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Abstract—For orthogonal frequency-division multiplexing
(OFDM) signals that suffer from frequency-selective fading,
we derive the maximum-likelihood (ML) pilot-assisted carrier
frequency offset (CFO) estimate and show that most proposals
based on repetitive pilot symbols did not use the complete set of
sufficient statistics. We convert the problem of obtaining the ML
solution from searching exhaustively over the entire uncertainty
range to that of solving a spectrum polynomial, thereby greatly
reducing the computational load. By properly truncating the poly-
nomial, we obtain a closed-form expression for the corresponding
zeros so that the root-searching procedure is greatly simplified.
The complexity of locating the desired root is further reduced at
almost no expense of performance degradation by an alternate
algorithm that uses the fact that the solution is related to the
root of a special factor of the polynomial. This alternate method
is very attractive for its simplicity and excellent performance
that, even at low signal-to-noise ratios (SNRs), is very close to the
corresponding Cramér–Rao lower bound. A detailed analysis of
the mean-squared error performance is presented and the analysis
is validated by simulations.

Index Terms—Frequency estimation, orthogonal frequency-
division multiplexing (OFDM).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) is an effective antifading modulation scheme for

broad-band wireless communications. It has been adopted by
several standardization groups for various applications; see [1]
and the references therein. A shortcoming of OFDM systems
is the sensitivity to the carrier frequency offset (CFO). The
presence of a CFO causes reduction of amplitude of the desired
subcarrier and induces intercarrier interference (ICI) because
the desired subcarrier is no long sampled at the zero-crossings
of its adjacent carriers’ spectrum. Due to the inherent charac-
teristics of OFDM signals, the tolerable frequency offset range
is very limited [1].
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There have been many CFO estimation schemes for OFDM
signals [2]–[15]. These schemes can be conveniently cate-
gorized into blind and pilot-assisted schemes. Pilot-assisted
schemes use well-designed pilot symbols to estimate CFO
and, because these schemes are capable of achieving rapid
and reliable frequency synchronization, are often used by
packet-oriented systems. Moose [2] proposed a correla-
tion-based technique that uses two consecutive identical pilot
symbols to estimate CFO. Although Moose’s algorithm is a
maximum-likelihood (ML) estimate, its maximum frequency
acquisition range is only subcarrier spacing. Following
Moose’s proposal, subsequent techniques use multiple iden-
tical pilot symbols with a smaller symbol period to increase the
estimation range of CFO.

Let be the frequency offset and
be the normalized CFO with respect to the subcarrier spacing

, where is the OFDM symbol period, is the in-
teger part of , while is the fractional part. Schmidl and
Cox (SC) [5] used two identical half-period symbols to estimate
the fractional part of the CFO and a second full-period symbol
that has a special correlation relation with the first pilot symbol
to estimate . Lim [11] also proposed a similar method and ex-
ploited only two identical half-period symbols to estimate both

and . Morelli and Mengali (MM) [6] increased the acquisi-
tion range to subcarrier spacing by dividing a symbol into

repetitive parts, as shown in Fig. 1(a). Their algorithm
has been proved to be better than the SC estimate for yielding
a smaller minimum mean-square error (MMSE). In addition,
their algorithm needs only one symbol period for computing the
CFO. The MM algorithm was further improved by the two-stage
method of Minn, Tarasak, and Bhargava (MTB) [10]. Song [7]
exploited the same pilot symbol structure and suggested a mul-
tistage correlation method to acquire CFO, but performance re-
sults were the same as those of Schmidl’s. A simplified version
of Song’s estimation method that requires only two correlation
steps was proposed by Patel [8].

The performance of these methods, except for the MM and
MTB algorithms, depends on the correlation of two half-period
identical blocks. MM and MTB used differential phases of the
correlations between different pairs of adjacent fractional-pe-
riod blocks to form an improved CFO estimate.

The blind schemes, on the other hand, exploit the structural
and statistical properties of the transmitted OFDM signals such
as cyclic prefix [3], virtual subcarrier [4], or constant-modulus
[15]. Since no training symbols are required, blind methods are
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Fig. 1. (a) Short pilot symbol sequence of the IEEE 802.11a. (b) Symbol
arrangement and definitions of the proposed ML estimate.

attractive for saving bandwidth and having higher throughput
and are more suitable for circuit-switched transmissions.

In this paper, we present ML CFO estimates that use an
arbitrary number of identical fractional-period OFDM
blocks. An efficient algorithm is provided to solve the asso-
ciated highly nonlinear ML equation. Instead of searching
within the candidate CFO range exhaustively, we only need
to solve a polynomial of degree . Two methods to
further reduce the complexity of extracting the desired root
are presented. Numerical results indicate that even at low SNR
the performance of the proposed methods still approach the
corresponding Cramér–Rao lower bound.

The rest of this paper is organized as follows. Section II de-
scribes our signal model and defines related parameters. We de-
rive the corresponding optimal frequency-offset estimate and its
simplified version in Section III and Appendix I. A detailed per-
formance analysis is presented in Section IV and Appendix II.
We discuss the simulation results in Section V and, finally, in
Section VI, we summarize our main results.

II. SIGNAL MODEL AND PARAMETERS

Parallel transmission of a block of data symbols
drawn from a quadrature-amplitude modulation (QAM)

or phase-shift keying (PSK) constellation is efficiently im-
plemented by an -point inverse discrete Fourier transform
(IDFT). The transformed block of (time-domain) samples

forms a long OFDM symbol, where the equally spaced
data-bearing subcarriers are mutually orthogonal over

a symbol interval of seconds, where is the IDFT
output sample interval. Oftentimes, an OFDM symbol is pre-

ceded by a cyclic prefix longer than the maximum channel delay
spread to form an “extended” symbol so that ISI can be elimi-
nated at the receiving end by simply discarding the prefix part.
One can also have a short OFDM symbol whose duration is a
fraction of by placing data symbols only at the subcarriers

, i.e., data sequence is transmitted at the frequencies
which are multiples of while zeros are inserted at the re-
maining frequencies [6].

Let be the th sample of the th (time-domain) short
pilot symbol and assume that the preamble part of a transmitted
package consists of identical short pilot symbols with a
total preamble duration of seconds. We thus have
the relation for and

. Shown in Fig. 1(a) is the IEEE 802.11a
standard that uses , , and to form a
training sequence of ten identical short symbols.

Consider a frequency-selective channel with a maximum
delay spread shorter than a short symbol duration. Assuming
that the combined frequency response of the prefilters is flat
within the range , where is the signal
bandwidth and is the maximum frequency offset, the
received baseband waveform is matched-filtered and sampled
at a rate of samples/s. After discarding the first symbol,
the remaining received pilot symbols can be repre-
sented as

(1)

for , and , where
are uncorrelated circularly symmetric Gaussian random vari-
ables (rvs) with zero mean and variance .

is the channel output corresponding to the transmitted
pilot symbol . Due to the assumption that the channel
delay spread is shorter than the length of one short symbol and
the channel impulse response remains the same during the pre-
amble period, the remaining samples are periodic. Note
that the above signal model implies that the maximum CFO one
can recover is subcarrier spacings.

Define the two vectors

(2)

and

(3)

where denotes the matrix transpose. Then, as shown in
Fig. 1(b), we have

(4)

where , and
. The received samples can thus be

expressed compactly as

(5)

where , , and
. Hence, given the received sample
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vectors , we have to estimate through the deterministic
vector . For notational simplicity, we shall drop the ar-
gument in in the subsequent discussion.

The above signal model (5) assumes that perfect symbol
timing has been established prior to frequency synchroniza-
tion. However, it is still valid even if timing error does exist
provided that the selected received pilot symbols are within
the range of the preamble and the number of identical short
pilot symbols is larger than (excluding the first discarded
received short symbol). Therefore, the beginning position
where the received pilot symbols are selected to form the
signal is very flexible. More specifically, even if we do not have
the symbol timing, we still can use the above signal model
provided that the selected short symbols are located within
the legitimate interval that spans from the start of the second
received short symbol to the last sample of the last transmitted
short pilot symbol. Thus, the CFO estimators derived from (5)
are expected to be insensitive to timing error.

III. ML ESTIMATE OF CFO

Since the noise is temporally white Gaussian, is a multi-
variate Gaussian distributed random vector with covariance ma-
trix , where is the identity matrix. The joint ML estimates
of and , treating as a deterministic unknown vector, are
obtained by minimizing the joint probability density function

(6)

The corresponding log-likelihood function, after dropping con-
stant and unrelated terms, is given by

(7)

For a given , setting , where
denotes complex gradient operation with respect to ,

we obtain the conditional ML estimate
, where and denotes the Hermitian

operation. Substituting the least-square solution into
(7), we obtain

(8)

where denotes the trace of a matrix [18],

, and . Note
that the th entry of the matrix , , is
the correlation value of th and th received symbols,
i.e., . As is
the (time-averaged) autocorrelation matrix of the received

sample vectors , it is a Hermitian matrix such that
, where denotes the complex conju-

gate. The desired CFO estimate is then given by

(9)

It can be proved that the above ML solution is the same as
[9, eq. (9)] whose computing load, however, is much heavier.
Although (9) gives a compact representation of the ML CFO
estimate, it requires an exhaustive search over the entire uncer-
tainty range. The resulting complexity may make its implemen-
tation infeasible.

We observe, however, that has a special structure that can
be of use to reduce the complexity of searching the desired CFO
solution of (9). Invoking an approach similar to that used by the
MUSIC algorithm [16], we set and define the
parametric vector

(10)

so that the log-likelihood can be expressed as
a polynomial of order as follows:

(11)

where , for , and
. To highlight the usefulness of this important ob-

servation, we restate it in the form of the following proposition.
Proposition 1: The log-likelihood function for a candidate

CFO is given by

(12)

Some remarks about this proposition are in order.
Remarks:

R1. is the summation of diagonal entries of and
is also equivalent to the aperiodic autocorrelation value
of the waveform
at time difference seconds, i.e.,

.
R2. It can be shown that, in the absence of noise

(13)

where , and
. When noise is present,

the mean value of is the same as its noise-
less value except for ; more specifically,

, where is the
Kronecker delta function. Evaluating (11) at the
unit circle , we obtain the
discrete-time Fourier transform of the sequence ,
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which has an envelope similar to whose
maximum value is at the correct “modified” frequency

.
R3. Due to the Hermitian nature of , is a con-

jugate symmetric sequence of length . The
symmetric property of guarantees that its Fourier
transform is real and nonnegative. This
also follows from the semi-positive definiteness of
the quadratic form . Because and
the log-likelihood function constitute a Fourier trans-
form pair, we will henceforth refer to as the
log-likelihood spectrum or spectrum, for short, and the
polynomial defined by (11) the spectrum polynomial.

R4. constitutes a set
of sufficient statistic for estimating . Almost all pre-
vious correlation-based algorithms use only a subset
of , e.g., For , the Moose’s algorithm [2] uses

, the GM algorithm [7] uses . The MM and
MTB algorithms use only the phases of elements of .
Furthermore, the former achieves its best performance
when it uses only half of the phases [10]. It is expected
that an algorithm that uses the sufficient statistic would
outperform those that use only a part of the sufficient
statistic.

R5. Computing the desired CFO estimate through (11) is
equivalent to searching for the peak of the candidate
spectrum . Hence, the spectrum can be com-
puted using a discrete Fourier transform (DFT), but the
resolution of the CFO estimate depends on the size
of the DFT. Padding more zeros in the sequence
results in higher resolution at the expense of inducing
higher computation complexity.

As the spectrum is a real smooth function of , taking
a derivative of with respect to and setting

, we obtain

(14)

where is a polynomial of order .
As mentioned before, in a noiseless environment, ,
the Fourier transform of , is a scaled version of the

function , and all roots of
are on the unit circle. The presence of noise

and multipath will modify the Fourier transform and move
some roots away from the unit circle so that the solutions of

become a proper subset of those of . In
that case, we have , where
is a complex constant, , , and

, . Although has a fixed
number of roots, the distribution of these roots among
or, equivalently, the degrees of and depend upon
SNR for the existence of nonunit-amplitude roots due to the
merging of neighboring sidelobes of , which, in turn,
results from large noise perturbation.

We can either restrict our search to those roots that are on the
unit circle or normalize those nonunit-amplitude roots. Several
reasons convince us that both approaches will most likely give
the same estimate. First, the desired root is associated with the

Fig. 2. Normalized log-likelihood spectrum and the associated root
distribution where the spectrum is normalized by the noiseless mainlobe peak
value; CFO = 1:2 subcarrier spacings.

peak of and the mainlobe-peak-to-sidelobe-peak ratio is
greater than 25 dB. As the relative height difference between
any two neighboring sidelobe peaks is far smaller than that be-
tween the mainlobe and its two neighboring sidelobes, it is much
more likely for the merging of neighboring sidelobes than that
of the mainlobe and one of its neighboring sidelobes and, even if
the latter merge occurs, the associated peak will most probably
be the peak of the spectrum. In other words, the desired root
is likely to stay at the unit circle with a very high probability.
Second, our simulation has shown that, even in the presence of
strong noise and severe multipath, the resulting still
bears a close resemblance to a scaled version of and the
roots on the unit circle are within small neighborhoods of their
noiseless locations; see Fig. 2. Finally, is a linear trans-
form of and, as (B8) indicates (see Appendix II),
can be decomposed into two deterministic terms and two zero-
mean complex perturbation terms that are uncorrelated with the
deterministic part.

For simplicity, we shall use the first approach, i.e., the desired
estimate is to be obtained by

(15)

where

(16)

Note that we have converted the exhaustive search problem of
(9) to a root-finding problem, reducing the candidate solution
number from infinity to at most .

A. A ML CFO Estimation Algorithm

We summarize the procedure leading to (16) as follows.

1) Collect received symbols and construct the sample cor-
relation matrix .

2) Calculate the coefficients of based on .
3) Find the nonzero unit-magnitude roots of (14).
4) Obtain the CFO estimate from (15) and (16).
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We will refer to the above procedure as Algorithm . It can
be shown that, when , the resulting estimate is equivalent
to the Moose estimate [2].

The above algorithm needs to locate all of the roots of
. We can reduce the order of by truncating the

length of the sequence , i.e., using a lesser number of
autocorrelation values. When we use the truncated version,

, to carry out Algorithm , the resulting
algorithm is referred to as Algorithm . The complexity of
Algorithm is much less than that of Algorithm since
the associated has closed-form solutions. We do expect
some performance degradation as less autocorrelation values
are used. In the following subsection, we present a method
to further reduce the complexity of solving (14) in step 3)
with little or no performance degradation.

B. A Simplified CFO Estimate

We notice that the solutions of (14) are the nonzero roots of
the polynomial

(17)

On the other hand, (14) implies that the roots of satisfy
the equation , where is the imaginary
part of . This observation indicates that the nonzero roots
of (the root of is undesired)
are a subset of the roots of . When is an
arbitrary polynomial, its roots are not necessarily a subset of
those of the corresponding defined by (17). However, in
our case, as shown in Appendix I, both and do divide

when there is no noise in the received signal vector
or the ensemble average is used to construct

and , i.e., the roots of are indeed a subset of
those of . Moreover, we can show (see Appendix I) that
the following proposition holds.

Proposition 2: In the absence of noise, the polynomial de-
fined by (17), , can be decomposed into

(18)

where the desired CFO estimate is one of the roots of
defined by

(19)

where .
When noise is present, the above equality becomes an ap-

proximation only. Nevertheless, the desired CFO estimate can
still be derived immediately from taking the th root of .
Fig. 2 highlights the locations of the normalized roots of ,

and for , i.e., various local extremes of
. The global maximum that colocated with a root of

corresponds to the desired CFO estimate while the remaining
roots of locate at a local minimum (null) of the spectrum.
On the other hand, the roots of are at the local sidelobe
peaks of the spectrum. It is clear that the union of the roots of

and is the set of the roots of . Hence, the com-
plexity of extracting the roots is significantly reduced, for we
only have to solve the equation , which happens to

have a closed-form expression for its roots. We will show later
via simulations and analysis (see Appendix II) that (18) is a valid
approximation that incurs only negligible performance loss even
when the system is operating at an SNR as low as 0 dB. The
above discussion suggests the following simplified CFO esti-
mate algorithm.

1) Follow 1) of Algorithm .
2) Compute the coefficients based on two correlation

values and .
3) Solve for the unit-magnitude roots of ,

.
4) Find the estimate from (15) and (16).
The above algorithm will be referred to as Algorithm . Note

that the definition of [see (13)] indicates that
and suggests that steps 3) and 4) of Algorithm can be replaced
by using the estimate , where is the
principal value of the argument of . The disadvantage of this es-
timate is that it cannot be applied to the situation when the CFO
is such that . On the other hand, (13) also implies that
the CFO can be estimated by ,

. Amongst these candidate estimates,
is the only one that does not violate the no-phase-am-

biguity requirement and, in fact, is the same as the general-
ized Moose (GM) algorithm that uses averaged autocorrelation
values [7].

IV. PERFORMANCE ANALYSIS

Note that the CFO estimate derived from Algorithm is
identical to (9). This estimate is unbiased, for as ,

, with
, , and is the channel

response at the subcarrier , hence . In Ap-
pendix II, we show that the variance of the ML estimate is
given by

(20)

where . Following the analysis that
leads to [16, eq. (4.1)] and upon substituting the parameter,

, we obtain the corresponding
Cramer–Rao bound (CRB)

CRB (21)

Equation (20) indicates that is a decreasing function
of . Therefore, replacing one long pilot symbol with several
identical short symbols and using the proposed ML method

would yield a performance superior to that resulting
from using the correlation-based method that correlates two
identical half-period symbols ( , i.e., Moose algorithm),
even though both use the same number of data samples.

For Algorithm , the associated variance can be approx-
imated by (22), shown at the bottom of the next page (see
Appendix II). Equation (22) reveals that, even at low SNRs,
Algorithm still gives a satisfactory performance. For Algo-
rithm , we expect its performance to be between those of
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Algorithms and , since the former uses all of the available
autocorrelation values while one of the two autocorrelation
values the latter uses is , which involves a smaller
number of time-correlation samples than and is, therefore,
less reliable. The simulation results shown in Section V do
confirm this conjecture.

It is also clear that, as long as the true CFO does not incur
phase ambiguity (i.e., ), then the th roots of are
given by , . Although
in a noiseless environment
(assuming, without loss of generality, the desired root is

), the variance analysis presented in Ap-
pendix II shows that yields a smaller variance. As a
result, Algorithm yields a performance superior to that of the
generalized Moose (GM) estimate obtained by averaging over
two consecutive overlapped median symbols [see Fig. 1(a)]

times. Later simulation results indeed reveal the supe-
riority of Algorithm . Furthermore, it also suggests that step
4) can be replaced by picking up the th root whose principal
argument is closest to .

V. SIMULATION RESULTS AND DISCUSSION

Numerical examples are provided in this section to examine
the behavior of the proposed CFO estimation technique. As
shown in Fig. 1(a), eight short training symbols which are the
same as those used in the IEEE 802.11a preamble are used in
our simulation. Results reported in Figs. 3–6 assume a static
frequency-selective fading channel with ten paths whose com-
plex amplitudes are independent identically distributed (i.i.d.)
complex Gaussian random variables. CFO is normalized by sub-
carrier spacing and the mean values and mean-squared errors
(MSE) of various estimates are computed by independent
trials.

For comparison purposes, the corresponding CRBs and the
behaviors of four other estimates are provided as well. These
estimates are the MTB estimate (which outperforms the MM
estimate [10]), the Moose estimate [2], the GM estimate, and
the Patel–Song [7], [8] (PS) estimate. The last estimate uses the
GM estimate as the initial estimate and selects the final estimate
from the family of candidate estimates ,
where is the Moose estimate and is the set of integer
multiples of twice the acquisition range of that is the
closest to the initial estimate. The GM estimate is a special case
of our proposals, corresponding to one that uses the truncated
version of the spectrum polynomial, .
The GM estimate has a frequency acquisition range larger than
that of the Moose estimate but renders a less accurate estima-
tion when CFO is within the latter’s acquisition range. The PS
estimate is designed to retain the advantages of both algorithms,

Fig. 3. (a) Averaged estimation values for various CFO estimates. (b) MSE
performance of CFO estimates; K = 8, and true CFO = 0:48 subcarrier
spacings.

i.e., having an acquisition range the same as that of the GM es-
timate while achieving the performance of the Moose estimate.
The coefficients used by the MTB estimate to optimally com-
bine the differential phases of the elements in the set depend
on the operating SNR. In our simulation, a design 20 dB
is assumed. The MM estimate is not compared for it best per-
formance is achieved when only correlations are used [10].
For the purpose of fair comparison, all algorithms whose per-
formance is shown in the same figure use the same number of
samples.

Fig. 3(a) and (b) depicts the mean and MSE of various CFO
estimates as a function of SNR. Since the maximum CFO
that can be corrected by the Moose estimate is , the

(22)
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Fig. 4. MSE performance of CFO estimates; K = 8, and true CFO = 1:8

subcarrier spacings.

corresponding performance degrades rapidly at low SNR when
the true CFO approaches the maximum correctable value. For
Algorithms , , and and the MTB and GM estimates,
however, the maximum correctable CFO is , hence they
give a much better MSE performance with Algorithm yielding
a performance almost the same as that of the CRB. Both
Algorithms and (corresponding to ) outperform
the Moose (corresponding to ) and GM estimates.
For 802.11a systems, using eight short training symbols not
only allows a larger CFO offset range but also yields better
performance. At CFO , as shown in Fig. 3, the
Moose estimate is worse than the GM estimate at low SNRs.
Algorithm is simpler but its performance is a little worse
than those of Algorithms and , though it is still better than
the GM estimate at low-to-medium SNRs. The performance of
the MTB estimate is almost the same as that of Algorithm A
except at low SNR.

Fig. 4 plots the MSE performance for CFO . Algo-
rithms and and the MTB estimate still maintain superior
performance in this case. For the MTB estimate, however, the
effects of SNR mismatch and initial CFO estimation error be-
come apparent at low SNRs. Fig. 5 plots the MSE performance
when CFO using four short symbols. The Moose es-
timate uses two identical symbols: each lasts for short
symbol durations so that the maximum offset range it can correct
becomes . Fig. 6 compares the MSE performance of our
algorithms and the GM and PS estimates when CFO .
Figs. 5 and 6 clearly indicate that the PS (or Moose) estimate
is not necessarily better than the GM estimate but that the pro-
posed methods still provide the best performance although the
improvement is less impressive. This confirms our analysis in
Section IV where it is shown that the performance of Algorithm

improves as increases. Finally, we examine the perfor-
mance in a time-varying channel composed of ten uncorrelated
fading paths generated by the modified Jakes’ model [17]. The
maximum path delay is equal to ten data sample intervals, as-
suming a sampling rate of 20 MHz. The performance of our
CFO estimates is independent of the path numbers so long as

Fig. 5. MSE performance of CFO estimates; K = 4, and true CFO = 0:94

subcarrier spacings.

Fig. 6. MSE performance of CFO estimates; K = 4, and true CFO = 1:6

subcarrier spacings.

the channel’s maximum delay spread is shorter than the length
of the cyclic prefix. Assuming a mobile speed of 100 km/h, cor-
responding to a Doppler frequency of approximately 463 Hz
when the carrier frequency is 5 GHz, we plot the corresponding
MSE performance in Figs. 7 and 8. As our derivations assume a
quasi-static channel that remain unchanged during the preamble
period, the estimation performance is degraded due to the fact
that the received signal model (4) is no longer valid. In sum-
mary, Algorithms and and the MTB estimate render the
best performance, followed by Algorithm , and then the other
correlation-based algorithms. When is small, Algorithms ,

, and yield almost the same MSE performance. The pro-
posed methods can be used when an arbitrary number of
identical pilot symbols are available.

As for the computational complexity issue, we first noticed
that the basic requirement is the computing of . Different
methods call for the computation of different subsets of the
sufficient statistic . The detailed computational complexity
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Fig. 7. MSE performance of CFO estimates in a time-varying
frequency-selective Rayleigh fading channel; K = 8, and true CFO = 1:8

subcarrier spacings.

Fig. 8. MSE performance of CFO estimates in a time-varying
frequency-selective Rayleigh fading channel; K = 4, and true CFO = 1:6

subcarrier spacings.

and storage requirement for the CFO estimation algorithms
are listed in Table I, assuming that there are short pilot
symbols available with each symbol of -sample duration.
Clearly, Algorithm and the MTB estimate require the highest
complexity while Algorithm is the simplest among the three
proposed algorithms. The MTB algorithm needs to perform
down-converting (multiplying exponentials) that require table
loop-ups. The storage requirement for building the table is not
included in Table I. The computing effort for finding the roots
is also not included. Algorithm needs one additional real
division only. Algorithm has to solve a polynomial of order
four that renders a closed-form expression while Algorithm
has to solve a polynomial of order , and the associated
complexity is relatively high. A method to significantly reduce
this complexity can be found if one uses the phase of as

the initial phase value for searching for the roots. An elemen-
tary root-finding algorithm like Newton’s method can then be
applied to find the first unit-magnitude root of in just a
few iterations, as the desired root has a phase very close to that
of .

VI. CONCLUSION

The optimal ML CFO estimate that uses several identical
pilot symbols has been derived. By transforming the log-
likelihood function into a spectrum polynomial, we reduce the
ML estimate’s complexity from that of an exhaustive search
over a continuum to that of solving a polynomial. Besides
the ML estimate (Algorithm ), we propose two simplified
versions (Algorithms and ) and show that some of the
previous correlation-based algorithms are special cases of our
proposals. The MSE performance of the proposed algorithms are
analyzed in detail, and our analysis does match the simulation
results. Both the analysis and simulations indicate that the
performance of Algorithm is very close to the corresponding
CRB. Algorithms and require much less computational
load but they do not incur a noticeable loss of performance.
Numerical results also demonstrate that, in a time-varying
Rayleigh fading channel, the performance of the proposed
methods suffers from minor performance degradation only.

APPENDIX I
DERIVATION OF (18) AND THE ROOT DISTRIBUTION OF

Dividing by , we obtain the quotient polynomial
defined by (19) and the remainder polynomial

(A1)

where ,
. In the ab-

sence of noise, we have with
. Invoking the

definition and substituting the resulting alter-
native expressions , , and

, for , we
find that for . Therefore, and
the polynomial are indeed a factor of . Similarly, it
is easy to see that, if the ensemble average is
used to construct and , we still have the factorization
(18).

Obviously, the roots of the quotient polynomial
are the set ,

which has the desired root as one of its members. Next we
prove that the other roots of are located at the sidelobes
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TABLE I
COMPLEXITY COMPARISON OF VARIOUS CFO ESTIMATION ALGORITHMS

of the log-likelihood spectrum . Recall that
. Assuming is even, we obtain

(A2)

It is obvious that if , for
. Hence, when , for

, which are the remaining roots of . The
case is odd can be similarly proved. Note that the roots of

are the extreme values of the spectrum of . Since the
roots of are located at either the global maximum or the
local minima of , the roots of should sit at the local
maxima, i.e., sidelobe peaks of the spectrum, as shown in Fig. 2.

The above discussion assumes a noiseless environment.
When noise is present, we can easily show that the factorization
of still holds in the mean sense. Furthermore, the analysis
of presented in Appendix II convinces us that factorization
(18) will remain valid with a probability close to one unless
SNR is very small (say, 0 dB).

APPENDIX II
MSE PERFORMANCE ANALYSIS

A. Decomposition of the Correlation Coefficients

The performance of the proposed algorithms depends on
the behavior of whose coefficients , as shown in R2
of the main text, are functions of the autocorrelation matrix

. We thus begin our anal-
ysis by examining

(B1)

where . Let be the
discrepancy matrix between and its ensemble av-
erage, , i.e., .
It can be shown that , where

, and the discrepancy
matrix consists of three components

(B2)

where ,
.

The first component, , is independent
of SNR and the CFO estimation algorithm. Using the
definition , we ex-
press the second component as the sum of two matrices

,
where the entries of the second matrix are given by

while the first matrix is a diagonal matrix. The third component,
, represents the cross correlation of the received samples

and noise. We will show that only and affect the
mean-squared performance of our CFO estimates.

We first note that the assumption that are i.i.d.
zero-mean Gaussian rvs with variance leads immediately to

for
, and then the equations

(B3)

for

(B4)

for , and for .
Furthermore, it can be shown that all of the elements in the upper
or lower triangular part of are zero mean uncorrelated rvs
with identical variance and .
Therefore, the rvs

(B5)
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have zero mean and variances for
. Moreover, , , and

is a sequence of uncorrelated
rvs. Next, let us examine the statistical properties of .

Recall that
, whose entry is given by

(B6)
with . It follows immediately that

, for is assumed to be uncor-
related with , for all . Equation (B6) thus gives

, for . Similarly, we
can show that the entries of the cross-correlation matrix
are uncorrelated unless they belong to the same column or
row in the upper (or lower) triangular part of .
In other words, , for ,
and , for , but

, for ,
and , for

. The new zero-mean rvs

(B7)

have variances for and the Hermi-
tian property but they are not independent.

Now we can express the sequence as

(B8)

Note that , , and are uncorrelated.

B. Performance of Algorithm

As Algorithm calls for locating the point (or ) that max-
imizes (or ), it follows that ,
where . Assuming
small estimation errors , we obtain

, where and .
The fact that implies , and thus
the estimation error can be approximated by

(B9)
The statistical properties of and derived in the
previous section convince us that, with high probability,

, if 0 dB. Ignoring the perturba-
tions due to and in the denominator, we can further
simplify (B9) to

(B10)

where is a zero-mean rv.
Thus, the MSE of the estimate can be obtained as soon as the
second moment of is known.

Invoking the alternate expression
and the facts that and are uncor-

related and is white but not , we obtain

(B11)

where is the sum of the cross-correlation value of corre-
lated elements ’s, i.e.,

(B12)

As mentioned in Appendix II-A,
and for

, after some algebra, we can show that the first term on
the right-hand side of (B11) is equal to

(B13)

The value of remains to be determined. For convenience,
we define the auxiliary rv

(B14)

for , , and . If , the associ-
ated rv is zero with probability 1. It follows that entries
of the upper triangular matrix are uncorrelated
unless they belong to the same row or column. In other words,

for and
for , but

for and
for . By using (B7), (B12), and (B14), we can

prove that is equivalent to the sum of cross correlations
of the entries of , i.e.,

(B15)
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(B22)

where denotes the “exclusive or” operator. As ,
, and the recursive relation

(B16)

holds for , we obtain

(B17)

This equation, along with (B10), (B11), and (B13), yields

(B18)

The relation then leads to

(B19)

C. Performance of Algorithm

Algorithm calls for solving or, equivalently, the
evaluation of the corresponding roots ,

. Since ,
, and

, it is convenient to
define intermediate rvs and

(whose variances are given by
and , respec-

tively) so that we can write

(B20)

where and . Note that and are corre-
lated but their correlation is a decreasing function of and their
variances are and ,
respectively. After some algebra, we obtain

(B21)

where . It can be shown that
, the variance of , is given by (B22), shown at the top of

the page. However, if we assume that and are uncorrelated,

the corresponding variance of , denoted by is simply
, given by

(B23)

Numerical results show that the difference between
and is about 1 dB within the range of interest.

Equation (B21) implies , and the
polar coordinate representation gives

(B24)

where and are the amplitude and phase of , re-
spectively. When , i.e., and ,
we have

(B25)

where we have used the approximation , for
. Hence, the variance of can be obtained from

. Without loss of gener-
ality, we assume that the phase of the desired root of in
(19) is , then the CFO estimate
becomes

, and, as a result, by substituting ,
we obtain the variance of the estimate (22) as

(B26)
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