National Chiao Tung University, Hsinchu 30050, Taiwan

Y.-F. Tsai
Department of Information Management,
Chung Yu Junior College of Business Administration,
Keelung 201, Taiwan

C.-Y. Kao
Bioinformatics Center,
National Taiwan University, Taipei 106, Taiwan

689

introduces a new genetic algorithm based on the analysis
of these factors and compares it to other famous
approaches on some TSP benchmarks. Concluding
comments are drawn in Sect. 4.

2
Some issues of designing GAs for TSPs
This section discusses some issues of designing GAs for
TSPs by experiments. Some crossover and mutation
operators are analyzed based on the mechanisms of pre-
serving and adding good edges. The experimental results
indicated that edge-based operators, such as edge assem-
bly crossover and neighbor-join mutation, were able to
meet these features. In order to keep the population
diversity, a heterogeneous pairing selection was developed.

2.1
Analysis of crossover operators
Crossover operators for TSPs can be roughly divided into
three categories: interval-preserving, position-based, and
edge-based crossover. In an interval-preserving crossover,
such as partially mapped crossover (PMX) [10], order
crossover (OX) [6], order-based crossover (OBX) [26], and
maximal preservative crossover (MPX) [18], a sub-path
between two selected cities were copied from one parent to
the offspring. Other cities were added into offspring
according to the relative order of another parent. It exe-
cutes just like typical two-point crossovers and repairs the
solution based on parents’ information. A position-based
crossover preserves the relative position of cities in par-
ents and acts like traditional uniform crossover. It at-
tempts to create an offspring from the parents where every
position is occupied by a corresponding element from one
of the parent. The most representative ones are cycle
crossover (CX) [20] and position-based crossover (PBX)
[26]. An edge-based crossover, such as heuristic crossover
(HX) [11], edge recombination crossover (ERX) [29],
distance preserving crossover (DPX) [7], and edge-
assembly crossover (EAX) [19], generates offspring by
preserving edges in parents and adding new edges heu-
ristically. Different methods employ different preserving
and adding mechanisms.

We used a simple GA to analyze the performances of
these crossover operators. Fig. 1 shows the pseudo code of
the simple GA, where the wheel selection [4] is used to
select the pairing chromosomes and total generation
replacement with elitism is adapted to select next popu-
lation. The population size is set equally to N. Termination
criteria are that the number of function evaluation exceeds
10000 N, where N is the number of cities.

Table 1 shows the experimental results for each tested
crossover with the simple GA (without mutation) on five
small TSP benchmarks, including att48, eil76, eil101,
kroa150, and kroa200. In Table I, the values in parentheses
of problems represent the optimal tour length. The column
‘‘Length’’ represents the brood size (L) defined in Fig. 1.
brood size is the number of solutions a genetic operator
generated. Each entry is the average error defined as�

average
optimum� 1

�
� 100 where average is the average values

of the best solutions obtained by testing approaches
executed for 20 trials. As observed, when the brood size
equals to 1, all the edge-based crossovers, except ERX,
outperform the interval-based and position-based cross-
overs. When the brood size is 20, the solution qualities of
all operators are improved except CX, which is a position-
based crossover. Another position-based crosssover, PBX,
is not shown here beacuse the testing results is similar to
CX. At the same time, the edge-based crossovers, including
EAX, HX, DPX, and ERX are significantly better than those
none edge-based crossovers. According to these experi-
ments, we suggested that a good crossover operator should
maintain the spirit of edge-based crossovers and execute
for a larger brood size. The following describes that to
preserve and add good edges is the main spirits of an edge-
based operator.

In these surveyed edge-based crossover operators, EAX
is the best one. We further discussed the results of these
operators on several large TSPs. Figure 2 shows the results
of these edge-based crossovers on eight TSP benchmarks,
where the brood size is 20. Each problem is executed 20

trials. The relative error is defined as
�

average
optimum� 1

�
�

100 where the ‘‘average’’ is the average values of the best
solutions obtained by these methods. EAX still outper-

Fig. 1. The pseudo code of the tested
simple GA

690

forms the others. HX and DPX get similar results,
while ERX becomes worse when the number of cities
increases.

In the following, we will analyze the characteristics of
edge-based operators based on their abilities of preserving
and adding edges to understand two issues: why edge-
based operators are better than none edge-based operators
and why EAX is the best one among these tested operators.
As mentioned in the previous paragraph, edge-based
crossovers generate offspring by preserving and adding
edges heuristically.

Table 2 briefly summarizes the mechanisms of pre-
serving and adding edges of these four edge-based cross-

overs. Observing the mechanism of preserving edges of
these crossovers, we found DPX only preserves the com-
mon edges appeared in parents, HX preserves edges by
concerning shorter edges from parents, and ERX inherits
common edges from parents as much as possible. EAX
inherits shorter edges from parents and considers the
frequency of edges appeared in the current population. As
to the aspect of adding edges, DPX modifies the interme-

diate solution by adding shorter edges, ERX and HX
randomly add new edges to form feasible solutions, and
EAX preserves edges heuristically and adds new edges with
a greedy method which is analogous to a minimal span-
ning tree.

To further examine the mechanisms of preserving and
adding edges, we measured the abilities of adding and
preserving ‘‘good edges’’ (i.e., the edges in the optimal
tour) of EAX, DPX, HX, and ERX operators. Figure 3
shows the results of these four operators tested on prob-
lem att532.tsp for adding and preserving ‘‘good edges’’ and
average edge length. The average added ‘‘good edge’’ is
defined as

where n is the popluation size. The average preserved
‘‘good edge’’ is defined in the similar way. The average
edge length is defined asPn

i f ðsiÞ
nm

;

where m is the number of cities, n is the popluation size,
and f(si) is tour length of individual si.

Table 1. Comparison of nine
crossovers with different
search lengths using the simple
GA (Fig. 1) on five TSPs
benchmarks. The values in
parentheses of problems
represent the optimal tour
length. ‘‘Length’’ denotes the
brood size. Each entry is the
average error defined as
ð average

optimum� 1Þ � 100 where
average is the average values
of the best solutions obtained
by testing approaches.for
independent 20 trials

Type Operator Length att48 eil76 eil101 kroa150 kroa200

Edge based EAX 1 0.0263 0.0186 0.0000 0.0008 0.0136
crossover 20 0.0000 0.0000 0.0000 0.0000 0.0051

HX 1 1.2006 3.4944 4.8490 5.3314 8.1745
20 2.3758 2.5465 3.8474 6.0153 7.1700

DPX 1 6.2495 4.3123 14.3402 11.8323 10.8428
20 4.0581 2.4535 8.6963 5.8355 3.7602

ERX 1 43.6187 88.3086 178.6010 460.6364 635.6923
20 9.2416 11.2825 12.5278 23.2024 28.5654

Interval based MPX 1 82.9592 149.8885 208.1240 460.6858 602.9120
crossover 20 12.0342 11.8773 17.6471 50.0475 173.2563

PMX 1 87.2168 104.6097 124.1812 226.7577 275.0259
20 63.3628 82.9740 105.5803 190.0468 237.2678

OX 1 80.3218 152.8903 214.7059 474.0624 609.4436
20 12.8265 11.8680 40.5087 222.6821 359.7756

OBX 1 96.3361 111.3941 148.5692 168.8045 105.8833
20 49.0102 63.2528 72.0668 73.2160 44.7327

Position based CX 1 163.8700 188.3829 216.0890 392.3567 460.2087
crossover 20 160.1402 183.7732 224.2925 401.2091 479.9527

Fig. 2. Comparisons of four edge-based crossovers, including
EAX, HX, ERX, and DPX using the simple GA (Fig. 1) on 8 TSP
problems based on error defined as ð average

optimum� 1Þ � 100 where the
‘‘average’’ is the average values of the best solutions obtained by

these methods. EAX is the best one. The results of HX and DPX
are similar, while the ERX is much worse when the number of
cities increases

Pn
i ð#of edges added after the genetic operator applied on solution iÞ

n
;

691

The population size and brood size are set to 500 and
20, respectively. Only the first 250 generations were ob-
served. The similar results were obtained for the other
problems. Figure 3(a) shows that EAX can continuously
add more ‘‘good edges’’ than other operators in earlier
stage (before the 70th generation). After the 70th genera-
tion, the values of the average preserving ‘‘good edges’’
(Fig. 3(b)) and average edge length (Fig. 3(c)) of EAX are
better than other operators. HX and DPX have similar
behaviors for these three factors and ERX has the worst
values. These results are consistent with our previous
discussions. In summary, a good crossover operator
should be edge-based and possess good mechanism of

adding and preserving ‘‘good edges’’. EAX is considered as
a good crossover which meets these requirements.

2.2
Analysis of mutation operators
Some local search heuristics, such as 2-swap, 2-opt, 3-opt
[15], neighbor-join [28] and Lin-Kernighan [16] have been
used in GAs as mutation operations for TSPs. GAs and
other evolutionary algorithms that use local search are
often referred as Memetic algorithms. These mutations
exchange some edges of parents to generate new children.
Generally, the stronger the mutation (local search) used
the better the performance of the GA.

Table 2. The mechanisms of
preserving and adding edges
of edge-based crossovers,
including EAX, DPX, HX, and
ERX

Operator Mechanisms

Preserving edge Adding edge

EAX Offspring inherits edges from parents
according to the edge length and the
frequencies appeared in the population

New edges are added into offspring to
modify the intermediate solution by
adding short edges through a spanning
tree method

DPX Only the common edges in both parents
are passed into offspring

Intuitively adding short edges to make the
intermediate solution feasible

HX Offspring inherits edges from parents
where the edge length is as short as
possible

New edges are randomly added to become
a feasible solution

ERX Offspring inherits edges from parents as
much as possible, but the maximum
number of inherited edges is not
guaranteed

New edges are randomly added to become
a feasible solution

Fig. 3. Comparison of edge-based crossovers, EAX, DPX, HX,
and ERX, on att532.tsp based on the average added ‘‘good edges’’
a, the average preserved ‘‘good edges’’ b, and the average edge
length c

Fig. 4. Comparisons of three mutations,
including 2-swap, 2-opt, and NJ using the
simple GA (Fig. 1) on 8 TSP problems
based on ‘‘error’’ defined as
ð average

optimum � 1Þ � 100 where average is the
average values of the best solutions
obtained by these methods. NJ is the best
one. The results of 2-opt and 2-swap
performed poorly as the number of cities
increased

692

Figure 4 shows the experimental results for three tested
mutations, including NJ, 2-swap, and 2-opt, with the
simple GA (Fig. 1) on eight small TSP benchmarks. These
problems are including att48, eil76, eil101, kroa150,
kroa200, lin318, pcb442, and att532. No crossover opera-
tors were adapted in this test set. The error is defined as�

average
optimum� 1

�
� 100 where average was the average

values of the best solutions obtained by these methods in
20 trials. NJ performed well. 2-opt became worse when the
number of cities increased. 2-swap was the worst one.

The mechanisms of adding and preserving edges of
these mutations vary. The 2-swap mutation arbitrarily
changes two cities at a time and thus four edges are
randomly removed and four edges are randomly added.
For 2-opt and NJ, they exchange some edges if the solution
is better. In each iteration 2-opt and NJ exchange 2 and
4 edges, respectively.

We used the same strategies for crossover operators to
measure the abilities of adding and preserving ‘‘good
edges’’ of NJ, 2-opt, and 2-swap mutations. Figure 5 shows
the results of these operators tested on problem att532.tsp
for adding and preserving ‘‘good edges’’ and average edge
length. The similar results were obtained for the other
problems. Figure 5(a) shows that NJ can add more ‘‘good
edges’’ than other operators in earlier stage as well as the
average preserving ‘‘good edges’’ (Fig. 5(b)) in later. 2-opt
and 2-swap have similar behaviors in adding edges, how-
ever 2-swap is worse in preserving good edges. These
results are consistent with our previous observations. In
summary, a good mutation operator should possess good

mechanisms of adding and preserving ‘‘good edges’’. NJ is
considered as a good mutation operator which meets these
requirements.

Experimental results show that by combining NJ with
EAX, TSPs can be well solved [28]. To examine the com-
plementary characteristics of EAX and NJ, we measure the
abilities of adding and preserving ‘‘good edges’’ (i.e., the
edges in the optimal tour) by EAX and NJ operators.
Figure 6 shows the results of EAX and NJ for adding and
preserving ‘‘good edges’’. Figure 6(a) shows that NJ can
add more ‘‘good edges’’ than EAX in early stage, while
EAX outperforms NJ in late stage. The abilities of pre-
serving ‘‘good edges’’ of these two operators are similar
(Fig. 6(b)). Although we cannot theoretically prove the
seamless of combining EAX and NJ, they indeed com-
pensate each other in adding and preserving ‘‘good edges’’
in our experiments.

2.3
Mechanism of keeping diversity
Keeping population diversity is another issue in GA for
TSPs. Here we designed a new pairing selection, named
heterogeneous pairing selection (HpS), to select two
parents for crossover operators to reduce the premature
convergence effect based on the edge similarity of a
population.

The formulation and implementation of the HpS is
described as follows: Let {s1, s2,…sN} be the current pop-
ulation, E(si) be the set of the edges of si, and ||E(si)|| be the
number of the edges of E(si). The number of identical

Fig. 5. Comparison of three mutations, 2-swap, 2-opt, and NJ,
on att532.tsp based on the average added ‘‘good edges’’ a, the
average preserved ‘‘good edges’’ b, and the average edge length c

Fig. 6. The ability of adding and preserving good edges of EAX
and NJ on the problem fnl4461. They seem be able to compensate
each other on adding ‘‘good edge’’ and are similar on preserving
‘‘good edge’’

693

edges jjTi;jjj of two individuals (si and sj) is defined as
jjTi;jjj ¼ jjEðsiÞ \ EðsjÞjj For each individual si, let ti be the
average number of identical edges between si and the other
individuals in the population ti ¼ 1

N�1

PN
j¼1;j 6¼i jjTi;jjj,

where N is the population size.
For the given individual si, the HpS selects si and an-

other individual sj with jjTi;jjj � ti for the EAX operator.
This similarity-based mechanism is useful for keeping the
population diversity. Our experimental results were
consistent with this claim. In practical implementation,
we used another method to calculate ti due to the time
complexity of getting all ti through calculating ||Ti,j|| is
O(N2M2). At the beginning of each generation, F(e), the
count of edge e appearances in the current population,
is calculated in advance where e 2 fEðs1Þ [Eðs2Þ [. . .
[EðsNÞg. The sum of ||Ti,j|| of si in the population, can be
reformulated as

ti ¼
1

N � 1

XN

j¼1; j6¼i

jjTi;jjj ¼
1

N � 1

XN

j¼1

jjTi;jjj � jjTi;ijj

¼ 1

N � 1

X
e2EðsiÞ

FðeÞ �M

0
@

1
A

¼ 1

N � 1

X
e2EðsiÞ

ðFðeÞ � 1Þ :

Therefore, all ti can be calculated in O(NM) by looking up
the pre-calculated table. Since the EAX crossover also uses
the information F(e), the extra effort of calculating ti will
be limited.

To show the performance of HpS, we compared HpS
with five selections, including random pairing selection
(RpS) [19], random selection [4], rank selection [3], rou-
lette wheel selection [4], and tournament selection [9], on
eight TSPs benchmarks. The simple GA (Fig. 1) and EAX
were used and the search length was set to 20. Table 3
shows that HpS is better than the others in these eight
tested problems with the same function evaluations. For
att532, EAX with HpS can find the optimal solution for 19
times in 20 independent runs. For the other problems,
EAX with HpS can always found the optima in each trial.
In summary, we have demonstrated that the HpS is able
to improve the solution quality for the EAX through

maintaining of population diversity and provision of a
good pairing scheme.

3
System and results
Based on the discussion of section II, we investigated a
new genetic algorithm combining the edge assembly
crossover (EAX), neighbor-join mutation (NJ), and the
heterogeneous pairing selection (HpS). Figure 7 shows the
main steps of the proposed approach. N solutions are
randomly generated as the initial population. After
evaluating the fitness, each solution in the population
sequentially uses the HpS to select itself (si) and another
individual from the population based on the edge simi-
larity. These two individuals become the parents of the
EAX which generates only one intermediate offspring (Ii).
The NJ mutation is then executed L times to generate a
child (ci) by refining the intermediate solution Ii. In each

Fig. 7. Overview of our proposed genetic algorithm

Table 3. Comparisons of various pairing selections, including
HpS, RpS, random, rank, wheel, and tournament selections, with
the simple GA (Fig. 1) and EAX based on the ‘‘error’’ defined as
ð average

optimum� 1Þ � 100.where average is the average values of the best

solutions obtained by testing approaches. These methods are
tested on eight TSP problems based on the average solution
qualities in 20 independent trials

HPS RPS Random Rank Wheel Tournament

att48 0.000000 0.000000 0.000000 0.000235 0.000000 0.000000
eil76 0.000000 0.000000 0.000000 0.000000 0.000000 0.000093
eil101 0.000000 0.000000 0.000130 0.000239 0.000000 0.000159
kroa150 0.000000 0.000002 0.000251 0.000004 0.000000 0.000008
kroa200 0.000000 0.000000 0.000342 0.000003 0.000510 0.000032
lin318 0.000000 0.000136 0.001006 0.000889 0.000834 0.001354
pcb442 0.000000 0.000000 0.000000 0.000000 0.000000 0.000007
Att532 0.000013 0.000224 0.000327 0.000354 0.000435 0.000502

694

pair of si and ci, the one with the better solution survives
where 1 � i � N . These N solutions become the new
population of the next generation. Note that the proba-
bilities of both the crossover and the mutation operators
are 1.0. Our algorithm is terminated when one of the fol-
lowing criteria is satisfied: 1) the maximum preset search
time is exhausted, 2) all individuals of a population rep-
resent the same solution, or 3) all of the children generated
in five continuous generations are worse than their
respective family parents.

We tested the proposed approach on 15 TSP benchmark
problems whose numbers of cities range from 101 to 13509
cities and executed on a Pentium IV 1 GHz personal
computer with single processor. Each problem was tested
for 20 independent runs. According to the experiments,

the population size was set to the number of cities of a TSP
whose number of cities is smaller than 1000 and set to the
half of the number of cities of a TSP whose number of
cities is larger than 1000 for the tradeoff between solution
quality and convergence time. For usa13509, the popula-
tion size was set to 2000 due to the memory constraint.

Table 4 shows the experimental results of our approach
tested on 15 problems. The values in parentheses of
problem represent the optimal tour length. The values
in parentheses of the average tour length represent the
percentage of error defined as ð average

optimum� 1Þ � 100, where
average is the experimental value and optimum is the
optimum of a TSP problem. The ‘‘optimal times’’ means
the times our approach found the optima in 20 trials for a
TSP problem.

Table 4. The experimental re-
sults of our method on 15 TSP
problems based on the average
time (sec), generation, tour
length, and the optimal times
our approach found the
optima. The error is defined as
where average is the average
values of the best solutions
obtained by testing approaches

Problem Time Generation Average tour
length (error)

Optimal
times

eil101.tsp (629) 0.5 17.5 629 (0.000000) 20
Kroa200.tsp (29368) 4 35.9 29368 (0.000000) 20
Lin318.tsp (42029) 15 49.8 42029 (0.000000) 20
Pcb442.tsp (50778) 33 43.7 50778 (0.000000) 20
Att532.tsp (27686) 97 73.05 27686 (0.000000) 20
u574.tsp (36905) 106 70.75 36905 (0.000000) 20
rat783.tsp (8806) 376 83.25 8806 (0.000000) 20
vm1084.tsp (239297) 955 100.25 239304.8 (0.000033) 19
Pcb1173.tsp (56892) 1177 105.6 56892.5 (0.000009) 18
u1432.tsp (152970) 1875 82.8 152970 (0.000000) 20
pr2392.tsp (378032) 4968 147.5 378032 (0.000000) 20
Pcb3038.tsp (137694) 11617 178.2 137694 (0.00000) 20
Fnl4461.tsp (182566) 50033 255.4 182570.3 (0.000024) 16
rl5915.tsp (565530) 78527 195 565530.5 (0.000001) 19
Usa13509.tsp (19982859) 256186 452 19991528 (0.000434) 0

Table 5. Comparisons of our method (HSGA) with six methods,
ant colony system (ACS) [25], the voronoi crossover genetic al-
gorithm (VGA) [24], the compact genetic algorithm (CGA) [5],
iterative Lin-Kernighan (ILK) [12], chained Lin-Kernighan (CLK)
[2], and Tabu search with Lin-Kernighan (LK) [30] on eight larger

TSP problems based on the average tour length. The length of the
optimal tour of each problem is in brackets. Here the error is
defined as where average is the average values of the best
solutions obtained by testing approaches. N/A means the result
is not available

Problem HSGA ACS VGA CGA ILK CLK Tabu with LK

lin318 (42029) 42029 42029 42029 N/A N/A N/A
42029 (0.000000) (0.000000) (0.000000) (0.000000)
att532 27686 27718.2 27686.7 27686 N/A N/A N/A

(27686) (0.000000) (0.001163) (0.000025) (0.000000)
rat783 8806 8837.9 N/A 8806 N/A N/A N/A

(8806) (0.000000) (0.003622) (0.000000)
vm1084 239304.8 N/A N/A N/A 239349 239301 240238

(239297) (0.000033) (0.000217) (0.000017) (0.003932)
pcb1173 56892.5 N/A N/A N/A 56897 56984 57290

(56892) (0.000009) (0.000088) (0.001617)
u1432 152970 N/A N/A N/A 153122 153328 153727

(152970) (0.000000) (0.000994) (0.002340) (0.004949)
pr2392 378032 N/A N/A N/A 378597 379629 380486

(378032) (0.000000) (0.001495) (0.004225) (0.006492)
pcb3038 137694 N/A 137706.8 N/A 137861 138055 138893

(137694) (0.00000) (0.000093) (0.001213) (0.002622) (0.008708)
fnl4461 182570.3 N/A 182605.9 182578.4 182814 182840 184373

(182566) (0.000024) (0.000219) (0.000068) (0.001358) (0.001501) (0.009898)
frl5915 565530.5 N/A N/A 565554.0 565625 568570 570650

(565530) (0.000001) (0.000042) (0.000168) (0.005375) (0.009053)
usa13509 19991528 N/A N/A 19991585 20015598 20022550 20160648

(19982859) (0.000434) (0.000437) (0.001638) (0.001986) (0.008897)

695

Table 4 shows the proposed approach which performs
robustly for these tested problems. Except usa13509, our
approach is able to find the optimum of the 14 tested
benchmarks for at least 16 times in 20 trials. All the
average tour length above the optima is within 0.00043.
Our approach, somewhat slower, is able to find the optima
and is stable for all tested problems.

To show the robustness of our proposed approach on
large TSPs, we compared it with some methods, including
the ant colony system (ACS) [25], the voronoi crossover
genetic algorithm (VGA) [24], the compact genetic algo-
rithm (CGA) [5], iterative Lin-Kernighan (ILK) [12],
chained Lin-Kernighan (CLK) [2], and Tabu search with
Lin-Kernighan [30], as shown in Table 5. These six appro-
aches performed well on these test problems according to
the original papers and the results on ‘‘8th DIMACS Imple-
mentation Challenge: The Traveling Salesman Problem’’.

Table 5 shows that our method outperforms these
surveyed approaches in these testing problems. It is able to
find the optimum and the average solution quality is
within 0.00043 above the optima value for each testing
problem although the proposed GA is somewhat slower
than these approaches. ILK is the fastest approach among
these approaches and the testing result is slightly better
than other surveyed approaches. For the larger problem
such as usa13509, ILK is about 30 times faster than the
proposed method with population size equal to 2000.
Fortunately, when we set the population size to 100, the
running time for our method is about the same as ILK and
the average tour length is 20014159 (0.001566) which is
slightly better than ILK.

4
Conclusion
This study demonstrates that GA can be a stable approach
for TSPs via designing their components. From our analysis
and experiences, we suggest that a genetic algorithm for
TSPs should consist of local search strategies and maintain
population diversity as well as implement the mechanisms
of preserving good edges and inserting new edges into off-
spring. In our proposed approach, the heterogeneous edge
selection keeps the population diversity; the neighbor-join
mutation is local search strategies. Our experiments indi-
cated that the edge assembly crossover and the neighbor-
join mutation are able to preserve good edges and add new
edges. These strategies seem to be able to closely cooperate
with each other to improve the overall search performance.

Experiments on 15 benchmark TSPs verify that the
proposed approach is robust and is very competitive with
algorithms of our best surveys. Our approach is able to
find optimum and stable solutions for all testing TSPs;
specifically, it finds out the optimum over 16 times in 20
independent runs for problems smaller than 6000 cities.
For larger problem usa13509, the average solution is only
0.00043 above the optima. We believe that a GA with these
claimed issues will become a robust tool for TSPs and
potential applications.

References
1. Alizadeh F, Karp RM, Newberg LA, Weisser DK (1993)

Physical mapping of chromosomes: a combinatorial problem

in molecular biology. Proceeding the Fourth ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 52–76

2. Applegate D, Bixby R, Chvatal V, Cook WJ (1999) Finding
Tours in the TSP. Tech. Rep. TR99-05, Dept. Comput. Appl.
Math., Rice Univ., Houston, TX 77005

3. Bäck T, Hoffmeister F (1991) Extended selection mechanisms
in genetic algorithms. In: Proceedings of the Fourth
International Conference on Genetic Algorithms (ICGA),
pp. 92–99

4. Baker JE (1987) Reducing bias and inefficiency in the selec-
tion algorithm. In: Proceedings of the Fourth International
Conference on Genetic Algorithms (ICGA), pp. 14–21

5. Baraglia R, Hidalgo JI, Perego R (2001) A hybrid heuristic for
the traveling salesman problem. IEEE Transactions on
Evolutionary Computation 5: 613–22

6. Davis L (1985) Applying adaptive algorithms to epistatic
domains. In: Proceedings of the International Joint Confer-
ence on Artificial Intelligence, pp. 162–164

7. Freisleben B, Merz P (1996) New genetic local search
operators for the traveling salesman problem. In: Parallel
Problem Solving from Nature IV (PPSN IV), pp. 890–899

8. Goldberg DE (1989) Genetic Algorithms in Search, Optimi-
zation & Machine Learning. Reading, MA: Addison-Wesley

9. Goldberg DE, Deb K (1991) A comparative analysis of
selection schemes used in genetic algorithms. Foundations of
Genetic Algorithms, pp. 69–93

10. Goldberg DE, Lingle R Jr (1985) Alleles, Loci and the TSP. In:
Proceedings of the First International Conference on Genetic
Algorithms and Their Applications, pp. 154–159

11. Grefenstette JJ (1987) Incorporating problem specific
knowledge into genetic algorithms. Genetic Algorithms and
Simulated Annealing pp. 42–60

12. Johnson DS, McGeoch LA (1997) The Traveling Salesman
Problem: A Case Study in Local Optimization. In: Aarts EHL,
Lenstra JK (eds), Local Search in Combinatorial
Optimization, John Wiley and Sons, Ltd., pp. 215–310

13. Jung S, Moon BR (2000) The nature crossover for the 2D
Euclidean TSP. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pp. 1003–
1010

14. Korostensky C, Gonnet GH (2000) Using traveling salesman
problem algorithms for evolutionary tree construction.
Bioinformatics 16: 619–627

15. Lin S (1965) Computer solutions of the traveling salesman
problem. Bell Systems Technical Journal 23: 2245–2269

16. Lin S, Kernighan B (1973) An effective heuristic algorithms
for the traveling salesman problem. Operations Research 21:
498–516

17. Merz P (2002) A comparison of memetic recombination
operators for the traveling salesman problem. In: Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 472–479

18. Mühlenbein H, Gorges-Schleuter M, Krämer O (1988)
Evolution algorithms in combinatorial optimization. Parallel
Computing 7: 65–85

19. Nagata Y, Kobayashi S (1997) Edge assembly crossover:
A high-power genetic algorithm for the traveling
salesman problem. In: Proceeding of the Seventh Interna-
tional Conference on Genetic Algorithms (ICGA), pp. 450–
457

20. Oliver IM, Smith DJ, Holland JRC (1987) A study of per-
mutation crossovers on the TSP. In: Genetic Algorithm and
Their Applications: Proceedings of the Second International
Conference pp. 224–230

21. Padberg M, Rinaldi G (1987) Optimization of a 532-city
symmetric traveling salesman problem by branch and cut.
Operation Research Letters 6: 1–7

22. Reinelt G (1991) TSPLIB- A Traveling salesman problem
library. ORSA Journal on Computing 3(4): 376–384

696

23. Ronald S (1995) Preventing Diversity Loss in a Routing Ge-
netic Algorithm with Hash Tagging. Complexity International
volume 2 ISSN1320–0683

24. Seo D, Moon BR (2002) Voronoi quantized crossover for
traveling salesman 0problem. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO),
pp. 544–552

25. Stützle T, Dorigo M (1999) ACO algorithms for the traveling
salesman problem. Evolutionary Algorithms in Engineering
and Computer Science, pp. 163–183

26. Syswerda G (1991) Schedule optimization using genetic
algorithm. Handbook of Genetic Algorithms pp. 332–349

27. Tao G, Michalewicz Z (1998) Inver-over operator for the TSP.
Parallel Problem Solving from Nature V (PPSN V), pp. 803–812

28. Tsai HK, Yang JM, Kao CY (2001) Solving Traveling
Salesman Problems by Combining Global and Local Search
Mechanisms. In: Proceedings of the 2002 Congress on
Evolutionary Computation (CEC), pp. 1290–1295

29. Whitely D, Starkweather T, D’Ann Fuquay (1989) Scheduling
problems and traveling salesman: The genetic edge recom-
bination operator. In: Proceeding of the Third International
Conference on Genetic Algorithms (ICGA), pp. 133–140

30. Zachariasen M, Dam M (1995) Tabu Search on the Geometric
Traveling Salesman Problem. In: Proceedings from
Metaheuristics International Conference, pp. 571–587

697

