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Abstract

We propose a task allocation algorithm that aims at finding an optimal task assignment for any parallel programs on a given machine
configuration. The theme of the approach is to traverse a state–space tree that enumerates all possible task assignments. The efficiency
of the task allocation algorithm comes from that we apply a pruning rule on each traversed state to check whether traversal of a given
sub-tree is required by taking advantage of dominance relation and task clustering heuristics. The pruning rules try to eliminate partial
assignments that violate the clustering of tasks, but still keeping some optimal assignments in the future search space. In contrast to
previous state–space searching methods for task allocation, the proposed pruning rules significantly reduce the time and space required
to obtain an optimal assignment and lead the traversal to a near optimal assignment in a small number of states. Experimental evaluation
shows that the pruning rules make the state–space searching approach feasible for practical use.
© 2004 Published by Elsevier Inc.
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1. Introduction

Advances in hardware and software technologies have led
to the use of parallel and distributed computing systems.
To execute a parallel program efficiently, the mapping of
program tasks to processors should consider both load bal-
ancing and reducing communication overhead. This paper
studies such a task allocation problem.

Several research works have been done for the task al-
location problem. Although the task allocation problem has
been shown to be NP-complete[3], a set of heuristics have
been proposed[4,8,9,11,14,15,19,23]. A drawback of these
heuristics is the poor quality on the assignment found[5].
On the other hand,[1,2,7,12,13,16–18,20]proposed state–
space searching methods with differences in the problem
formulation for various applications and machine configura-
tions. The state–space searching approach finds an optimal
assignment at the cost of intractable time and space com-
plexity. Ahmad and Kwok[1] proposed pruning rules and
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parallelization method to reduce the time to find an optimal
solution of assigning precedence-constrained graphs. In this
paper, we follow the task graph mode of[18], which models
a set of parallel processes without precedence constraint,
and propose pruning rules to improve the efficiency of state–
space searching method.

The key idea of the proposed pruning rule is to detect
task clustering in the task graph. We observe that tasks can
be grouped such that a group is a set of heavily communi-
cated tasks and inter-group communication weights are rela-
tively small. While traversing the state–space, our proposed
algorithm detects task clustering from traversal history and
tries to prune partial assignments that violate the detected
task clustering. We prove that the proposed pruning rule
will reserve some optimal assignment in the future search
space. This guarantees the optimality of the solution found.
Moreover, our experiment shows that the proposed algo-
rithm traverses only a low-order polynomial number of states
to reach a near optimal assignment. Hence, when time and
space is limited, a near optimal assignment can be obtained.
This makes our proposed algorithm feasible for practical
use.

http://www.elsevier.com/locate/jpdc
mailto:ycma@csie.nctu.edu.tw
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This paper is organized as follows. Section 2 models the
task allocation problem as a state–space searching problem.
Section 3 describes the basic idea of the proposed pruning
rule. Section 4 describes the dominance relation, which is
the basis to derive our pruning rule. Section 5 described
the proposed pruning rule Section 6 describes the proposed
task allocation algorithm and the space management policy.
Section 7 presents the experiment to show the effectiveness
of our proposed pruning rules. Finally, a conclusion is given
in Section 8.

2. Modeling task allocation problem

In this section, we present how the task allocation prob-
lem is formulated and transformed into state–space search-
ing problem. This section defines the terminologies used in
this paper and gives the framework of our proposed task al-
location algorithm.

2.1. Formulating task allocation problem

We follow [4,9,18] to formulate the task allocation prob-
lem. This formulation assumes that there are little or no
precedence relationships and synchronization requirements
so that processor idleness is negligible. Contentions on com-
munication links are also ignored.

The optimization problem is formulated as follows. The
input to a task allocation algorithm is atask graphG and
amachine configurationM. The output, called acomplete
assignment, is a mapping that maps the set of tasksT to the
set of processorsP . An optimal assignmentis a complete
assignment with minimumcost. The cost of an assignment
is the turn-around timeof the last processor finishing its
execution. To find an optimal assignment, the branch-and-
bound algorithm will go through severalpartial assignments,
where only a subset of the tasks has been assigned. We
define the above terminology to formulate the task allocation
problem.

A parallel program is represented as atask graph
G(T ,E, e, c). The vertex set of the task graph is the set of
tasksT = {t0, t1, . . . , tn−1}. Each taskti ∈ T represents a
program module. The edge setE of the task graph repre-
sents communication between tasks. Two tasksti andtj are
connected by an edge ifti communicates withtj . For each
taskti ∈ T , a weighte(ti) is associated with it to represent
the execution time of the taskti . For each edge(ti , tj ) ∈ E,
a weightc(ti , tj ) is given to represent the amount of data
transferred between tasksti andtj .

An example task graph is depicted in Fig. 1. Each vertex
is a task and the number on each task is the execution weight
e(ti) for the taskti . Associated with the number on edge
(ti , tj ) is the communication weightc(ti , tj ). Throughout
this article, we will use this task graph to demonstrate the
idea behind our algorithm.
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Fig. 1. Example of a task graph.

The machine configurationis represented asM(P, d).
P = {p0, p1, . . . , pm−1} is the set of all processors. For each
pair of processorspk, pl ∈ P , k �= l, a distanced(pk, pl) is
associated to represent the latency of transferring one unit
of data betweenpk andpl . If two tasks ti and tj are as-
signed to different processorspk andpl , respectively, the
time required for taskti to communicate withtj is esti-
mated to bec(ti , tj )∗d(pk, pl). The communication time be-
tween two tasks within the same processor is assumed to be
zero.

A machine configuration example is depicted in Fig. 2.
We take the hierarchical architecture as an example. The
machine consists of two subnets. It takes 5 units of time
to transfer a unit of data for two processors in the same
subnet and 20 units for two processors in different subnets.
Throughout this paper, we will use the hierarchical archi-
tecture to demonstrate the idea of our task allocation algo-
rithm. However, our proposed algorithm can also be applied
to other machine configurations with non-uniform distances
between processors.

A complete assignmentAc is a mapping that maps the set
of tasksT to the set of processorsP . To find a complete as-
signment, our task allocation algorithm will examine several
partial assignments. A partial assignmentA is a mapping
that mapsQ, a proper subset ofT , to the set of processors
P .

The turn-around timeof processorpk, denotedTAk(A),
under a partial/complete assignmentA is defined to be the
time to execute all tasks assigned topk plus the time that
these tasks communicate with other tasks not assigned to
pk. That is,

TAk(A)=
∑

ti :A(ti )=pk

e(ti) +
∑

ti :A(ti )=pk

∑
tj :A(tj )�=pk

×c(ti , tj )
∗d(pk,A(tj )). (1)

Thecostof a partial/complete assignment is the turn-around
time of the last processor finishing its execution:

cost (A) = max
processorpk

TAk(A). (2)
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Fig. 2. Example of a machine configuration: (a) the clustered architecture and (b) the distance matrix(d(pk, pl)).
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Fig. 3. State–space tree.

An optimal assignmentAopt is a complete assignment with
minimum cost:

cost (Aopt)

= min{cost (Ac)|Ac is a complete assignment}. (3)

2.2. Transforming to the state–space searching
problem—A∗-algorithm

We solve the task allocation problem by state–space
searching with pruning rules. Shen and Tsai[18] proposed
a state–space search algorithm without pruning to solve the
task allocation problem. This state–space search method is
known as the A∗-algorithm[6], which has been proven to
guarantee the optimality of the solution obtained. Based
on the A∗-algorithm, we add a pruning rule to reduce the
search space to be traversed. In our experiment, this A∗-
algorithm will be used as a baseline for comparison with
our branch-and-bound algorithm.

As illustrated in Fig. 3, thestate–space treerepresents all
possible task assignments. We use an(n + 1)-level m-ary
tree to enumerate all possibilities of assigningn tasks tom
processors. In the literature of branch-and-bound method, a
node in the state–space tree is called abranching state. In
this study, a branching state represents either a partial or a
complete assignment, depending on whether the branching
state is an internal node or a leaf node in the state–space tree.

In the remaining of this article, we will use the terms branch-
ing states and partial/complete assignments interchangeably.

The traversal proceeds as follows. During the traversal,
an active set[10] (also called theopen setin some litera-
ture[6]), denotedActiveSet, is used to keep track of all par-
tial/complete assignments that have been explored but not
visited. In each iteration during the traversal, the following
operations are performed:

Step1: Remove a partial/complete assignmentAv from
ActiveSetand visitAv.
Step2: If Av is a complete assignment, terminate the

traversal and returnAv as the output.
Step3: Check if the sub-trees derived fromAv need further

traversal by using thepruning rule.
Step4: If the sub-tree ofAv needs further traversal, put

each child node ofAv in the state–space tree intoActiveSet.

For simplicity, we useActiveSet(k) to denote the contents
of the ActiveSetat the beginning of thekth iteration, and
A
(k)
v to denote the partial/complete assignment visited in the

kth iteration.
We follow the approach in Shen and Tsai[18] to deter-

mine the traverse order. For each partial/complete assign-
mentA, a lower-bound (denotedL(A)) on all complete as-
signments extended fromA (or A itself in case thatA is a
complete assignment) is estimated. In each iteration during
the traversal, the partial/complete assignmentAv with min-
imum L(•) is removed fromActiveSetand visited.L(A) is
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computed according to theadditional costof assigning tasks
not assigned inA.

Given a partial assignmentA in which Q ⊆ T has been
assigned, we defineACk(tj → pl, A) to reflect theaddi-
tional coston processorpk if task tj is assigned to processor
pl :

ACk(tj → pk,A)

= e(tj ) +
∑

ti :A(ti )�=pk

c(ti , tj )
∗d(pk,A(ti))

if pk = pl, (4)

ACk(tj → pl, A)

=
∑

ti :A(ti )=pk

c(ti , tj )
∗d(pk, pl)

if pk �= pl. (5)

For a partial assignmentA, the cost lower-boundL(A)
for all complete assignments extended fromA is estimated
to be

L(A)≡ max
processorpk

(
TAk(A) +

∑
ti :not assigned inA

×
(

min
prcoessorpl

ACk(ti → pl, A)

))
. (6)

Without pruning rules, the method presented so far is
known as A∗-algorithm[6], which was originally proposed
by Shen and Tsai[18] for task allocation. The A∗-algorithm
traverses all partial assignments withL(•) less than the op-
timal cost. We propose a pruning rule to reduce the state–
space size to be traversed.

3. Basic idea of the proposed pruning rule

The development of the pruning rule is based on the clus-
tering of tasks. As shown in Fig. 4, tasks are grouped such
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Fig. 4. Sample clustering of tasks according to communication weights.

that each group contains heavily communicating tasks. The
key observation is that a group may contain a set of tasks
suitable to be placed in the same processor, or a set of tasks
suitable to be placed in the same subnet in the hierarchi-
cal architecture. While traversing the state–space tree, our
branch-and-bound algorithm detects the clustering of tasks
and tries to prune those partial assignments that violate the
clustering heuristic. The effectiveness of the pruning rule
thus depends on whether the tasks can be clearly clustered
into groups.

The development of the pruning rule consists of two
phases. In Section 4, we first develop adominance relation.
This dominance relation is effective only when a small cut
is met. In Section 5, we further integrate the detection of
clustering of tasks with the dominance relation to form an
enhanced pruning rule.

4. Pruning search space by dominance relation

We first develop adominance relationto serve as the
basis for developing the pruning rule. We pick two par-
tial assignmentsA1 andA2 in which the same set of tasks
has been assigned. Supposecost (A1)�cost (A2). We call
A1 the winner andA2 the loser. LetA′

1-best andA′
2-best be

the complete assignments with a minimum cost in the sub-
tree belowA1 andA2, respectively. We want to be able to
check whether it is possible that the winner–loser relation-
ship will be changed, that is,cost (A′

1-best)�cost (A′
2-best).

Our proposed dominance relation claims that what may re-
verse the winner–loser relationship is the weights of edges
between assigned and un-assigned tasks in the task graph.
The dominance relation is effective in pruning the search
space when the weights between assigned and un-assigned
tasks are small.

4.1. Formalization of dominance relation

Definition 1 (Dominance relation). LetA1 andA2 be two
partial assignments. We sayA1 dominatesA2 if we can
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Fig. 5. Idea behind deriving the dominance relation: (a) selection of partial/complete assignments and (b) classifications on tasks.

guarantee thatcost (A′
1-best)�cost (A′

2-best), whereA′
1-best

andA′
2-best are complete assignments with minimum cost

extended fromA1 andA2, respectively.

The inference rule we use to derive a dominance relation
is as follows. We omitted the proof since it is a direct con-
sequence from Definition 1.

Corollary 1 (Inference rule for deriving the dominance
relation). Let A1 andA2 be two partial assignments. A1
dominatesA2 if for any complete assignmentA′

2 extended
from A2, there exists a complete assignmentA′

1 extended
fromA1, such that TAk(A′

2)−TAk(A′
1)�0 for each proces-

sor pk.

The idea to derive a dominance relation is depicted in
Fig. 5. The assignmentsA1, A2, A′

1, andA′
2 concerned in

Corollary 1 are shown in Fig. 5(a), whereS = T − Q.
A′

1 andA′
2 are chosen such thatA1 andA2 have the same

future extension. We rewrite the turn-around time equation
according to the task classification shown in Fig. 5(b). In
addition toTAk(A2) − TAk(A1), the communication time
between assigned and to-be-assigned tasks inA1(A2) also
contribute toTAk(A′

2)−TAk(A′
1). This gives a lower bound

estimation onTAk(A′
2) − TAk(A′

1). The proposed domi-
nance relation checks whetherA2 can be pruned or not ac-
cording the estimatedturn-around time difference lower-
bound.

We introduce the following notations:

• Execution(R) = ∑
ti∈R

e(ti), whereR is a set of tasks.

• Communication(R1, R2) = ∑
ti∈R1

∑
tj∈R2

c(ti , tj )
∗d(A′

a

(ti), A
′
a(tj )), whereR1 andR2 are sets of tasks.

Following the classification on tasks shown in Fig. 5(b),
we rewrite the turn-around time equation in the following
lemma. The proof is omitted since it is a trivial computation
from the turn-around time formula.

Lemma 1 (Reformulating the turn-around time).LetAa be
a partial assignment andA′

a be a complete assignment ex-
tended fromAa. Q is the set of tasks assigned inAa andS

is the set of tasks not assigned inAa. Then

TAk(A′
a) = TAk(Aa) + Execution(Sk(Aa))

+Communication(Qk(Aa), Sk(Aa))

+Communication(Qk(Aa), Sk(Aa))

+Communication(Sk(Aa), Sk(Aa)),

(7)

where

• Qk(Aa)= {ti ∈ Q|Aa(ti)=pk} andQk(Aa)=Q − Qk

(Aa),
• Sk(A

′
a)= {ti ∈ S|A′

a(ti)=pk} and Sk(A′
a)= S − Sk

(Aa).

Before stating the dominance relation, we state theturn-
around time difference lower-bound TADLk(A1, A2). LetA1
and A2 be two partial assignments with the same set of
tasksQ being assigned, andS = T − Q. TADLk(A1, A2)

is a lower bound onTAk(A′
2)− TAk(A′

1), whereA′
1 andA′

2
are arbitrary complete assignments extend fromA1 andA2,
respectively, such thatA′

1(ti) = A′
2(ti) for each taskti ∈ S.

TADLk(A1, A2) is estimated to be

TADLk(A1, A2)

≡ TAk(A2) − TAk(A1) +
∑
ti∈S

×
(

min
pl∈P

(ACk(ti → pl, A2)

−ACk(ti → pl, A1))

)
. (8)

We then check whetherA2 can be pruned or not by
computing TADLk(A1, A2) for each processorpk. If
TADLk(A1, A2) is greater than or equal to zero for each
processorpk, it indicates thatTAk(A′

2) − TAk(A′
1)�0 for

each processorpk and hence we can pruneA2. This is
stated in the following theorem.

Theorem 1 (Dominance relation for space pruning).Let
A1 andA2 be two partial assignments containing the same
set of tasks. If TADLk(A1, A2)�0 for each processorpk,
thenA1 dominatesA2.
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t11 600 0 0 0

t12 800 0 0 0

t3 800 200 800 800

t4 850 0 0 0

TA0(A 2)-TA0(A 1) 3750-1300 +   (-600)+   (-200)  0
due tot4 due tot10

TA0(A′ ′2)-TA0(A 1)≥3750-1300 +   (-600)+   (-200) ≥0
due tot4 due tot10

(a) (b)

(c)

Fig. 6. Example to illustrate the dominance relation: (a) partial assignments in consideration, (b) the task graph and (c) effects onp0 for all possible
extensions.

Proof. To draw a dominance relation by Corollary 1, we
pick the complete assignmentA′

1 extended fromA1 such
thatA′

1(ti) = A′
2(ti) for eachti ∈ S. The pattern is depicted

in Fig. 5(a). We want to show thatTAk(A′
2) − TAk(A′

1)�0
for eachpk.

We decompose bothTAk(A′
2) andTAk(A′

1) as stated in
Lemma 1. SinceA′

1(ti) = A′
2(ti) for eachti ∈ S, we have

• Execution(Sk(A
′
2)) − Execution(Sk(A

′
1)) = 0, and

• Communication(Sk(A
′
2), Sk(A

′
2)) − Communication

(Sk(A
′
1), Sk(A

′
1)) = 0.

Hence, we have

TAk(A
′
2) − TAk(A

′
1)

= TAk(A2) − TAk(A1)

+ (Communication(Sk(A
′
2),Qk(A2))

−Communication(Sk(A
′
1),Qk(A1)))

+ (Communication(Sk(A
′
2),Qk(A2))

−Communication(Sk(A
′
1),Qk(A1)))

= TAk(A2) − TAk(A1) +
∑
ti∈S

× (ACk(ti → A′
2(ti), A2)

−ACk(ti → A′
2(ti), A1)). (9)

Taking a lower bound on the turn-around time difference,
we have

TAk(A
′
2) − TAk(A

′
1)

�TAk(A2) − TAk(A1)

+
∑
ti∈S

min
pl∈P

(ACk(ti → pl, A2)

−ACk(ti → pl, A1)).

The right-hand side of above inequality is theTADLk(A1,

A2) defined previously. Hence ifTADLk(A1, A2)�0 for
eachpk, it impliesA1 dominatesA2. �

4.2. Example of the dominance relation

We use the task graph in Fig. 1 and the machine configura-
tion in Fig. 2 to illustrate the idea of the dominance relation
given in Theorem 1. The partial assignments concerned are
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A1 andA2 shown in Fig. 6(a).A1 is the winner andA2 is the
loser in this comparison. We apply Theorem 1 to guarantee
that the winner–loser relationship will not be reversed.

We use the example in Fig. 6 to explain the key idea of
exploiting task clustering. In the task graph in Fig. 6(b),
{t0, t1, t2} is a group of heavily communicating tasks and
should be assigned to the same processor. In Fig. 6(a),A1
is a partial assignment obeying the task clustering andA2
is a partial assignment that violates the task clustering. The
dominance relation examines the “cut”, edges between as-
signed tasks{t0, t1, t2} and remaining tasks (bolded edges
in Fig. 6(b)), to test whetherA2 can be pruned or not. The
examination finds that edges from assigned tasks tot4 and
t10 are the only possible causes forA2 to win back what
it has lost (cf. Fig. 6(c)). The edge weights in the cut are
relative small and hence positiveTADLk(A1, A2) values are
obtained. This results inA2 been pruned. Enumerating heav-
ily communicated tasks in consecutive order ensures that a
cut with light-weighted edges can be met and improves the
pruning efficiency of the dominance relation.

5. Pruning search space by task clustering

The dominance relation proposed in Section 4 is effec-
tive only when a small cut can be found. To relieve this
constraint, we develop a further pruning rule that considers
both the detection of clustering of tasks and the dominance
relation.

How well the pruning rule works depends on the task
enumeration order. We assume that tasks are enumerated in
an order such that heavily communicated tasks will be enu-
merated first. We will see how such an enumeration order is
obtained in Section 6. With this assumption, a task assign-
ment has the following properties:

• A complete assignment obtained by a greedy search policy
reflects the clustering of tasks.

• The first partial assignment of assigning a sub-graph vis-
ited reflects the clustering of tasks in the sub-graph.

With these properties, we obtain (1) partial assignmentAk—
called thekiller—reflecting the clustering of tasks, and (2)
complete assignmentAu served as an upper bound on the
optimal cost to test whether a candidate partial assignment
A can be pruned. These are the inputs to our pruning rule.

We use the task graph in Fig. 1 and the machine config-
uration in Fig. 2 to illustrate how the pruning rule works as
depicted in Fig. 7. The killerAk is a partial assignment with
more tasks than the candidateA has. In the Fig. 7 example,
Ak reflects the clustering of tasks by showing that{t0, t1, t2}
should be placed in the same processor and{t0, t1, t2, t3, t4}
should be placed in the same subnet. We are thus given the
guidelines to extendA: (i) t2 should be assigned top0, (ii)
t3, t4 should be assigned to either ofp0 andp1.

Complete assignments extended fromA can be classified
into two categories: extensions following or violating the

guidelines. For extensions violating the guidelines, we es-
timate the cost lower bound and exclude those extensions
whose costs are guaranteed to be greater than or equal to
cost (Au). For extensions following the guidelines, we find
a dominatorAd from the killerAk that dominates these ex-
tensions. These observations lead us to propose the pruning
rule, whose criteria for pruning the search space is stated as
follows.
Pruning criteria: Let Ad and A be two partial assign-

ments in which the same set of tasks has been determined,
and Au be a complete assignment. We pruneA if for
any complete assignmentA′ extended fromA, either (i)
cost (A′)�cost (Au) or (ii) there exists a complete assign-
mentA′

d extended fromAd such thatcost (A′
d)�cost (A′).

5.1. Predicting clustering of tasks

Fig. 8 presents the procedure Compute_PA(A,Ak) to pre-
dict the clustering of tasks. The result of this detection is a
set ofpossible assignments, denotedPAis, for each taskti
not assigned inA. EachPAi is a set of processors which
we can assign taskti to PAis are determined according to a
killer Ak. That is, the killer should reflect the clustering of
tasks in a task graph. How such a killer can be obtained will
be explained in Section 5.4.

To generate a guideline to extendingA, we sketch a dis-
tance hierarchy on processors centralized at the “central pro-
cessor”pc and map the tasks to the distance hierarchy. Let
ta be the last task assigned inA. We takepc to be the one
ta is assigned to inAk (cf. Step 1 in Fig. 8). For each taskti
assigned inAk but not inA, we letPAi be the set of all pro-
cessors with distance less than or equal tod(pc, Ak(ti)) (cf.
Step 2 in Fig. 8). Ifti is not assigned inAk, no prediction
is made andPAi is set to be the set of all processors.

5.2. Examining partial assignment using pruning rule

Fig. 9 presents the procedure PruneTest to test whether
a partial assignment can be pruned. Procedure PruneTest
calls Compute_PA to predict the guidelines to extending the
candidateA. From there, the remaining work is to examine
whether the sub-tree ofA needs further traversal using the
pruning rule.

We first test the correctness of the prediction outcome
PAis. The test is performed by estimating aturn-around time
lower-boundfor extensions violating the guidelines, denoted
TALk(A, violatePAi ), stated as follows:

TALk(A, violatePAi )

≡ TAk(A) +
∑

tj not assigned inA
and tj �=ti

×
(

min
processorpl

ACk(tj → pl, A)

)
+ min

processorpl /∈PAi
ACk(ti → pl, A). (10)
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extending A
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• t3, t4 →{p0, p1}

Fig. 7. Pruning based on task clustering.

Algorithm Compute_PA(A,Ak)

• input :

– A, Ak : partial assignments, number of tasks assigned in Ak ≥ number of tasks assigned in A

• output:

– PAi ⊆ P for each task ti not assigned in A (P is the set of all processors)

• method:

1) pc← Ak(ta) where ta is the last task assigned in A

2) for each task ti not assigned in A do

if ti is assigned in Ak thenPAi←{ processor pk| d(pk, pc)≤d(Ak(ti), pc) }
elsePAi←P

Fig. 8. Algorithm to predict the clustering of tasks.

Algorithm PruneTest(A,Ak,Au)
• input :

– A, Ak: partial assignments.
• depth(Ak)≥depth(A)

– Au: a complete assignment
• output:

– prune=True if A can be pruned, otherwise prune=False
• method:

1) perform Compute_PA(A, Ak) to determine PAi for each task ti not assigned in A
2) /* exclude extensions violating PA */

2.1) success←False
2.2) for each processor pk do

if TALk(A, violatePA)≥cost(Au) then
success ←True
break

2.3) if success=False thenPAi←P
3) Ad←the ancestor of Ak in the same level with A
4) prune←True
5) /* dominate extensions obeying PA */

for each processor pk do
if TADLk(Ad,A,PA)<0 then

prune←False
break

6) return prune

Fig. 9. Algorithm to examine the partial assignment using the pruning rule.
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Lemma 2. Let A be a partial assignment andA′ be a
complete assignment extended fromA. If there exists a
task ti not assigned inA such thatA′(ti) /∈ PAi , then
TAk(A′)�TALk(A, violatePAi ) for each processorpk.

Proof. The proof is similar to the estimation of the cost
lower boundL(•) in [18]. The only difference is that when
taking minimum on the sum of additional cost to obtain a
lower bound onTAk(A′), the possibilities of assigningti to
processors inPAi are excluded. �

After excluding extensions violating the guidelines,
we then check the dominance imposed on the remain-
ing extensions. ThedominatorAd is the ancestor ofAk

in the state–space tree at the same level withA. Similar
to the procedure in Section 4, we estimate aturn-around
time difference lower-boundbetweenAd and A, denoted
TADLk(Ad, A,PA), assuming thatAd andA have the same
future extensions and following the guidelines for each task
ti not assigned inA(Ad). We estimateTADLk(Ad, A,PA)
as follows:

TADLk(Ad, A,PA)

= TAk(A) − TAk(Ad)

+
∑

ti not assigned

(
min
pl∈PAi

(ACk(ti → pl, A)

−ACk(ti → pl, Ad))

)
. (11)

Compared to theTADLk(Ad, A) defined in Section 4,
these two quantities are estimated in similar ways. The dif-
ference is that the future extensions ofAd andA have been
restricted to be inPAis in estimatingTADLk(Ad, A,PA).
And TADLk(Ad, A) = TADLk(Ad, A,PA) if eachPAi con-
tains all of the processors.

Theorem 2 (Pruning rule).LetAd andA be two partial as-
signments in which the same set of tasks has been deter-
mined, andAu be a complete assignment. PAi ’s are guide-
lines to extendA for each taskti not assigned inA. If

(i) For each taskti not assigned inA, there exists a pro-
cessorpk such that TALk(A, violate PAi )�cost (Au).
And

(ii) TADLk(Ad, A,PA)�0 for each processorpk.

Then the pruning criteria is satisfied andA can be pruned.

Proof. By Lemma 2, hypothesis (i) implies that complete
assignments extended fromA violating the guidelinesPAis
will have a cost greater than or equal tocost (Au). The
remainder of the proof is to estimate a lower bound on
TAk(A′) − TAk(A′

d). This is similar to Theorem 1, but the
possibilities of extendingA to an assignment that vio-
late the guidelinesPAis are ignored. The lower bound of

TAk(A′)−TAk(A′
d) is thus estimated to beTADLk(Ad, A,PA)

as defined before. This proves the theorem.�
The procedure PruneTest uses Theorem 2 to test whether

A can be pruned or not. Hypothesis (i) of Theorem 2 is
guaranteed by Step 2. Step 5 in the procedure PruneTest
checks whether hypothesis (ii) of Theorem 2 holds. This test
then returns the result indicating whetherA can be pruned
or not.

The advantage of using the pruning rule in Theorem 2
instead of the dominance relation in Theorem 1 is that the
space can be pruned earlier during the traversal. For the ex-
ample given in Fig. 7, this advantage is shown in Fig. 10.
If we use the dominance relation given in Theorem 1 as
the pruning rule, the bolded partial assignments will be tra-
versed. The reduced search space is an exponential function
of the depth of the clustering of tasks that we can detect.

5.3. Obtaining an upper bound on the optimal cost

To check whether a partial assignmentA can be pruned,
the procedure PruneTest uses two additional inputs: (1) a
complete assignmentAu served as an upper bound on the
optimal cost and (2) a killerAk reflecting the clustering of
tasks. Another use of such anAu is to serve as an “imperfect
solution” once the “perfect solution” cannot be found. The
task allocation problem is well known to be NP-complete
[2]. Once the optimal assignment cannot be found subject
to time and space constraints, an “imperfect solution”—a
complete assignment that may not be optimal—would be
returned as the output. In this section, we describe how such
anAu can be obtained.

We use a greedy search approach to obtain a complete as-
signmentAu. A pointerp is used to indicate the status of the
greedy search. At the beginning,p points at the starting node
(the partial assignment currently visited) in the state–space
tree. In each step, we movep down to one of its children
with the minimum cost. The procedure terminates when (1)
p points at a partial assignment with a cost greater than that
of the presentAu, or (2)p points at a complete assignment.
Au is then updated if a better complete assignment is found.

The reason we use greedy search is because not only
of its simplicity but also the fact that a low cost complete
assignment can be obtained if a careful task enumeration
order is applied.Assume the tasks are enumerated in an order
such that heavily communicated tasks will be enumerated
consecutively. The complete assignment obtained will reflect
the clustering of tasks and is likely to have a low cost.

To illustrate the idea, we take the task graph in Fig. 1 and
machine configuration in Fig. 2 as an example. Consider
the greedy search starts from the partial assignment{t0 →
p0, t1 → p0}. Part of the greedy search path is shown in Fig.
11. The greedy search will assignt2 to p0 next since it is the
child of {t0 → p0, t1 → p0} with the lowest cost. This se-
lection indicates thatt0, t1, andt2 may need be placed in the
same processor. Similarly,t3 will be assigned top1 following
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Fig. 10. Space saved by the pruning criteria.

t0→p0

t1→p0

t2→p0 t2→p1 t2→p2 t2→p3

t3→p0 t3→p1 t3→p2 t3→p3

t4→p1t4→p0 t4→p2 t4→p3

selected in the greedy
search path

Fig. 11. Greedy search on the state–space tree.

the parent partial assignment{t0 → p0, t1 → p0, t2 → p0},
also reflecting the clustering of tasks. Following the same
procedure, we obtain a complete assignment that obeys the
task clustering guideline.

5.4. Obtaining killers reflecting clustering of tasks

In addition to the complete assignmentAu, a partial as-
signmentAk reflecting the clustering of tasks is also helpful
to enhance the pruning rule. To increase the possibility of
pruning a partial assignment, we may find multiple killers to
form aKillerSet, instead of only one killer. The procedure
PruneTest is then performed for each killer in theKillerSet
to test whether a partial assignment can be pruned.

Partial assignments reflecting clustering of tasks can be
obtained by the proposed task enumeration order and the
state–space tree traverse order. A partial assignment covers a
sub-graph of the task graph. With the assumption that heav-
ily communicated tasks are enumerated consecutively, we
can capture part of the clustering of tasks in the sub-graph.
Since we traverse the task graph in the minimumL(•) first
order, the first partial assignment containing the sub-graph
visited is the one with minimumL(•) among all partial as-
signments containing the sub-graph. The first partial assign-

ment of containing a sub-graph visited indicates the cluster-
ing of tasks, otherwise it will have a largeL(•).

We follow the principle that the first partial assignment
indicates clustering of tasks to obtain killers. We assess that
a candidate partial assignmentA will be pruned if it violates
the clustering of tasks somewhere in the path from root to the
branching state in the state–space tree. Partial assignments
having taken advantage of clustering of the tasks assigned
by A are those partial assignments each of which (1) have
a common ancestor withA in the state–space tree, (2) are
visited earlier thanA, and (3) are deeper thanA in the state–
space tree such that the sub-graph contained inA is also
contained in them. This leads to the design of our heuristic
scheme to obtain the killers.

To realize the scheme, a link to the deepest descendant
node is associated with each visited partial assignment. For
each partial assignmentAa, we associate a pointerdeep(Aa)

pointing at the deepest partial assignment visited in the sub-
tree ofAa. If two or more partial assignments at the same
level of the state–space tree are visited,deep(Aa) points at
the first one visited, which has the smallest cost lower bound
estimate(L(•)) on all its extensions. TheKillerSet is the
set of alldeep(Aa) for each ancestor ofA along with the
complete assignmentAu.

KillerSet (A)

= {deep(Aa)|Aa is an ancestor ofA} ∪ {Au}.

The determination of theKillerSet is depicted in Fig. 12.
The number in each node is theL(•) of the partial assign-
ment represented by the node. For each visited nodeAa, the
dashed link represents the deepest linkdeep(Aa). When a
partial assignmentA is visited, we follow the deepest link
along all ancestors ofA to obtain theKillerSet. In this ex-
ample, theKillerSet to be used for pruningA is {A6, A4}
plusAu. That is, for each sub-tree (of the state–space tree)
containingA, we pick the best branching state visited in the
sub-tree to try to pruneA.
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Fig. 12. Deepest link to determine the KillerSet.

6. Branch-and-bound task allocation with preprocessing

We now present the task allocation algorithm using the
pruning rules. We present how a good enumeration order
is obtained in Section 6.1. In Section 6.2, the branch-and-
bound algorithm along with the correctness proof will be
presented.

6.1. Preprocessing to determine the task enumeration order

We have seen the importance of the task enumeration
order in previous sections. For the following reasons, tasks
should be enumerated in such an order that tasks with high
communication are enumerated first:

• To arrive at a small cut to exploit the dominance relation
before the space overflow.

• To obtain killers that take advantage of the clustering of
tasks.

• To obtain a low cost complete assignment serving as an
upper bound on the optimal cost.

The task enumeration order is determined by applying
the max-flow min-cut algorithm recursively to partition the
task graph. Each time the max-flow min-cut procedure is
applied, the set of tasks is decomposed into two partitions
connected by a minimum cut. We repeat the partitioning
recursively until each partition contains only one task. The
partitioning process can be represented by a tree. Each leaf
in the tree represents a group containing only one task. The
enumeration order is thus the order of all leaf nodes in depth
first traversal. For instance, the partitioning process for the
task graph in Fig. 1 is depicted in Fig. 13. Following this
result, we obtain the enumeration order that has been used
for illustration in previous discussion.

6.2. The optimal branch-and-bound algorithm

The branch-and-bound algorithm is shown in Fig. 14. This
is based on the A∗ traversal scheme with the addition of the
pruning rules and related implementation code presented in
Section 5. We now show that an optimal assignment can be
obtained by the proposed algorithm if neither time-out nor
overflow of theActiveSetoccurs.

To be convenient, we introduce some terminologies
and notations. A complete assignmentAc is said to be
in the future search spaceof ActiveSet(k) if either Ac ∈
ActiveSet(k) or there exists a partial assignmentAa ∈
ActiveSet(k) such thatAc can be derived fromAa. On the
other hand, we sayAc is lost from ActiveSet(k) if Ac is
not in the future search space ofActiveSet(k). The depth
of a partial/complete assignmentA, denoteddepth(A), is
the length of the path from the root to the branching states
representingA in the state–space tree.

The difficulty of showing the correctness of the algorithm
is that the pruning rules may remove some partial assign-
ments that can lead to optimal assignments. Fortunately, it
can be guaranteed that there exists other optimal assignments
in the future search space after pruning. When an optimal
assignment is pruned, we always can find another optimal
assignment survived in the future search space, as shown in
Fig. 15. Provided that some optimal assignments survived in
the future search space, we show that the termination con-
dition implies the optimality of the solution obtained.

Lemma 3. Assume that no overflow in the ActiveSet occurs.
Then, during the traversal, there are always some optimal
assignments survived in the future search space.

Proof.We prove this by induction on the number of iterations
i. The induction hypothesis is that

• for any optimal assignmentAopt-0 not in the future
search space, there exists another optimal assignment
Aopt-k survived in the future search space such that
depth(A′

k)�depth(A′
0), whereA′

0 andA′
k are the last

visited ancestors ofAopt-0 andAopt-k, respectively.

Lemma 3 holds in the beginning since no optimal assign-
ment is lost at initialization. Assuming the induction hypoth-
esis holds at the beginning of certain iteration. Suppose there
is a partial assignmentA′

0 been pruned in this iteration and
A′

0 can be extended to some optimal assignmentAopt-0. The
proof is to find theAopt-k andA′

k described in the induction
hypothesis.

In this case,A′
0 must have been pruned by some domi-

natorA1, which can also be extended to an optimal assign-
mentAopt-1 (otherwise the pruning criteria is violated). Let
A′

1 be the last visited ancestor ofAopt-1. By the pruning
rule, part of the sub-tree belowA1 must be traversed and
hencedepth(A′

1)�depth(A1) = depth(A′
0). If A′

1 is not
pruned, thenAopt-1 survives in the future search space and
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Fig. 13. Determining the task enumeration order.

Algorithm BB-Alloc(G,M)
• /* initialization phase */

– L(root of the state-space tree) ←0
– ActiveSet←{root of the state-space tree}
– Obtain Au by performing greedy search starting at the root of the state-space tree

• while not time-out do /* traversal phase */
1) remove a partial/complete assignment Av with minimum L(• ) from ActiveSetand perform the 

following to visit(Av)
1.1) /* update deepest link for all ancestor of A */

deep(A)←A
for each Aa: ancestor of A in the state-space tree do

if depth(A)>depth(deep(Aa)) then deep(Aa)←A
1.2) /* try to improve Au */

perform greedy search starting from A to obtain a complete assignment Ac
if cost(Ac)<cost(Au) thenAu← Ac

2) if Av is a complete assignment thenAu← Av and terminate the traversal by return Au
3) /* check if the sub-tree of A needs further traversal */

KillerSet←{deep(Aa)| Aa is an ancestor of Av in the state-space tree}∪ {Au}
prune ←False
for each Ak�KillerSetdo

prune←PruneTest(Ak, Au,Av)
if prune=True then break

4) /* exploit children of A if the sub-tree of A needs further traversal */
if prune=False then

for each child A′ v of Av in the state-space tree do compute L(A′ v) and insert A′ v into 
ActiveSet

Fig. 14. The branch-and-bound algorithm for task allocation.

hence the induction hypothesis holds for the next iteration
(cf. Fig. 15(a)). In case thatAopt-1 is lost, the induction
hypothesis states that there exists a survived optimal as-
signmentAopt-k with the last visited ancestorA′

k such that
depth(A′

k)�depth(A′
1)�depth(A1) = depth(A′

0) (cf.
Fig. 15(b)). And hence we obtain the requiredAopt-k and
A′
k for Aopt-0 andA′

0. This proves the lemma.�

Theorem 3 (Correctness of our proposed algorithm).Our
proposed branch-and-bound algorithm will end up with
an optimal assignment if neither space overflow in the
ActiveSet nor time-out occurs.

Proof. If not timed-out, some complete assignmentAc will
be removed from theActiveSetin the last iteration during
the traversal. The complete assignment returned is thisAc.
We want to show thatAc is optimal.

We prove this by contradiction. SupposeAc is not optimal.
Consider the contents ofActiveSet(j) for the last iteration
j . Lemma 3 states the existence of an optimal assignment
Aopt in the future search space ofActiveSet(j). Thus, we
havecost (Ac) > cost (Aopt) sinceAopt is optimal. LetAa

be the ancestor ofAopt (or Aopt itself) in ActiveSet(j).
By the definition ofL(•), L(Aa)�cost (Aopt). And hence
L(Aa)�cost (Aopt) < cost (Ac) = L(Ac). However,Ac is
the one with minimumL(•) in ActiveSet(j). This means
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Fig. 15. Finding an optimal assignment survived in the future search space.

• L(A1)<L(A2) butA2 can be extended to an optimal assignment
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Fig. 16. Unfair comparison: assigning different sets of tasks: (a) partial assignmentA1 and (b) partial assignmentA2.

L(Ac)�L(Aa). This produces a contradiction and hence
proves this theorem. �

6.3. Space-efficient ActiveSet organization

The remaining problem in designing the task allocation
algorithm is the design ofActiveSetsuch that (1) the par-
tial/complete assignment with minimumL(•) can be easily
removed, and (2) a near optimal assignment can be obtained
once overflow occurs. A simple solution is to implement the
ActiveSetas a heap and drop the partial/complete assign-
ment with maximumL(•) when overflow occurs, because
such an assignment is unlikely to be extended to an optimal
assignment. However, this scheme has certain drawbacks.
We identify two situations that will reduce the effectiveness
of the victim selection scheme:

• Unfair comparisons between partial assignments contain-
ing different sets of tasks.

• Unfair comparisons between partial assignments using
different numbers of processors.

Fig. 16 depicts an example of unfair comparison between
partial assignments assigning different sets of tasks. Con-
sider mapping the task graph in Fig. 1 to the machine con-
figuration in Fig. 2. Fig. 16 depicts two partial assignments
A1 andA2 containing different sub-graphs andL(A1) <

L(A2). However,A2 can be extended to an optimal assign-
ment butA1 cannot. A partial assignment containing less
number of tasks usually has lower cost andL(•), but this
does not mean it has a better future extension. Our solution
is to keep partial assignments assigning different number of
tasks in different heaps.

Fig. 17 depicts an example of unfair comparison be-
tween partial assignments using different number of pro-
cessors. We have two partial assignmentsA1 andA2 with
L(A1) < L(A2). A1 is the best assignment to assign the
sub-graph containing tasks{t0, t1, t2, t3, t4}. However,A2
can be extended to an optimal assignment butA1 cannot.
The assignment lacks knowledge of future load to be as-
signed and henceA1 uses too many processors for tasks
{t0, t1, t2, t3, t4}. To avoid this drawback, we keep partial as-
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Fig. 17. Unfair comparison: using different number of processors: (a) partial assignmentA1 and (b) partial assignmentA2.

signments using different number of processors in different
heaps.

We implement theActiveSetas an array of heaps to avoid
these two types of unfair comparisons. To assignn tasks
to m processors, theActiveSetis a two-dimensional array
heap[i][j ] for 1� i�n and 1�j�m. A (partial) assign-
ment assigning tasks{t0, t1, . . . , ti−1} using j processors
is placed in heap[i][j ]. The complexity of the branch-and-
bound algorithm is controlled by the size of heap[i][j ], de-
noted size(i, j), which is a polynomial function ofi and
j . When the number of (partial) assignments in theAc-
tiveSetcontaining{t0, t1, . . . , ti−1} and usingj processors
exceeds size(i, j), the one in heap[i][j ] with maximumL(•)
will be dropped. The future search space is thus extended
from the best size(i, j) partial assignments containing tasks
{t0, t1, . . . , ti−1} and usingj processors for all 1� i�n

and 1�j�m. The complexity of the proposed algorithm is
controlled by setting the heap size. By setting the size of
heap[i][j ] to bek, the space complexity of the proposed al-
gorithm isO(n ∗ m ∗ k). To control the time complexity,
we implemented the algorithm such that no new partial as-
signment will be inserted into heap[i][j ] after the first time
heap[i][j ] is full. That is, at mostk partial assignments that
assigns{t0, t1, . . . , ti−1} to j processors will be traversed.
This makes the time complexity of the proposed algorithm
to be alsoO(n ∗ m ∗ k).

7. Experiments and evaluation

We evaluate the proposed task allocation algorithm by
feeding it with several configuration samples generated ran-
domly. The test samples cover many possibilities that may
affect the effectiveness of the pruning rule.

7.1. Test samples generation

We randomly generate a set of task graphs and map the
task graphs to some randomly selected hierarchical machine

architectures. In generating task graphs, the distribution of
weights and edge densities are chosen to cover various de-
grees of clustering of tasks. In selecting the machine con-
figuration, the processor distances are chosen such that the
parallelism in optimal assignments ranges from using a few
processors to using all processors in the machine. The ef-
fectiveness of our proposed pruning rules is evaluated under
various situations.

Following the idea in[4], we generate task graphs by
hierarchically combining small sub-graphs. At the lowest
level is a set of small complete graphs, each containing 1–4
tasks. The lowest level sub-graphs are then randomly com-
bined to form a set of intermediate-level sub-graphs. The
intermediate-level sub-graphs are then randomly combined
to become a final task graph.

Randomly combining sub-graphs are guided by two pa-
rameters, the computation-to-communication weight ratio
(denotedE/C ratio) and the edge density, defined as fol-
lows:

• E/C = Average execution weight of all tasks

Average communication weight of all edges
.

• edge density= Probability of two vertices in different
sub-graphs being connected by an edge.

In the process of randomly combining sub-graphs, each pair
of tasks in different sub-graphs is examined. Whether there is
an edge connecting these two tasks is determined according
to the edge density. Once an edge is formed, the weight on
the edge is determined according to theE/C ratio.

We denote the attributes of a task graph as a tuple ofE/C

ratio and an edge density. Task pair at each level or cross
level has its ownE/C ratio. For example, a task graph may
be so generated: (1) select sub-graphs withE/C = 1 as
the lowest level sub-graph, (2) combine lowest level sub-
graphs to form a intermediate-level sub-graph withE/C =
5 and edge density=20%, (3) combining intermediate-level
sub-graphs to complete a task graph withE/C = 10 and
edge density=20%. We denote such a task graph withE/C :
(1,5,10) and edge density=20%.
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Fig. 18. Performance of the proposed task allocation algorithm: (a) performance comparison in Machine 1, (b) performance comparison in Machine 2
and (c) performance comparison in Machine 3.

The degree of clustering of tasks is controlled through
selecting theE/C ratio and the edge density. The set of
tasks can be clearly clustered into groups when (1) the gap
betweenE/C ratios of adjacent levels is large, and (2) the
sub-graphs are connected with relatively low edge density.
In the experiment, theE/C ratio ranges from 1 to 20 and
the edge density varies from 20% to 80%.

Another input to the task allocation program is the ma-
chine configuration. The machine configuration of interest
is hierarchically similar to Fig. 2(a) but with a larger size
and different latency. In the experimentation, each machine
consists of three subnets, and each subnet consists of three
processors. We fix the intra-subnet communication latency

to be one. The inter subnet latency varies from 5 to 20.
In mapping the same task graph to different machines, the
parallelism in optimal assignments ranges from using pro-
cessors in only one subnet to using processors across sub-
nets. The parallelism decreases as the inter subnet latency
increases.

7.2. Evaluation metrics

We evaluate both performance and allocation quality of
our task allocation algorithm. We use the term performance
to refer to the execution time to obtain an optimal solution.
The performance is compared to the A∗-algorithm [18] as
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 allocation quality

assignment to Machine1 (intra subnet latency=20)

density=80% density=60% density=40% density=20% 

1E/C:(1, 2, 5 ) 1.00 1.01 1.02 1.10

2E/C:(1, 2, 10 ) 1.01 1.01 1.04 1.12

3E/C:(1, 2, 20) 1.00  1.00  1.02  1.03

4E/C:(1, 5, 10 ) 1.05 1.03 1.01 1.06

5E/C:(1, 5, 20) 1.03  1.04  1.04  1.09

6E/C:(1, 10, 20 ) 1.01  1.01  1.02  1.02

assignment to Machine 2 (intra subnet latency=10)

density=80% density=60% density=40% density=20% 

1E/C:(1, 2, 5 ) 1.00 1.02 1.05 1.11

2E/C:(1, 2, 10 ) 1.03 1.01 1.04 1.10

3E/C:(1, 2, 20) 1.00  1.00  1.03  1.01

4E/C:(1, 5, 10 ) 1.06  1.05  1.05  1.08

5E/C:(1, 5, 20) 1.05  1.06  1.05  1.07

6E/C:(1, 10, 20 ) 1.03  1.01  1.04  1.05

assignment to Machine3 (intra subnet latency=5)

density=80% density=60% density=40% density=20% 

1E/C:(1, 2, 5 ) 1.00 1.03 1.05 1.14

2E/C:(1, 2, 10 ) 1.03 1.04 1.05 1.10

3E/C:(1, 2, 20) 1.00  1.02  1.02  1.04

4E/C:(1, 5, 10 ) 1.06 1.06 1.06 1.08

5E/C:(1, 5, 20) 1.07  1.07  1.06  1.02

6E/C:(1, 10, 20 ) 1.02  1.00  1.03  1.02

Fig. 19. Allocation quality subject to time and space constraints.

follows:

Speed-up= Number of branching states traversed by the A∗-algorithm

Number of branching states traversed by the proposed branch-and-bound algorithm

We use the term allocation quality to refer to how good the
complete assignment found under limited time and space,
formulated as follows:

Allocation quality

= Cost of the complete assignment returned

Cost of an optimal assignment
.

7.3. Experimental results

The performance and allocation quality are evaluated us-
ing 240 task graphs and three hierarchical machine configu-
rations. The task graphs are generated according to six dif-
ferentE/C tuples and four different edge density values,
resulting in 24 different sets of task graphs. We generate 10
task graphs per set. The three machine configurations differ
in the inter subnet latencies, varying from 5 to 20. The com-
binations of task graphs and machine configurations cover
all degrees of clustering of tasks and parallelism to test the
effectiveness of the pruning rule.

Fig. 18 shows the evaluation results of the performance
in finding an optimal assignment. Experimental results on
different machine configurations are depicted in different
charts. We take the harmonic mean of the speed-ups for
each set of ten task graphs generated under the sameE/C

tuple and edge density. The speed-ups ranges from 1.03 to
2.20, depending on the degree of clustering of tasks and
parallelism. As expected, the curves show that the pruning
rule is effective when the tasks can be clearly clustered into
groups and the parallelism becomes large.

The allocation quality subject to restricted time and space
is also evaluated. Time and space complexity are controlled
with ActiveSetsize and time-out threshold. In the experi-
ment, the time-out threshold is set to ben ∗ m, wheren is
the number of tasks andm is the number of processors, and
the size of heap[i][j ] is set to bei ∗ j .

The set of task graphs and machine configurations used to
evaluate the allocation quality are the same as those used in
evaluating the performance. The result is shown in Fig. 19.
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We take harmonic mean of each set of 10 task graphs gener-
ated with the sameE/C ratios and edge density. As shown
in the figure, near optimal assignment can be found for each
task graph and machine configuration.

8. Conclusion

In this paper, we have proposed a task allocation algo-
rithm aiming at finding an optimal assignment. The key idea
to the efficient task allocation is pruning, which take ad-
vantage of a combination of dominance relation and task
clustering heuristic. This research shows that solving the
task allocation problem by state–space searching approach
is an attractive way. Previous state–space searching meth-
ods[2,17,18,20]find the optimal assignment in the cost of
un-tractable time and space complexity. Our proposed prun-
ing rule (1) reduces the time and space required to obtain
an optimal assignment, and (2) makes the traversal reach a
near-optimal assignment within a small number of traversal
steps. This makes the state–space searching approach feasi-
ble in real-world applications.
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