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Abstract

We propose a task allocation algorithm that aims at finding an optimal task assignment for any parallel programs on a given machine
configuration. The theme of the approach is to traverse a state—space tree that enumerates all possible task assignments. The efficienc
of the task allocation algorithm comes from that we apply a pruning rule on each traversed state to check whether traversal of a given
sub-tree is required by taking advantage of dominance relation and task clustering heuristics. The pruning rules try to eliminate partial
assignments that violate the clustering of tasks, but still keeping some optimal assignments in the future search space. In contrast to
previous state—space searching methods for task allocation, the proposed pruning rules significantly reduce the time and space requirec
to obtain an optimal assignment and lead the traversal to a near optimal assignment in a small number of states. Experimental evaluation
shows that the pruning rules make the state—space searching approach feasible for practical use.
© 2004 Published by Elsevier Inc.
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1. Introduction parallelization method to reduce the time to find an optimal
solution of assigning precedence-constrained graphs. In this
Advances in hardware and software technologies have ledpaper, we follow the task graph mode[®8], which models
to the use of parallel and distributed computing systems. a set of parallel processes without precedence constraint,
To execute a parallel program efficiently, the mapping of and propose pruning rules to improve the efficiency of state—
program tasks to processors should consider both load bal-space searching method.
ancing and reducing communication overhead. This paper The key idea of the proposed pruning rule is to detect
studies such a task allocation problem. task clustering in the task graph. We observe that tasks can
Several research works have been done for the task al-be grouped such that a group is a set of heavily communi-
location problem. Although the task allocation problem has cated tasks and inter-group communication weights are rela-
been shown to be NP-compldd, a set of heuristics have tively small. While traversing the state—space, our proposed
been proposef#,8,9,11,14,15,19,23A drawback of these  algorithm detects task clustering from traversal history and
heuristics is the poor quality on the assignment fo{bid tries to prune partial assignments that violate the detected
On the other hand1,2,7,12,13,16-18,20jroposed state—  task clustering. We prove that the proposed pruning rule
space searching methods with differences in the problemwill reserve some optimal assignment in the future search
formulation for various applications and machine configura- space. This guarantees the optimality of the solution found.
tions. The state—space searching approach finds an optimaMoreover, our experiment shows that the proposed algo-
assignment at the cost of intractable time and space com-rithm traverses only a low-order polynomial number of states
plexity. Ahmad and Kwol1] proposed pruning rules and to reach a near optimal assignment. Hence, when time and
space is limited, a near optimal assignment can be obtained.
* Corresponding author. Fax: +886-3-5724176. This makes our proposed algorithm feasible for practical
E-mail addressycma@csie.nctu.edu.t@r.-C. Ma). use.
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This paper is organized as follows. Section 2 models the
task allocation problem as a state—space searching problem.
Section 3 describes the basic idea of the proposed pruning
rule. Section 4 describes the dominance relation, which is
the basis to derive our pruning rule. Section 5 described
the proposed pruning rule Section 6 describes the proposed
task allocation algorithm and the space management policy.
Section 7 presents the experiment to show the effectiveness
of our proposed pruning rules. Finally, a conclusion is given
in Section 8.

Fig. 1. Example of a task graph.

2. Modeling task allocation problem

In this section, we present how the task allocation prob- . i o
lem is formulated and transformed into state—space search- The machine configurationis represented asf (P, d).
ing problem. This section defines the terminologies used in £ = {Po. p1. ..., pu—1} isthe setof all processors. For each

this paper and gives the framework of our proposed task al- P&ir of processorgy, p; € P,k # I, adistancel(px, p)is
location algorithm. associated to represent the latency of transferring one unit

of data betweerp; and p;. If two tasksz; and¢; are as-
signed to different processoys. and p;, respectively, the
time required for task; to communicate with; is esti-
mated to be(t;, t;)*d (p, p;). The communication time be-

We follow [4,9,18]to formulate the task allocation prob- ean two tasks within the same processor is assumed to be
lem. This formulation assumes that there are little or no zero

precedence relationships and synchronization requirements 5 'machine configuration example is depicted in Fig. 2
so that processor idleness is negligible. Contentions on cOM~y/5 take the hierarchical architecture as an example. The

mur;:caﬂop links are als:oI lgnpr?d- I ol o machine consists of two subnets. It takes 5 units of time
The optimization problem is formulated as follows. The . yansfer a unit of data for two processors in the same

input to a task allocation algorithm istask graphG and  g;pnet and 20 units for two processors in different subnets.
amachine configuration/. The output, called @ompléte  1p,,ghout this paper, we will use the hierarchical archi-
assignmentis a mapping that maps the set of tagk the tecture to demonstrate the idea of our task allocation algo-

set ,Of process.%rf..A.n optimal f;l]s&gnme;ls a complete rithm. However, our proposed algorithm can also be applied
§155|gnment wit m|_n|mumost The cost of an gs_&g_nmgnt to other machine configurations with non-uniform distances
is the turn-around timeof the last processor finishing its | .tveen processors

ExeCl(thioln. Tohfindllelm orr)]timalhassignmeptl, the_ branch-and- A complete assignmert; is a mapping that maps the set
ound algorithm will go through severadrtial assignments ¢ 1as1s7 to the set of processoi. To find a complete as-
where only a subset of the tasks has been assigned. W

fine th inol ¢ | h K all i esignment, our task allocation algorithm will examine several
de |bn|et e above terminology to formulate the task allocation partial assignmentsA partial assignmentd is a mapping
problem.

i that mapsQ, a proper subset df, to the set of processors
A parallel program is represented as task graph

G(T, E, e, c). The vertex set of the task graph is the set of
tasksT = {ro,11,...,1,-1}. Each task; € T represents a
program module. The edge setof the task graph repre-
sents communication between tasks. Two tasksd:; are
connected by an edge if communicates with;. For each
taskt; € T, a weighte(t;) is associated with it to represent
the execution time of the task For each edgé;, ¢;) € E, TA(A) = Z e(t;) + Z Z
a weightc(t;, ¢;) is given to represent the amount of data A= i AGI=pr 1A D
transferred between tasksands;. welti 1) d(pr. A1) ‘ (1)

An example task graph is depicted in Fig. 1. Each vertex Ui 1) diPks AU
Is a task and the number on each FaSk Is the execution Weightyy o ¢ ogtof 5 partial/complete assignment is the turn-around
e(1;) for the tasks;. Associated with the number on edge ;o of the Jast processor finishing its execution:
(#i, t;) is the communication weight(z;, t;). Throughout
this article, we will use this task graph to demonstrate the
idea behind our algorithm. cost(A) = L - TA(A). @)

2.1. Formulating task allocation problem

The turn-around timeof processorpy, denotedTA;(A),
under a partial/complete assignmenis defined to be the
time to execute all tasks assignedpp plus the time that
these tasks communicate with other tasks not assigned to
pi- That is,
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Fig. 2. Example of a machine configuration: (a) the clustered architecture and (b) the distance(diaiix;)).
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Fig. 3. State—space tree.

An optimal assignmentiqp is a complete assignment with
minimum cost:

cost (Aopt)
= min{cost(A¢)|A¢ is a complete assignmgnt

©)

2.2. Transforming to the state—space searching
problem—A*-algorithm

We solve the task allocation problem by state—space

searching with pruning rules. Shen and Ta] proposed

In the remaining of this article, we will use the terms branch-
ing states and partial/complete assignments interchangeably.
The traversal proceeds as follows. During the traversal,

an active sef[10] (also called theopen setin some litera-
ture[6]), denotedActiveSetis used to keep track of all par-
tial/complete assignments that have been explored but not
visited. In each iteration during the traversal, the following
operations are performed:

Stepl: Remove a partial/complete assignmdrt from
ActiveSetand visitA,.

Step2: If Ay is a complete assignment, terminate the
traversal and returd, as the output.

a state—space search algorithm without pruning to solve the  step3: Check if the sub-trees derived frofy need further
task allocation problem. This state-space search method israversal by using thpruning rule

known as the A-algorithm[6], which has been proven to

Step4: If the sub-tree ofd, needs further traversal, put

guarantee the optimality of the solution obtained. Based each child node ofl, in the state—space tree imativeSet

on the A‘-algorithm, we add a pruning rule to reduce the

search space to be traversed. In our experiment, tfis A

For simplicity, we useictiveSer® to denote the contents

algorithm will be used as a baseline for comparison with Of the ActiveSetat the beginning of théth iteration, and

our branch-and-bound algorithm.

As illustrated in Fig. 3, thestate—space treeepresents all
possible task assignments. We use(an+ 1)-level m-ary
tree to enumerate all possibilities of assignintpsks tom

A\(,k) to denote the partial/complete assignment visited in the
kth iteration.

We follow the approach in Shen and T$&8] to deter-
mine the traverse order. For each partial/complete assign-

processors. In the literature of branch-and-bound method, amentA, a lower-bound (denotefi(A)) on all complete as-

node in the state—space tree is callebranching stateln

signments extended from (or A itself in case thatd is a

this study, a branching state represents either a partial or acomplete assignment) is estimated. In each iteration during
complete assignment, depending on whether the branchingthe traversal, the partial/complete assignméntvith min-
state is an internal node or a leaf node in the state—space tredmum L (e) is removed fromActiveSetand visited.L(A) is
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computed according to trelditional cosbf assigning tasks  that each group contains heavily communicating tasks. The

not assigned im. key observation is that a group may contain a set of tasks
Given a partial assignment in which Q € 7 has been  suitable to be placed in the same processor, or a set of tasks
assigned, we defindCy(t; — p;, A) to reflect theaddi- suitable to be placed in the same subnet in the hierarchi-
tional coston processopy, if task?; is assigned to processor cal architecture. While traversing the state—space tree, our
D branch-and-bound algorithm detects the clustering of tasks

and tries to prune those partial assignments that violate the

ACL(tj = pi. A) clustering heuristic. The effectiveness of the pruning rule

= e(t;) + Z c(ti, tj))"d(pk, A(;)) thus depends on whether the tasks can be clearly clustered
1A # pr into groups.
if px = p1, 4) The development of the pruning rule consists of two
phases. In Section 4, we first develod@minance relation
ACk(tj — pi, A) This dominanc«_a relation is effectiye only when a sma_lll cut
_ Z G 1) d( ) is met._ In Section 5,_We further_lntegrate th_e detection of
v el 1 Pk P clustering of tasks with the dominance relation to form an
itAlli)=Pk

. enhanced pruning rule.
it e # pi. (5) Prining

For a partial assignmem, the cost lower-boundL (A) 4. Pruning search space by dominance relation

for all complete assignments extended frdnis estimated

to be We first develop adominance relationto serve as the

basis for developing the pruning rule. We pick two par-
tial assignmentsi; and A, in which the same set of tasks
has been assigned. Suppaser (A1) <cost(A2). We call

A the winner andA; the loser. Letd’_ . and A5 . be

the complete assignments with a minimum cost in the sub-
tree belowA; and Ay, respectively. We want to be able to
check whether it is possible that the winner—loser relation-

Without pruning rules, the method presented so far is Ship will be changed, that isps? (A7 peg) = cost(Ay peq)-
known as A-algorithm[6], which was originally proposed ~ Our proposed dominance relation claims that what may re-
by Shen and Ts4l8] for task allocation. The Aalgorithm verse the winner—loser relationship is the weights of edges
traverses all partial assignments witie) less than the op- ~ between assigned and un-assigned tasks in the task graph.

space size to be traversed. space when the weights between assigned and un-assigned

tasks are small.

L(A)= max <TAk(A) + >

processorpy - )
t;:not assigned iMA

X < min  ACy(t; — pi, A)) ) (6)

prcoessorp;

3. Basic idea of the proposed pruning rule 4.1. Formalization of dominance relation

The development of the pruning rule is based on the clus- Definition 1 (Dominance relation). Leti; and Az be two
tering of tasks. As shown in Fig. 4, tasks are grouped such partial assignments. We say; dominatesA, if we can

tasks suitable to be |
i placed in the same processor

tasks suitable to be
placed in the same subne

Fig. 4. Sample clustering of tasks according to communication weights.
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Fig. 5. Idea behind deriving the dominance relation: (a) selection of partial/complete assignments and (b) classifications on tasks.

guarantee thatost (A} pes) < cost (A5 peg), Where Al poq
and A’ . are complete assignments with minimum cost
extended fromA; and Ay, respectively.

The inference rule we use to derive a dominance relation

is as follows. We omitted the proof since it is a direct con-
sequence from Definition 1.

Corollary 1 (Inference rule for deriving the dominance
relation). Let A; and A, be two partial assignmentstg
dominatesA; if for any complete assignmedt, extended
from Ay, there exists a complete assignmetit extended
from Ay, such that TA(A) — TA:(A}) >0 for each proces-
SOr py.

The idea to derive a dominance relation is depicted in
Fig. 5. The assignmentd;, A», A}, and A, concerned in
Corollary 1 are shown in Fig. 5(@), whete = T — Q.

A} and A}, are chosen such that; and A, have the same
future extension. We rewrite the turn-around time equation
according to the task classification shown in Fig. 5(b). In
addition to TA,(A2) — TA.(A1), the communication time
between assigned and to-be-assigned task&; i) also
contribute toTA, (A%) — TA.(A)). This gives a lower bound
estimation onTA.(A) — TA.(A}). The proposed domi-
nance relation checks whethap can be pruned or not ac-
cording the estimatedurn-around time difference lower-
bound

We introduce the following notations:

e Execution(R) = Y e(t;), whereR is a set of tasks.
ti€R
> > cltit)*d(Ay

e Communication(R1, R2)
Li€R1 1;ER2

(ti), AL(tj)), whereR; and R, are sets of tasks.

Following the classification on tasks shown in Fig. 5(b),
we rewrite the turn-around time equation in the following
lemma. The proof is omitted since it is a trivial computation
from the turn-around time formula.

Lemma 1 (Reformulating the turn-around timel.et A5 be
a partial assignment and} be a complete assignment ex-
tended fromA,. Q is the set of tasks assigned i and S

is the set of tasks not assignedAn. Then

TA(AL) = TA«(Aa) + Execution(Sk(Aa))
+ Communication(Qy(Aa), Sk(Aa))
+ Communication(Qy(Aa), Sk (Aa))
+ Communication(Si(Aa), Sk(Aa)),

(7)

where

e 0i(Aa)={1i € QlAa(ti) =pi} and Qi(Aa) =Q — Ok
(Aa),

o Sk(Ap ={ti
(Aa).

€ S|At) =pi} and Sp(A) =S5 — Sk

Before stating the dominance relation, we statetthe-
around time difference lower-bound TAR141, A2). Let A1
and A, be two partial assignments with the same set of
tasksQ being assigned, anfl = T — Q. TADL, (A1, A)
is a lower bound oA (A}) — TAL(A)), whereA and A/,
are arbitrary complete assignments extend fedjrand A,
respectively, such that’ (r;) = A%(1;) for each task; € S.
TADL (A1, Ap) is estimated to be

TADLi (A1, A2)
= TA«(A2) — TA(AD) + )

tieS
X<

—AC(ti — pr1, A1))>-

MiN(ACy(t; — pi, A2)
pleP

(8)

We then check whetheA, can be pruned or not by
computing TADL, (A1, Ap) for each processorpg. If
TADL, (A1, Ap) is greater than or equal to zero for each
processolpy, it indicates thafTA, (A5) — TA. (A7) >0 for
each processop, and hence we can pruné,. This is
stated in the following theorem.

Theorem 1 (Dominance relation for space pruningd)et

A1 and A, be two partial assignments containing the same
set of tasks. If TADL(A1, A) >0 for each processopy,
then A1 dominatesAs.



1228 Y.-C. Ma et al. / J. Parallel Distrib. Comput. 64 (2004) 1223-1240

A A
to— Po to—Po
t - Po 4 - Po
- Po HL-p
TA(A)=1300 TA(A,)=3750

TA(A)=0 TA(A,)=3050
TA(AY=0 TAy(Ax)=0
TA(A)=0 TA(A)=0

@

—— edges that may affect the
winner-loser relationship

AG(ti - P, Ay: AG(ti - P AY:
§ Po Py P> P3 & Po Py P> Ps
{3 800 | 200 | 800 | 800 ts 800 | 200 | 800 | 800
t, 700 | 150 | 600 | 600 t, 850 0 0 0
tt | 750] 0 | 0 | O t |750] 0 | 0 | O
ts 1000 O 0 0 tg 1000 O 0 0
t; 1200 O 0 0 t; 1200 0 0
tg 1000| 100 | 400 | 400 tg 1000| 100 | 400 | 400
to 1000 O 0 0 ty 1000| O 0 0
t, | 450 ] 50 | 200 | 200 t, ]50] 0] o] o
t, |600] 0 | 0 | O t, |600] 0 | 0 | O
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Fig. 6. Example to illustrate the dominance relation: (a) partial assignments in consideration, (b) the task graph and (c) effetts alh possible
extensions.

Proof. To draw a dominance relation by Corollary 1, we = TA(A2) — TAL((A1) + Z
pick the complete assignmedt; extended fromA; such nes
_tha;A’l(g() ): VI?/’Z(ti) fcirteacr?ti Ets£fA??tte;xj :/e)p;c(t)ed x (ACk(t; — Ay(t;), Az)
in Fig. 5(a). We want to show 5 — D= B , I
for eachpy. ACk(ti — A1), A1)). 9)
We decompose botfiA,(A}) and TA.(A)) as stated in  Taking a lower bound on the turn-around time difference,
Lemma 1. Sinced(1;) = AL(1;) for eachy; € S, we have we have
e Execution(Sx(A%)) — Execution(Sk(A})) = 0, and TA(AY) — TA(AY)
e Communication(Sg(A%), Sx(A)) — Communication 2 TA(A2) — TA(A1)
(Sk(AD), Sk(AD) = 0. + tX; Min(ACk(t; — pi. A2)
i€

Hence, we have _ACL — pr. AD).
/ /
TA(42) = TA(AD) The right-hand side of above inequality is tRADL (A1,
= TA(A2) — TA(A1) A») defin_wgd previously. Hence iTADLy (A1, A2) >0 for
n (Communication(Sk(A’z),M) eachpy, it implies A; dominatesA,. [

— Communication(Sg(AY), Ox(A1))) 4.2. Example of the dominance relation

+ (Communication(Sx(A%), Qr(A2)) We use the task graph in Fig. 1 and the machine configura-
— tion in Fig. 2 to illustrate the idea of the dominance relation
— Communication(Sk(A), Qx(A1))) given in Theorem 1. The partial assignments concerned are
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A1 andA; shown in Fig. 6(a)A; is the winner andi, is the guidelines. For extensions violating the guidelines, we es-

loser in this comparison. We apply Theorem 1 to guaranteetimate the cost lower bound and exclude those extensions

that the winner—loser relationship will not be reversed. whose costs are guaranteed to be greater than or equal to
We use the example in Fig. 6 to explain the key idea of cost(Ay). For extensions following the guidelines, we find

exploiting task clustering. In the task graph in Fig. 6(b), adominatorAq from the killer A; that dominates these ex-

{t0, 11, 12} is @ group of heavily communicating tasks and tensions. These observations lead us to propose the pruning

should be assigned to the same processor. In Fig. &¢a), rule, whose criteria for pruning the search space is stated as

is a partial assignment obeying the task clustering apd  follows.

is a partial assignment that violates the task clustering. The Pruning criteria Let Aqg and A be two partial assign-

dominance relation examines the “cut”, edges between as-ments in which the same set of tasks has been determined,

signed taskdro, 11, 12} and remaining tasks (bolded edges and A, be a complete assignment. We prudeif for

in Fig. 6(b)), to test whetheA, can be pruned or not. The any complete assignment’ extended fromA, either (i)

examination finds that edges from assigned taskg tnd cost(A") = cost(Ay) or (ii) there exists a complete assign-

t10 are the only possible causes fap to win back what mentAy extended fromdq such thatcosr (Ay) <cost(A').

it has lost (cf. Fig. 6(c)). The edge weights in the cut are

relative small and hence positifé\DLy (A1. A2) values are 5 1. predicting clustering of tasks

obtained. This results iA; been pruned. Enumerating heav-

ily communicated tasks in consecutive order ensures that a Fig. 8 presents the procedure CompURA(A, A) to pre-
cut with light-weighted edges can be met and improves the gict the clustering of tasks. The result of this detection is a
pruning efficiency of the dominance relation. set of possible assignmentdenotedPA;s, for each task;
not assigned imA. EachPA is a set of processors which
] . we can assign task to PA;'s are determined according to a
5. Pruning search space by task clustering killer A;. That is, the killer should reflect the clustering of
tasks in a task graph. How such a killer can be obtained will
The dominance relation proposed in Section 4 is effec- pe explained in Section 5.4.
tive only when a small cut can be found. To relieve this 1o generate a guideline to extendidg we sketch a dis-
constraint, we develop a further pruning rule that considers tance hierarchy on processors centralized at the “central pro-
both the detection of clustering of tasks and the dominance cessor”p. and map the tasks to the distance hierarchy. Let
relation. 1a be the last task assigned in We takepc to be the one

How well the pruning rule works depends on the task ;s assigned to int; (cf. Step 1 in Fig. 8). For each tagk
enumeration order. We assume that tasks are enumerated igssigned im; but not inA, we letPA; be the set of all pro-

merated first. We will see how such an enumeration order is siep 2 in Fig. 8). If; is not assigned imy, no prediction

ment has the following properties:

e A complete assignment obtained by a greedy search policy5.2. Examining partial assignment using pruning rule
reflects the clustering of tasks.

e The first partial assignment of assigning a sub-graph vis-  Fig. 9 presents the procedure PruneTest to test whether
ited reflects the clustering of tasks in the sub-graph. a partial assignment can be pruned. Procedure PruneTest

calls ComputePAto predict the guidelines to extending the

candidateA. From there, the remaining work is to examine

whether the sub-tree of needs further traversal using the

pruning rule.

We first test the correctness of the prediction outcome
PAs. The test is performed by estimatintuan-around time
lower-boundor extensions violating the guidelines, denoted
TAL; (A, violate PA), stated as follows:

With these properties, we obtain (1) partial assignngrt-
called thekiller—reflecting the clustering of tasks, and (2)
complete assignmemy served as an upper bound on the
optimal cost to test whether a candidate partial assignment
A can be pruned. These are the inputs to our pruning rule.
We use the task graph in Fig. 1 and the machine config-
uration in Fig. 2 to illustrate how the pruning rule works as
depicted in Fig. 7. The killeA, is a partial assignment with
more tasks than the candidatehas. In the Fig. 7 example, TAL, (A, violate PA)

Ay reflects the clustering of tasks by showing that 71, 72} _
. = TAMA + Y
should be placed in the same processor fagds, 12, t3, 14} ot acaned it
should be placed in the same subnet. We are thus given the 7 ang 1A
guidelines to extendi: (i) 2 should be assigned tap, (ii) _
13, t4 should be assigned to either pf and p;. X <pr0£2§lgorpl ACy(tj — pi, A)>

' Complete as3|gnments e>§tended frﬂman be F:Ias§|f|ed i min ACL(ti — p1, A). (10)
into two categories: extensions following or violating the processorp; ¢PA;
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e t-{pot Z Z —
* ol ~{po P} dominated by, cos(A)= cos(A)

ti—Po t,~ps

Fig. 7. Pruning based on task clustering.

Algorithm Compute_PARJAY)

e input:

— A A : partial assignments, number of tasks assignég :nnumber of tasks assignedAn
e output:

— PADOP for each tasl; not assigned ir\ (P is the set of all processors)
* method:

1) p.— A(t,) wheret, is the last task assignedAn

2) for each task; not assigned ir\ do
if t; is assigned i\ then PA —{ processomp,| d(p,, p)<d(A(t), po) }
elsePA P

Fig. 8. Algorithm to predict the clustering of tasks.

Algorithm PruneTes#,AA)
e input:
— A A: partial assignments.
+ depth@)=depth@)
— A, acomplete assignment

e output:
— prune=True ifA can be pruned, otherwise prune=False
e method:

1) perform Compute_P# A) to determind>A for each task not assigned ik
2) [* exclude extensions violating PA */
2.1) success False
2.2)for each processa; do
if TAL (A, violatePA)>cos(A ) then
success- True
break
2.3)if success=Falsen PA — P
3) A, the ancestor ol in the same level witA
4) prune-True
5) /* dominate extensions obeying PA */
for each processqy, do
if TADL,(A,APA)<0 then
prune- False
break
6) return prune

Fig. 9. Algorithm to examine the partial assignment using the pruning rule.
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Lemma 2. Let A be a partial assignment and’ be a TA(A)—TA(Ay) is thus estimated to BBADL; (Ag, A, PA)
complete assignment extended fromn If there exists a  as defined before. This proves the theoreml
task #; not assigned inA such thatA'(r;) ¢ PA;, then

TAL(A")>TAL (A, violate PA)) for each processop. The procedure PruneTest uses Theorem 2 to test whether

A can be pruned or not. Hypothesis (i) of Theorem 2 is
guaranteed by Step 2. Step 5 in the procedure PruneTest
Proof. The proof is similar to the estimation of the cost checks whether hypothesis (ii) of Theorem 2 holds. This test
lower boundL (e) in [18]. The only difference is that when then returns the result indicating whethércan be pruned
taking minimum on the sum of additional cost to obtain a or not.

lower bound orTA,(A’), the possibilities of assigning to The advantage of using the pruning rule in Theorem 2
processors iPA; are excluded. [ instead of the dominance relation in Theorem 1 is that the
space can be pruned earlier during the traversal. For the ex-
ample given in Fig. 7, this advantage is shown in Fig. 10.
If we use the dominance relation given in Theorem 1 as
the pruning rule, the bolded partial assignments will be tra-
versed. The reduced search space is an exponential function
of the depth of the clustering of tasks that we can detect.

After excluding extensions violating the guidelines,
we then check the dominance imposed on the remain-
ing extensions. The&lominator Ay is the ancestor ofA;
in the state—space tree at the same level withSimilar
to the procedure in Section 4, we estimatéum-around
time difference lower-bountbetweenAy and A, denoted
TADL,(Ag, A, PA), assuming tharq and A have the same
future extensions and following the guidelines for each task 5.3. Obtaining an upper bound on the optimal cost
t; not assigned iM(Aq). We estimateTADL; (Aqg, A, PA

as follows: To check whether a partial assignmehtan be pruned,
the procedure PruneTest uses two additional inputs: (1) a
TADLy (Ag, A, PA) complete assignmemy served as an upper bound on the
= TAL(A) — TA(Aq) optimal cost and (2) a killeA; reflecting the clustering of
. tasks. Another use of such & is to serve as an “imperfect
+ Z ( nger(ACk(ti - pi, A) solution” once the “perfect solution” cannot be found. The
1; not assigned" " task allocation problem is well known to be NP-complete

[2]. Once the optimal assignment cannot be found subject
to time and space constraints, an “imperfect solution”—a
complete assignment that may not be optimal—would be
returned as the output. In this section, we describe how such
an Ay can be obtained.

We use a greedy search approach to obtain a complete as-
signmentA. A pointer p is used to indicate the status of the
greedy search. At the beginningpoints at the starting node
(the partial assignment currently visited) in the state—space
tree. In each step, we moyedown to one of its children
with the minimum cost. The procedure terminates when (1)

Theorem 2 (Pruning rule).Let A and A be two partial as- oints at a partial assignment with a cost greater than that
signments in which the same set of tasks has been deter? P P 9 9

mined and A, be a complete assignmeR4’s are guide- of the present,, or_(2)p points at a complc_ete assignment.
. . . Ay is then updated if a better complete assignment is found.
lines to extend for each task; not assigned ird. If .

The reason we use greedy search is because not only
(i) For each task; not assigned in4, there exists a pro-  of its simplicity but also the fact that a low cost complete

—AC(ti — p1, Ad)))- (11)

Compared to theTADLy(Ag4, A) defined in Section 4,
these two quantities are estimated in similar ways. The dif-
ference is that the future extensionsAqf and A have been
restricted to be inPA;s in estimatingTADLy (Ag, A, PA).
And TADL, (A4, A) = TADL,(Aq4, A, PA) if eachPA; con-
tains all of the processors.

cessorpy such that TA (A, violate PA) > cost(Ay). assignment can be obtained if a careful task enumeration
And order is applied. Assume the tasks are enumerated in an order
(i) TADL,(Ag, A, PA) >0 for each processopy. such that heavily communicated tasks will be enumerated

consecutively. The complete assignment obtained will reflect
the clustering of tasks and is likely to have a low cost.

To illustrate the idea, we take the task graph in Fig. 1 and
Proof. By Lemma 2, hypothesis (i) implies that complete machine configuration in Fig. 2 as an example. Consider
assignments extended fromviolating the guideline®A s the greedy search starts from the partial assignrivgnt>
will have a cost greater than or equal ¢ost(Ay). The po, t1 — po}. Part of the greedy search path is shown in Fig.
remainder of the proof is to estimate a lower bound on 11. The greedy search will assiginto pg next since it is the
TA(A") — TAL(AY). This is similar to Theorem 1, but the  child of {to — po, 1 — po} with the lowest cost. This se-
possibilities of extendingA to an assignment that vio- lection indicates thay, 71, andr, may need be placed in the
late the guideline$®A;s are ignored. The lower bound of same processor. Similarkgwill be assigned tgp; following

Then the pruning criteria is satisfied antican be pruned
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Fig. 10. Space saved by the pruning criteria.

to—Po
t - P

bh-pr  L-p L-Ps

3P, G3-pP3

O selected in the greedy

L-p  4-p3 search path

Fig. 11. Greedy search on the state—space tree.

the parent partial assignmeing — po, 11 — po, t2 — po},
also reflecting the clustering of tasks. Following the same

ment of containing a sub-graph visited indicates the cluster-
ing of tasks, otherwise it will have a lardg(e).

We follow the principle that the first partial assignment
indicates clustering of tasks to obtain killers. We assess that
a candidate partial assignmenwill be pruned if it violates
the clustering of tasks somewhere in the path from root to the
branching state in the state—space tree. Partial assignments
having taken advantage of clustering of the tasks assigned
by A are those partial assignments each of which (1) have
a common ancestor witd in the state—space tree, (2) are
visited earlier tham, and (3) are deeper thahin the state—
space tree such that the sub-graph contained is also
contained in them. This leads to the design of our heuristic
scheme to obtain the killers.

To realize the scheme, a link to the deepest descendant
node is associated with each visited partial assignment. For
each partial assignment, we associate a pointéeep(Aa)

procedure, we obtain a complete assignment that obeys thé)ointing at the deepest partial assignment visited in the sub-

task clustering guideline.

5.4. Obtaining killers reflecting clustering of tasks

In addition to the complete assignmety, a partial as-
signmentA; reflecting the clustering of tasks is also helpful
to enhance the pruning rule. To increase the possibility of
pruning a partial assignment, we may find multiple killers to
form aKillerSet, instead of only one Kkiller. The procedure
PruneTest is then performed for each killer in KidlerSet
to test whether a partial assignment can be pruned.

tree of A,. If two or more partial assignments at the same
level of the state—space tree are visitéekp(Ay) points at

the first one visited, which has the smallest cost lower bound
estimate(L(e)) on all its extensions. Th&illerSetis the

set of alldeep(Aa) for each ancestor of along with the
complete assignmemnty,.

KillerSet(A)
= {deep(Ag)|Agis an ancestor oA} U {A}.

Partial assignments reflecting clustering of tasks can be The determination of th&illerSetis depicted in Fig. 12.
obtained by the proposed task enumeration order and theThe number in each node is tlige) of the partial assign-
state—space tree traverse order. A partial assignment covers eent represented by the node. For each visited nggléhe

sub-graph of the task graph. With the assumption that heav-

dashed link represents the deepest litekp(Az). When a

ily communicated tasks are enumerated consecutively, wepartial assignmend is visited, we follow the deepest link

can capture part of the clustering of tasks in the sub-graph.

Since we traverse the task graph in the minimlge) first

along all ancestors aofl to obtain theKillerSet In this ex-
ample, theKillerSetto be used for pruning is {Ag, As}

order, the first partial assignment containing the sub-graphplus A. That is, for each sub-tree (of the state—space tree)

visited is the one with minimund.(e) among all partial as-

signments containing the sub-graph. The first partial assign-

containingA, we pick the best branching state visited in the
sub-tree to try to prund.
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Part of the State Space Tree 6.2. The optimal branch-and-bound algorithm
© partial assignment that traversed . . . . .
O partial assignment that not traversed The branch-and-bound algorithm is shown in Fig. 14. This
is based on the Atraversal scheme with the addition of the
pruning rules and related implementation code presented in
Section 5. We now show that an optimal assignment can be
obtained by the proposed algorithm if neither time-out nor
overflow of theActiveSebccurs.

To be convenient, we introduce some terminologies
and notations. A complete assignmesi is said to be
in the future search spacef ActiveSer® if either A¢ €
ActiveSer® or there exists a partial assignmeAp €
ActiveSet™® such thatA. can be derived fromis. On the
other hand, we say. is lost from ActiveSer® if Ac is
not in the future search space AtriveSer®. The depth

the deepest link
DeefA)=A,, DeefA,)=A,, Deef(A,)=A,

KillerSe(A)={ AgA} of a partial/complete assignment denoteddepth(A), is
the length of the path from the root to the branching states
Fig. 12. Deepest link to determine the KillerSet. representind in the state—space tree.

The difficulty of showing the correctness of the algorithm
is that the pruning rules may remove some partial assign-
ments that can lead to optimal assignments. Fortunately, it
can be guaranteed that there exists other optimal assignments
in the future search space after pruning. When an optimal

We now present the task allocation algorithm using the @SSignment is pruned, we always can find another optimal
pruning rules. We present how a good enumeration order @ssignment survived in the future search space, as shown in
is obtained in Section 6.1. In Section 6.2, the branch-and- Fig. 15. Provided that some optimal assignments survived in

bound algorithm along with the correctness proof will be the future search space, we show that the termination con-
presented. dition implies the optimality of the solution obtained.

6. Branch-and-bound task allocation with preprocessing

Lemma 3. Assume that no overflow in the ActiveSet occurs.
6.1. Preprocessing to determine the task enumeration order Then during the traversalthere are always some optimal
assignments survived in the future search space
We have seen the importance of the task enumeration
order in previous sectlo_ns. For the following reasons, tas_ks Proof. We prove this by induction on the number of iterations
should be enumerated in such an order that tasks with high. . . .
o o i. The induction hypothesis is that
communication are enumerated first:

« To arrive at a small cut to exploit the dominance relation ® for any optimal assignmenfiop-0 not in the future

before the space overflow. search space, there exists another optimal assignment
« To obtain killers that take advantage of the clustering of ~ Aoptx Survived in the future search space such that
tasks. depth(A}) >depth(Ap), where Ay and A; are the last

« To obtain a low cost complete assignment serving as an  Visited ancestors ofiopi-o and Aopt-«, respectively.

upper bound on the optimal cost. Lemma 3 holds in the beginning since no optimal assign-

The task enumeration order is determined by applying mentis lost at initialization. Assuming the induction hypoth-
the max-flow min-cut algorithm recursively to partition the esis holds at the beginning of certain iteration. Suppose there
task graph. Each time the max-flow min-cut procedure is is a partial assignment;, been pruned in this iteration and
applied, the set of tasks is decomposed into two partitions A can be extended to some optimal assignnagjt-o. The
connected by a minimum cut. We repeat the partitioning proof is to find theAopt-x and A, described in the induction
recursively until each partition contains only one task. The hypothesis.
partitioning process can be represented by a tree. Each leaf In this case,A; must have been pruned by some domi-
in the tree represents a group containing only one task. Thenator A1, which can also be extended to an optimal assign-
enumeration order is thus the order of all leaf nodes in depth mentAqp-1 (otherwise the pruning criteria is violated). Let
first traversal. For instance, the partitioning process for the A} be the last visited ancestor afop-1. By the pruning
task graph in Fig. 1 is depicted in Fig. 13. Following this rule, part of the sub-tree below; must be traversed and
result, we obtain the enumeration order that has been usedencedepth(A’) >depth(A1) = depth(Ap). If A) is not
for illustration in previous discussion. pruned, themopt-1 survives in the future search space and
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Fig. 13. Determining the task enumeration order.

Algorithm BB-Alloc(G,M)
¢ [*initialization phase */
— L(root of the state-space tree)0

— ActiveSet {root of the state-space tree}

— ObtainA, by performing greedy search starting at the root of the state-space tree

¢ while not time-outdo /* traversal phase */
1)
following to visit(A)

remove a partial/complete assignm&pnivith minimumL () from ActiveSetind perform the

1.1) /* update deepest link for all ancestoAdf

deegA) - A

for eachA,: ancestor oA in the state-space trele
if deptl{A)>depti{deetA,))) then deeftA)) — A

1.2) /* try to improveA, */

perform greedy search starting frénto obtain a complete assignmeqt

if cost@)<cost@) then A, — A,

2)if A, is a complete assignmethien A, — A, and terminate the traversal sturn A,
3) /* check if the sub-tree & needs further traversal */

KillerSet— {deegA,)| A, is an ancestor &4, in the state-space tréef A }

prune — False
for eachA eKillerSetdo

prune— PruneTest,, A, A)
if prune=Truehen break

4) I* exploit children ofA if the sub-tree oA needs further traversal */

if prune=Fals¢hen

for each childA', of A, in the state-space trele computel (A" ) and inserf\, into

ActiveSet

Fig. 14. The branch-and-bound algorithm for task allocation.

hence the induction hypothesis holds for the next iteration Proof. If not timed-out, some complete assignmeatwill

(cf. Fig. 15(a)). In case thafigpr1 is lost, the induction

be removed from théctiveSetn the last iteration during

hypothesis states that there exists a survived optimal as-the traversal. The complete assignment returned isAhis

signmentAoqp-; With the last visited ancesto&}{ such that
depth(A}) >depth(A) >depth(A1) = depth(Ap) (cf.

Fig. 15(b)). And hence we obtain the requirddpex and
A} for Aopt-o0 and A,. This proves the lemma.[J

Theorem 3 (Correctness of our proposed algorithnQur
proposed branch-and-bound algorithm will end up with
an optimal assignment if neither space overflow in the
ActiveSet nor time-out occurs

We want to show tha#i; is optimal.

We prove this by contradiction. Suppasgis not optimal.
Consider the contents ofctiveSet) for the last iteration
j. Lemma 3 states the existence of an optimal assignment
Aopt in the future search space dftiveSer'/). Thus, we
havecost(Ac) > cost(Aopt) SiNCe Agpt is optimal. LetA,
be the ancestor ofiopt (Or Agpt itself) in ActiveSet'V).
By the definition ofL(e), L(Aa) <cost(Aopy). And hence
L(Ag) <cost(Agpt) < cost(Ac) = L(Ac). However, A¢ is
the one with minimumL(e) in ActiveSet'/). This means
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O tasks traversed
@ A, is the dominator that

prunesA’;

state-space treg

state-space tre
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Fig. 15. Finding an optimal assignment survived in the future search space.

e L(A)<L(A, butA, can be extended to an optimal assignment

________ tg tg

Fig. 16. Unfair comparison: assigning different sets of tasks: (a) partial assignipesnd (b) partial assignmento.

L(Ac)<L(Ap). This produces a contradiction and hence  Fig. 16 depicts an example of unfair comparison between

proves this theorem. [J partial assignments assigning different sets of tasks. Con-
o _ o sider mapping the task graph in Fig. 1 to the machine con-
6.3. Space-efficient ActiveSet organization figuration in Fig. 2. Fig. 16 depicts two partial assignments

A1 and A, containing different sub-graphs add A1) <
L(A>2). However,A, can be extended to an optimal assign-
ment butA; cannot. A partial assignment containing less
dﬁumber of tasks usually has lower cost ah), but this
does not mean it has a better future extension. Our solution
is to keep partial assignments assigning different number of
tasks in different heaps.

The remaining problem in designing the task allocation
algorithm is the design oActiveSetsuch that (1) the par-
tial/complete assignment with minimufe) can be easily
removed, and (2) a near optimal assignment can be obtaine
once overflow occurs. A simple solution is to implement the
ActiveSetas a heap and drop the partial/complete assign-
ment with maximumL (e) when overflow occurs, because . . . .

. . : . Fig. 17 depicts an example of unfair comparison be-

such an assignment is unlikely to be extended to an optimal ) . ) .
: . . tween partial assignments using different number of pro-
assignment. However, this scheme has certain drawbacks,

We identify two situations that will reduce the effectiveness cessors. We have ‘W.O partial assgnmeﬂisand Az V\."th
I . ) L(A1) < L(A). A1 is the best assignment to assign the
of the victim selection scheme:

sub-graph containing tasKso, 11, 12, t3, 14}. However, A2
e Unfair comparisons between partial assignments contain-can be extended to an optimal assignment sutcannot.
ing different sets of tasks. The assignment lacks knowledge of future load to be as-
e Unfair comparisons between partial assignments usingsigned and henceé; uses too many processors for tasks
different numbers of processors. {t0, 11, 12, 13, t4}. TO @void this drawback, we keep partial as-
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* L(A)<L(A,) butA, can be extended to an optimal assignment

Fig. 17. Unfair comparison: using different number of processors: (a) partial assigamertd (b) partial assignment.

signments using different number of processors in different architectures. In generating task graphs, the distribution of
heaps. weights and edge densities are chosen to cover various de-
We implement théctiveSets an array of heaps to avoid grees of clustering of tasks. In selecting the machine con-
these two types of unfair comparisons. To assigtasks figuration, the processor distances are chosen such that the
to m processors, théctiveSets a two-dimensional array  parallelism in optimal assignments ranges from using a few

heapi][j] for 1<i<n and 1< j<m. A (partial) assign- processors to using all processors in the machine. The ef-
ment assigning task§o, 11, ...,%_1} using j processors  fectiveness of our proposed pruning rules is evaluated under
is placed in hedp][j]. The complexity of the branch-and- various situations.

bound algorithm is controlled by the size of hgafy], de- Following the idea in[4], we generate task graphs by
noted sizé, j), which is a polynomial function of and hierarchically combining small sub-graphs. At the lowest
j. When the number of (partial) assignments in the level is a set of small complete graphs, each containing 1-4
tiveSetcontaining{r, 11, ..., t;_1} and using;j processors  tasks. The lowest level sub-graphs are then randomly com-
exceeds sizg, j), the one in hedp][j] with maximumL (e) bined to form a set of intermediate-level sub-graphs. The

will be dropped. The future search space is thus extendedintermediate-level sub-graphs are then randomly combined
from the best sizg, j) partial assignments containing tasks to become a final task graph.

{to, 11, ...,ti—1} and usingj processors for all £i<n Randomly combining sub-graphs are guided by two pa-
and 1< j <m. The complexity of the proposed algorithm is rameters, the computation-to-communication weight ratio
controlled by setting the heap size. By setting the size of (denotedE/C ratio) and the edge density, defined as fol-
heapi][ /] to bek, the space complexity of the proposed al- lows:

gorithm is O (n * m = k). To control the time complexity, Average execution weight of all tasks

we implemented the algorithm such that no new partial as- © E/C = Average communication weight of all edges
signment will be inserted into heglf j] after the first time

N . . . e edge density= Probability of two vertices in different
heapi][j] is full. That is, at mosk partial assignments that sub-graphs being connected by an edge.

assigns{ro, t1, ..., t;—1} to j processors will be traversed. o _
This makes the time complexity of the proposed algorithm In the process of randomly combining sub-graphs, each pair
to be alsoO (n  m * k). of tasks in different sub-graphs is examined. Whether there is

an edge connecting these two tasks is determined according
to the edge density. Once an edge is formed, the weight on
7. Experiments and evaluation the edge is determined according to thgC ratio.
We denote the attributes of a task graph as a tuple/af
We evaluate the proposed task allocation algorithm by ratio and an edge density. Task pair at each level or cross
feeding it with several configuration samples generated ran-level has its ownE /C ratio. For example, a task graph may
domly. The test samples cover many possibilities that may be so generated: (1) select sub-graphs VithC = 1 as

affect the effectiveness of the pruning rule. the lowest level sub-graph, (2) combine lowest level sub-
graphs to form a intermediate-level sub-graph wWithC =
7.1. Test samples generation 5 and edge density=20%, (3) combining intermediate-level

sub-graphs to complete a task graph wifiC = 10 and
We randomly generate a set of task graphs and map theedge density=20%. We denote such a task graph &t :
task graphs to some randomly selected hierarchical machine(1, 5, 10) and edge density=20%.
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Fig. 18. Performance of the proposed task allocation algorithm: (a) performance comparison in Machine 1, (b) performance comparison in Machine 2
and (c) performance comparison in Machine 3.

The degree of clustering of tasks is controlled through to be one. The inter subnet latency varies from 5 to 20.
selecting theE/C ratio and the edge density. The set of In mapping the same task graph to different machines, the
tasks can be clearly clustered into groups when (1) the gapparallelism in optimal assignments ranges from using pro-
betweenE /C ratios of adjacent levels is large, and (2) the cessors in only one subnet to using processors across sub-
sub-graphs are connected with relatively low edge density. nets. The parallelism decreases as the inter subnet latency
In the experiment, th& /C ratio ranges from 1 to 20 and increases.
the edge density varies from 20% to 80%.

Another input to the task allocation program is the ma- 7.2. Evaluation metrics
chine configuration. The machine configuration of interest
is hierarchically similar to Fig. 2(a) but with a larger size  We evaluate both performance and allocation quality of
and different latency. In the experimentation, each machine our task allocation algorithm. We use the term performance
consists of three subnets, and each subnet consists of threg refer to the execution time to obtain an optimal solution.
processors. We fix the intra-subnet communication latency The performance is compared to thé-Algorithm[18] as
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|a||0cation quality
assignment to Machinel (intra subnet latency=20)
density=80% | density=60%| density=40% density=20%

1E/C:(1, 2,5) 1.00 1.01 1.02 1/10
2E/C:(1, 2, 10) 1.01 1.01 104 112
3E/C:(1, 2, 20) 1.00 1.00 1.02 103
4E/C:(1, 5,10) 1.05 1.03 101 1,06
5E/C:(1, 5, 20) 1.03 1.04 1.04 109
6[E/C:(1, 10, 20) 1.01 1.01 1,02 1,02

assignment to Machine 2 (intra subnet latency=10)
density=80% | density=60%| density=40% density=20%

1E/C:(1,2,5) 1.0 1.02 1.05 111
2E/C:(1,2,10) 1.03 1.01 104 1,10
3E/C:(1, 2, 20) 1.00 1.00 1.03 1/01
4E/C:(1,5,10) 1.06 1.05 1.05 1,08
5E/C:(1, 5, 20) 1.05 1.06 1.05 1,07
6|E/C:(1, 10, 20) 1.03 1.01 1.04 105

assignment to Machine3 (intra subnet latency=5)
density=80% | density=60%| density=40% density=20%

1E/C:(1, 2,5) 1.00 1.03 1.05 1/14
2E/C:(1, 2, 10) 1.03 1.04 105 110
3E/C:(1, 2, 20) 1.00 1.02 1.02 1/04
4E/C:(1, 5,10) 1.06 1.06 106 1/08
5E/C:(1, 5, 20) 1.07 1.07 1.06 1/02
6[E/C:(1, 10, 20) 1.02 1.00 1,03 1,02

Fig. 19. Allocation quality subject to time and space constraints.

follows:

Number of branching states traversed by theatgorithm

Speed-
peed-tp= Number of branching states traversed by the proposed branch-and-bound algorithm

We use the term allocation quality to refer to how good the ) )

formulated as follows: in finding an optimal assignment. Experimental results on
different machine configurations are depicted in different
Allocation quality charts. We take the harmonic mean of the speed-ups for
Cost of the complete assignment returned each set of ten task graphs generated under the &r@e
- Cost of an optimal assignment tuple and edge density. The speed-ups ranges from 1.03 to

2.20, depending on the degree of clustering of tasks and

parallelism. As expected, the curves show that the pruning

rule is effective when the tasks can be clearly clustered into
The performance and allocation quality are evaluated us- groups and the parallelism becomes large.

ing 240 task graphs and three hierarchical machine configu- The allocation quality subject to restricted time and space

rations. The task graphs are generated according to six dif-is also evaluated. Time and space complexity are controlled

ferent E/C tuples and four different edge density values, with ActiveSetsize and time-out threshold. In the experi-

resulting in 24 different sets of task graphs. We generate 10ment, the time-out threshold is set to bhe m, wheren is

task graphs per set. The three machine configurations differthe number of tasks and is the number of processors, and

in the inter subnet latencies, varying from 5 to 20. The com- the size of hedp][/] is set to ba x* j.

binations of task graphs and machine configurations cover The set of task graphs and machine configurations used to

all degrees of clustering of tasks and parallelism to test the evaluate the allocation quality are the same as those used in

effectiveness of the pruning rule. evaluating the performance. The result is shown in Fig. 19.

7.3. Experimental results
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We take harmonic mean of each set of 10 task graphs gene
ated with the samé’/C ratios and edge density. As shown

in the figure, near optimal assignment can be found for each

task graph and machine configuration.

8. Conclusion

In this paper, we have proposed a task allocation algo-
rithm aiming at finding an optimal assignment. The key idea
to the efficient task allocation is pruning, which take ad-
vantage of a combination of dominance relation and task
clustering heuristic. This research shows that solving the

. Comput. 64 (2004) 1223-1240 1239

r{13] C.H. Lee, K.G. Shin, Optimal task assignment in homogeneous
networks, IEEE Trans. Parallel Distributed Systems 8 (2) (1997) 119
-128.

[14] V.M. Lo, Heuristic algorithms for task assignment in distributed
systems, IEEE Trans. Comput. 37 (11) (November 1988) 1384—-1397.

[15] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund,
Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems, J. Parallel Distributed Comput. 59 (2) (November
1999) 107-131.

[16] D.T. Peng, K.G. Shin, Optimal scheduling of cooperative tasks in

a distributed system using an enumerative method, IEEE Trans.

Software Eng. 19 (3) (1993) 253-267.

P.Y. Richard, E.Y.S. Lee, M. Tsuchiya, A task allocation model for

distributed computing systems, IEEE Trans. Comput. C-31 (1) (1982)

41-47.

(17]

task allocation problem by state—space searching approachig) c.c. shen, W.H. Tsai, A graph matching approach to optimal

is an attractive way. Previous state—space searching meth-

0ds[2,17,18,20]find the optimal assignment in the cost of

un-tractable time and space complexity. Our proposed prun-
ing rule (1) reduces the time and space required to obtain

an optimal assignment, and (2) makes the traversal reach
near-optimal assignment within a small number of traversal

task assignment in distributed computing systems using a minimax

criterion, IEEE Trans. Comput. 34 (3) (March 1985) 197-203.

[19] H.J. Siegel, S. Ali, Techniques for mapping tasks to machines in
heterogeneous computing systems, J. Systems Architecture 46 (8)
(May 2000) 627-639.

0] J.B. Sinclair, Efficient computation of optimal assignment for
distributed tasks, J. Parallel Distributed Comput. 4 (1987) 342-362.

steps. This makes the state—space searching approach feagp1] H.S. Stone, Multiprocessor scheduling with the aid of network flow

ble in real-world applications.
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