IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 11, NOVEMBER 2004

2287

Image Descreening by GA-CNN-Based
Texture Classification

Yu-Wen Shou and Chin-Teng Lin, Senior Member, IEEE

Abstract—This paper proposes a new image-descreening tech-
nique based on texture classification using a cellular neural
network (CNN) with template trained by genetic algorithm (GA),
called GA-CNN. Instead of using the fixed filters for image de-
screening, we are equipped with a more pliable mechanism for
classifications in screening patterns. Using CNN makes it possible
to get an accurate texture classification result in a faster speed by
its superiority of implementable hardware and the flexible choices
of templates. The use of the GA here helps us to look for the most
appropriate template for CNNs more adaptively and methodically.
The evolved parameters in the template for CNNs can not only
provide a quicker classification mechanism but also help us with
a better texture classification for screening patterns. After the
class of screening patterns in the querying images is determined
by the trained GA-CNN-based texture classification system, the
recommendatory filters are induced to solve the screening prob-
lems. The induction of the classification in screening patterns has
simplified the choice of filters and made it valueless to determine a
new structured filter. Eventually, our comprehensive methodology
is going to be topped off with more desirable results and the
indication for the decrease in time complexity.

Index Terms—Cellular neural network (CNN), genetic algo-
rithm (GA), image descreening, texture classification.

I. INTRODUCTION

UCH degradation in documental images, like morie pat-

terns, [1], may be brought forth during the transformation
from a scanned or halftoned image to electronic formats. Nu-
merous inverse halftoning or descreening methods have been
used to eliminate these artifacts regardless of the causes for gen-
eration of screening noisy patterns [2]-[4]. In most studies, (in-
verse) halftoning techniques can be generally classified into two
categories: frequency- [5] and spatial- [6] domain approaches.
As a matter of fact, frequency-domain approaches could keep
more textured information in the screened images; whereas spa-
tial domain approaches retain more properties for the spread of
locations of screenings. That is also the reason that most papers
tend to use such frequency-domain methods like fast Fourier
transform (FFT), wavelet, or even Gabor filtering methods. Un-
fortunately, their descreening results are still restricted even if
complex filters are used through time consuming procedures.
This mainly results from that no fixed filter could be success-
fully employed in every kind of screened images. Thus, in this
paper, we introduce a unique mechanism including two parts:
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the classification of screening textures and the descreening pro-
cedure by the selected adaptive lowpass filter based on the clas-
sified screening textures.

In the first stage, a texture classification engine for various
screening patterns based on cellular neural networks (CNNs) is
designed. Like neural networks [7]-[10], the CNN is a large-
scale nonlinear analog circuit, which processes signals in real
time. The CNN is made of a massive aggregate of regularly
spaced circuit clones, called cells, which communicate each
other directly only through its nearest neighbors [11]. This paper
uses the genetic algorithm (GA) to determine the template ele-
ments of CNNs. For the sake of the confined results in [12] and
[13], the GA is preferred to overcome the problems of stability
and adaptation in the CNN. The GA here takes a dual part in
our decision of template elements for the CNN. One is to min-
imize the objective function, called optimization; the other is
to avoid the occurrence of oscillation and chaos while testing
the pros and cons of working templates for CNN, called adap-
tation. In addition, the design of template elements for CNN
based on GA is not subject to the types of objective functions
and minima, i.e., differentiability of the cost function and the ex-
istence of local, global, separate, multiple minima, and so forth.
Not only was the GA applied to a single-layer CNN, but also
used for the parametric design of multilayer CNN. Like what is
mentioned in [14], the template design of the multilayer CNN is
necessary at times for complex problems that cannot be solved
or realized in the easier manner of single-layer CNN particu-
larly. Selecting CNN templates by GA, thus, has known to be
widely used in every field of applications, regardless of single
or multilayer CNN, and also has been shown to be powerful and
robust in theory and practice [14]-[17]. Stochastic learning ap-
proaches, GA in particular, have become a crucial alternative to
deterministic ones, which take the stead of the classical methods
by using the independent properties of initial conditions and the
domain of applications combined with the implicit parallelism
[15]. And the detailed descriptions about GA for choosing tem-
plate elements of multilayer CNN have be given in literature as
[18] when only the global responses to the input images of the
system would be available. The multilayer CNN design is cer-
tainly employed in the near future if the texture patterns were
much more complicated than those we expected or no a prior
information about the structure of the system had been given,
or the separate operation of every layer had been in need. In
[19], three different CNN templates trained by GA were pro-
posed and carried out to give us a comparative index for per-
formance of the system in different combinations of evolutional
ways among generations, i.e., the average, inverse, and time-in-
terpolated templates. Also, a modified assumption of parameters
in GA like crossover or mutation rate in [19] made it practical
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to push the responses out of the way giving rise to the diffi-
culty of convergence. Besides the changes of fitness functions
in the GA, the GA could be amended in other evaluation forms
like the penalty functions mentioned in [15], [18] to give a pun-
ishment assessment between layers of CNN if the structure of
multilayer CNN is required. Now that the precise adjustment of
parameters in our CNN template design based on GA is not nec-
essary for our screening pattern classification in the descreening
process, some slight changes about GA like the adaptation of
fitness functions, how to set the parameters in the evolutional
flows, etc. would be very useful and applicable to the issue of
image descreening addressed in this paper.

This paper is organized in the following section orders: the
entire architecture of our system, texture classification, the de-
sign of working templates for CNN by GA, the selection of fil-
ters according to the classified screening texture classes, deter-
mination of the parameters in the chosen filter, experimental re-
sults, and conclusion.

II. PROPOSED SYSTEM ARCHITECTURE

The proposed image-descreening system can be divided into
three major processes. At first, we make use of GA to deter-
mine the working template elements for the required operational
function of CNN. After the working templates are determined,
the required function of the CNN is determined at the same time.
And then, in the execution of the CNN, the output can only be a
binary image. For this reason, several useful indexes extracted
from the output image of CNN are introduced to indicate the
property of screening in the target image. By the information
obtained from the output of CNN, the types of descreening fil-
ters and the parameters in the filter are then obtained as desired.
Finally, in the descreening stage, we apply the selected filter to
the screened images to filter out the screenings.

The proposed image-descreening technique consists of the
training phase (Fig. 1) and descreening phases (Fig. 2). At the
beginning, we have to prepare screened images on which the
features of the screening patterns are extracted for training pur-
pose. In the training phase, a block in the size of 64 x 64 pixel2
is extracted manually from the original screened images in our
database. A block in the same size, of course, would be cropped
automatically in the testing phase. Also, in the training phase,
the proper template of the CNN is determined by GA to perform
texture classification with the derived template. Two screening
estimates calculated from the output of the CNN in the training
phase can be utilized to be the matching indexes for that in the
testing phase. The closer the calculated values in the testing im-
ages to those in the training images are, the higher the level
of tendency toward that screening pattern will be. These two
screening estimates not only suggest the types of descreening
filters, but also determine such arguments like width, radius, or
size in the selected filter. Once the type of the screened image
has been recognized according to the extracted screening pat-
tern, this screened image will be convolved with the suggested
filter to acquire the final descreened image.

III. SCREENING TEXTURE CLASSIFICATION

There are diverse screening patterns in the screened images;
each can be best removed by a specific kind of filters, so the lack
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Fig. 1. Flowchart of the training phase of the proposed GA-CNN-based texture
classification scheme.

of the screening information in the screened images restrains the
descreening results and complicates this kind of problems. Tex-
tures can be viewed as complex visual patterns composed of en-
tities, or sub-patterns, that have characteristic brightness, color,
slope, size, etc., [20]. Generally speaking, four kinds of pop-
ular approaches nearly dominate all the researches in the tex-
ture analysis, i.e., structural, statistical, model-based, and trans-
form methods. Structural approaches [20], [21] represent tex-
ture by well-defined primitives (microtexture) and a hierarchy
of spatial arrangements (macrotexture) of those primitives. As
to model-based texture analysis [22]-[28], it uses fractal and
stochastic models, and attempts to interpret an image texture
by using generative image model and stochastic model, respec-
tively. Finally, transform methods for texture analysis, such as
Fourier [27], Gabor [28], [29] and wavelet transforms [30]—[32]
represent an image in a space whose coordinate system has a
strong understanding that is closely connected with the charac-
teristics of a texture, like scales or frequency.

The proposed texture analysis scheme combines the advan-
tages of structural methods with those of statistical ones. The
screening patterns can be referred to as primitives in structural
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Fig. 2. Flowchart of the proposed image-descreening technique.

methods since the classification mechanism is a supervised one.
In the descreening phase, smooth indexes are used to determine
whether the screening patterns could stand for the screenings in
the original images. If so, the screening pattern extracted from
the original image will be fed into our classification engine, the
GA-CNN. As soon as the type of screenings in the testing image
is identified, the following processes will be much easier and the
descreening performance will be better.

A. Screening-Texture Patterns

Screening patterns can be viewed as one kind of textures that
represents the similarity grouping in an image. It may be diffi-
cult to get this sort of similarity in the screened images accu-
rately. It takes no effort, however, to observe the regularity of
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the same screened images by human perception. For example,
Fig. 3(a)—(c) contains different types of screening patterns, each
of which has its own regularity or uniformity, called texture
of its own. Fig. 3(a) contains screenings with smaller granula-
tions; while Fig. 3(b) has bigger or squared screenings. For the
image corrupted by a specific screening pattern, a proper filter
should be used for descreening. The total number of screening
patterns for all the screened images can not be known before-
hand. How to determine the number of screening patterns de-
pends on the desired functional performance. In our experi-
ments for the descreening purpose, only two classes of screening
patterns are classified. Our experiments have showed that the
descreening performance after two-class screening classifica-
tion is very satisfactory and acceptable to human perception.
The two classes of screening patterns that are cropped manually
from the screened images in our database are showed in Figs. 4
and 5, respectively. These patterns and manual classification re-
sults will be used for the training of the proposed GA-CNN tex-
ture classifier.

In the testing phase of the trained GA-CNN texture classifier,
it is essential to identify the proper block(s) in the testing image
for screening texture identification and classification. We shall
propose a set of smooth indexes calculated from an image block
for determining whether the extracted block is qualified to be
one of the screening patterns in the testing images. Smooth in-
dexes thus play a critical role in the screening classification. The
derivation in more details for smooth indexes will be depicted
in Section III-B.

B. Smooth Indices for Screening-Texture Block Detection

The standard deviations in statistical approaches were always
used as the analytical tool for signal processing and image pro-
cessing. The smooth index used in our approach can be also rep-
resented in terms of the standard deviation; it is obtained from
the proportion of difference in the standard deviations. The stan-
dard deviation in an image represents the extent of difference in
intensities of an image. Looking for an index which can best
describe how smooth a block will be, we have made use of the
proportion of difference in the standard deviations between our
defined blocks, named the difference ratio of standard devia-
tions.

The size of the screening pattern that we extracted from one of
screened images is 64-by-64 pixels. We partition the extracted
screening pattern into five parts (i.e., subscreening patterns).
Fig. 6 illustrates this partition of the screening pattern. For each
of them, a standard deviation value has to be calculated, and
then the calculated value needs to be compared with that of the
original screening pattern. With regard to all of these five sub-
screening patterns, five difference ratios can be acquired for a
screening pattern in a screened image. In the same way, four
difference ratios can also be obtained about the central part
from which is partitioned off the screening pattern. None of
these nine numerical values being larger than ten percents to-
tally makes sure of the smoothness of the extracted screening
pattern. This smooth index can be tuned higher if the original
document image is not that smooth and the components of edges
may be more dominant. Although the smooth index is relevant
to the screened images, it is ranged from 10% to 20% without
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Fig. 4. Class 1 of the training screening patterns.

Fig. 5. Class 2 of the training screening patterns.

respect to the complexity of the screened images. As Fig. 6
shows, each of the five blocks has half of the size of the orig-
inal screening pattern, 32 by 32 pixels. The higher the smooth
index is, the coarser the extracted screening pattern is. A smaller
smooth index implies the uniformity and regularity of the ex-
tracted screening pattern. The similarity among blocks can truly
reveal the agreement to the screening pattern coming from the
testing screened image.

IV. DESIGN OF CNN TEMPLATES FOR SCREENING TEXTURE
CLASSIFICATION BY GA

The core technique in the proposed descreening method is to
design a CNN-based screening texture classifier. The subject of
template design or learning is the most important topic in CNN
researches. The methods which have been investigated may be
classified as local learning algorithms [33]-[35], global learning
algorithms [36], [37], and analytical methods [38]-[41]. Local

Three example screened images. Images (a)—(c) contain different types of screening patterns.

Std 1 Std 2

Std 5

Std 3 Std 4

Fig. 6. Partition in the screening pattern for calculating the smooth indexes.

learning algorithms are derived from training methods devel-
oped for other neural networks such as multilayer perceptrons,
and their global counterparts mostly use stochastic optimization
techniques such as GAs [36] or simulated annealing [37]. The
analytical approaches are based upon a set of local rules char-
acterizing the dynamics of a cell, depending on its neighboring
cells. These rules are transformed into an affine set of inequal-
ities that need be solved to get correctly operating templates.
Actually, GAs inherit the properties of analytical methods and
global methods. At the same time the local information can also
be retained in the template training stage.

For texture analysis by using CNN based upon GAs, some rel-
evant and representative studies as [19] and [42]-[47] have to be
taken for further discussions. Like [19], a strategic approach was
proposed to provide a simple but complete methodology for tex-
ture classification and segmentation. Indeed, the features men-
tioned in this reference, ratio of black pixels (ROB) and average
gray levels, give a very helpful tool to classify up to 16 texture
patterns after a series of processing units or analytic steps. But
for some specific textures like screening patterns mentioned in
this paper, the characteristics proposed earlier are not sufficient
to classify and segment these screening texture patterns since
there may be various causes for screenings such like different
resolutions, sampling rates by documental scanning, printing
processes, and so on. In [44], the hardware implementation for
texture segmentation was developed, which sped up the research
and discovery of texture analysis and other related applications,
and meanwhile made texture-specific filtering and evaluation
processes facilitated with parallel handling capability and con-
secutive template training of CNNs. The uses of gray level his-
tograms or other statistical methods in [19], [42]-[44] also mod-
ulate the decision procedure after texture classification. In addi-
tion to filtering textures in some orientation, having a process
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of cross-correlation between the state and input, and using the
halftone-like output of CNN as in [47], this paper turns the sta-
tistical analysis of CNN and the classification of screening pat-
terns in advance for descreening on a differently breaking view.
Two useful estimates, therefore, have been deduced here to solve
this kind of descreening problem exactly.

A. Cellular Neural Networks (CNNs)

A CNN is innovated with implementable circuits and the
basic characteristics of structures of neural networks. For the
image processing in CNN, the

d:l:ij(t)
dt
= —x(t) + Z (ak—i1— f(@ri(t) + bre—ii—jurt)
kLEN;
+ 1 +n4(t), (1,5) e {1,2...M}x{1,2,...N}

dynamics of the network is governed by a system of n = M N
differential equations: where IV;; denotes the neighborhood of
the cell C;;, ag; and by, are the feedback and the control tem-
plate parameters, respectively, M and N are the height and
width of an image, respectively, and n;;(t) is the disturbance
term. CNN has presumed circumscribed by a virtual contour of
cells with the constant input and output for the lack of a com-
plete set of regular neighbors on the boundary cells. The corre-
spondence subsumed under 0;; f(e) is the piecewise-linear sat-
uration function

f@) = e+ 11~ 2~ 1)

and y;;(t) = f(z;;(¢)) is referred to as the output of Cj;.

A template contains the combination of a triplet {4, B, z}
for the template learning, where A consists of all the arguments
a1, and B represents the values by;. In the structure of CNN,
A and B both are 3 %3 or 5= 5 matrices. The size of matrices
depends on the functions of CNN. The threshold z is a one-
dimensional scalar. In our system, we apply 3 * 3 matrices to
both A and B in the consideration of functional performance
for the texture classification. The constant input is chosen to be
the original image; i.e., the extracted screening pattern in gray
scales. The initial state in CNN for the texture classification can
also be set as the original screening pattern due to the ability of
convergence. The task now is to design proper templates such
that the binary output of the corresponding CNN can indicate
the class that the input screening pattern in gray scales belongs
to.

B. Genetic Algorithms (GA)

A GA is a kind of methodology, which can accomplish the
specific task or processing by a series of rigorously mathemat-
ical operations and logical decisions. With the ability of selec-
tion, crossover, mutation, and reproduction in genes, the supe-
rior offspring will survive while the inferior one being excluded
through competition. The most important part in GAs lies in
the “fitness” function, a kind of objective or cost function that
covers all the information about the discussions, which is in turn
yielded to evaluate the fitness value of all the possible solutions
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and their performances. Trying to reach a higher fitness value by
recombining chromosomes has then become an essential con-
stituent in this parameter space.

When it comes to the operational theories in GAs, schema
or template theorem should have been taken to explain how
it works. In the followings, some basic definitions in schema
would be simply illustrated. A binary number “I1xxx01xx” pre-
sented here could be viewed as one of the examples of schemas
where the symbol “x” means “Don’t care.” The values located
in “x” could be 0 or 1. Also, the binary number with or without
“x” is a schema. For a binary number “101,” thus, all possible
eight schemas are { 101, x01, 1x1, 10x, xx1, x0x, 1xx, Xxx }.
There may include 2™ schemas for an n bit binary number.

The operational theories in GAs are based upon the building
blocks hypothesis, where the building blocks are the schemas
applied for schema theorem. A good contour could be conserved
in case of selections. A better result could be shown up in case of
crossover. GAs could only find the optimization by getting rid
of the local traps in case of mutation. From the above, of all the
schemas with the smaller order, the shorter defining length, and
those beneficial to looking for the optimization would survive
generation by generation.

C. GA for CNN Template Design

When the GA is used as the training tool for CNN templates, a
few conditions that ought to be met need to be taken into consid-
erations. To make sure of the stability in the CNN, the positive
cell linking [48] and symmetry [49] of the “A” template have to
be verified. Fortunately, any template optimized by GAs must
be stable because the lower fitness values always result from
unstable trajectories in CNN. It ensures the stability in the CNN
if a higher fitness value could be reached, which is exactly what
the GA goes for. The well-known evaluation function is defined
as the following formula by the mean squared error:

.
9@ = (v —w)’

=1

where j is the training template including A, B, and z, k is the
number of cells which depends on the size of templates, y¢ is
the desired output for each  pixel, and y; is the output in steady
state. Obviously, only minimizing g(e) can make the training
templates become our desired templates, which just goes against
our purpose of getting higher fitness values. Therefore, a mod-
ified mapping function is presented in Fig. 7 to transform the
original cost function g(e) into the required fitness function
£(o).

This mapping function mixes both advantages of windowing
and linear scaling. Windowing is one sort of fitness functions
that can assign a constant minimum fitness value to the chromo-
some in the worst condition. The increased fitness value makes
the chromosomes with lower fitness values have chance to com-
pete with others in some exceptional conditions. A linear map-
ping function with scaling is such a transforming function that
the population with an average evaluation value can be mapped
into the one with an average fitness value. The two properties
amplify the difference between good populations and bad ones
so that the survival chromosome could evolve more easily.
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Fig. 7. Mapping function from the cost function g(-) to the fitness function

fe)

Besides the transformation from the evaluation function to the
fitness function, some other necessary elements in GAs have to
be considered as well. To be more systemized, the steps in the
GA used in search of CNNs templates are arranged below.

1) Encoding Process: For the facility of using crossover and
mutation, binary GA (BGA) is frequently utilized in GAs real-
ization. Representing a floating decimal template in terms of a
binary string is necessary. In fact, CNNs hardware implemen-
tation would be the terminal goal in trying finding an appro-
priate template, so the values of parameters in that template
need to be ranged from —5 to 5. There exist a few popular
coding methods like standard coding, enhanced coding, inverse
reordering, etc. Enhanced standard coding has improved the cor-
responding association in the standard coding methods. It is the
right coding method to put the relevant digits corresponding to
the same bit-location together for the effect that the familiarity
in a binary string can be effortlessly found out without interfer-
ences. This encoding process of chromosomes is illustrated in
Fig. 8. For the sake of explanations, a simplified template with
most entries filled by zero would be exhibited in our encoding
process. The resolution used in our template optimization need
not be too high since the redundant digits in CNN increase the
computing loadings only. We take the binary strings in 12 bits
for convenience to represent the decimal digits in CNNs tem-
plates with the resolution less than 0.01; e.g., a binary string
“111111111 1117 represents a floating decimal 5.00 in the tem-
plate. But for our optimization process in the experiments, 5—7
bits for each weight in one population would be quite adequate
and efficient to realize the encoding progress, which is ought to
be accompanied by optimizing 5-10 weights within each of it-
erations in order to speed up the convergence in GA evolution.
In this manner, CNN template decision could be well realized
by the binary conversion in the first period of BGA.

2) Reproduction or Selection: In GAs, how to choose the
chromosomes with higher fitness values from the candidate
population is quite a decisive problem, since it influences the
survival or decay of a competitive population. At this time,
we select the simplest and the most general selection method,
Roulette wheel selection, to deal with this problem. At the point
of adaptation functions, a higher fitness values will contribute
to a bigger region area. A more contributed chromosome also
would be liable to be picked out in the process of selection. The
insufficient chromosomes will be generated by the recombina-
tion of the chosen populations through reproduction, crossover,
or mutation operations mentioned below.
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3) Crossover and Mutation: Among various crossover op-
erators, a two-point crossover is adopted to alter the previous
relationship between two crossing sites in the binary strings and
its percentage value is chosen as 0.7 empirically. It signifies that
all the bits between two different sites chosen randomly have to
be exchanged. The two-point crossover ameliorates the draw-
backs of one-point crossover with inability of linking certain
schemas. Mutation, in the end, is just performed by flipping
an arbitrary digit to increase the occurrence probability of the
populations with low fitness values and varies from 5%-15%
according to the present error in the fitness function. Besides,
GA percentage (GAP) is also set to be 0.65 for keeping track
of the optimized chromosomes and making the vibration in the
GA training slighter. Through these operators, the CNN tem-
plate learning can be carried out by the GA more successfully.

After the above GA optimization search, the designed CNN
templates can be rearranged as a triplet { A, B, z} and are listed
in decimals in Fig. 9. On the GA training pass, we shall demon-
strate the evolution processes by the curve of fitness functions
[Fig. 10(a)] and the corresponding simulated results through
GA-CNN [Fig. 10(c)]. In Fig. 10(a), the fitness values of the
best, average, and poorest populations are indicated for each
generation in an amount of five hundred generations. Likewise,
five consistent results simulated through GA-CNN for every
hundred generations are also displayed in Fig. 10(c). It can be
observed apparently from the distribution of fitness functions [in
Fig. 10(a)] that the fitness values incline toward a steady state
after an appropriate number of evolved generations. Also, in
Fig. 11, the convergence curve reveals the variation in the mean
squared errors between the desired output and the output ac-
quired by GA-CNN. The distribution of fitness values and con-
vergence curve both show the expected generation which results
in the satisfactory classification consequences in experiments.

V. SELECTION OF DESCREENING FILTERS

Numerous filtering approaches for image descreening have
been proposed previously since it was believed that there must
be a way to find out a qualified filter for screenings removal.
But unfortunately, the outcomes of this concept only provoked
over-blurred images or low descreening effect. In spite of the
complex procedures, the descreening results are still restricted
even if sharpening after descreening has been employed. At the
same time, most of the existing literature also gives defense
to their proposed filters against the common descreening filters
like Gaussian or median filters. As a matter of fact, these pop-
ular filters still work quite well on condition that the suitable
arguments are correctly decided. In this paper, we shall show
that the median and Gaussian filters are capable of coping with
nearly all the screened images if the screening patterns are clas-
sified and the appropriate filter arguments are determined.

The Gaussian filter and median filter have complementary
effects on image descreening. Although the Gaussian filter is
often under the opinion that it has less effect on screenings re-
moval, it can remove screenings without destroying the infor-
mation of high frequencies in the original documental images
if the screening degree would not be too high. Contrarily, the
median filter has a stronger aptitude for screening removal yet
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The CNN template for GA training :

an a2 a3
Ajemp =| @21 Gy a3

da3| dzx a3
where

Biemp =|b21 by ba3
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bll blZ bl3

by by b33

ayy =5.0,byy =2.5,25 =1.0, and all the other elements are 0.0;

Binary Conversion

Chromosomes

one population

. @i @3 dy Axp dy 43 43 d33

where

bll bl2 bl} bZl b22 b23 b31 b32

by3 zo

aij,byj,zg for 1<i, j <3have been transformed into the binary digits by the standard coding.

= apn - by

:>[ 111111111111 010111111111

zo], where ---mean 0.0 in this case.
010011001100]

in the binary form and each represents 12 bits for our uses.

After the enhanced coding

[d, v dy ], where k is the total bit number for resolution, and £ =12 in this case.

and d represents the corresponding digits among these 19 parameters for the template training.

= [0000100000000000000
where

111111111[111111110]

dy---dj_, can also be calculated in the same way.

The encoded population

Fig. 8. Encoding process of chromosomes in the GA-CNN training phase.
081 078 3.63 0.19 -123 231
A=| 204 -436 275| B=[-189 366 -284| z=372
-132 -242 -1.01 2.82 231 3.66

Fig. 9. GA designed CNN templates for screening textures classification.

resulting in an over descreening phenomenon; i.e., over blurred-
ness. When the screening degree is high enough, the median
filter will have a great efficacy on image descreening. There-
fore, the correct selection among these two filters according
to different screening textures can solve almost all the image
screening problems. Moreover, with the fittest filter arguments
chosen in the filters adaptively, the descreening outcomes can be
further improved. The adaptive argument decision mechanism
will be described in Section VI.

According to the above discussion, as soon as the screening
type in the screened image has been testified, either Gaussian
or median filter will be used. The selection mechanism depends
on the tendency strength of the screening type in the screened
image. This selection does not indicate the exact screening pat-
tern but an implication about which of the two filters can offer a
better descreening consequence. The information of the binary

output from the CNN texture classifier is sufficient to determine
which filter has to be selected. To extract such information, a
determinative parameter 7 is defined as follows:

a(s)

e

where a(s) and b(s) both are the number of pixels with respect
to the two screening types, respectively. The parameter 75 is the
selection ratio for recommending an agreeable filter for image
descreening. The ratio is prone to approach zero or infinity in
an ideal condition if some screening pattern is more dominant.
In reality, the ratio is centered on the ranges by two boundary
values, 10 and 0.1. It means that this parameter is ranged in two
intervals, [0, 0.1] and [10, co]. And, it can be observed that these
two values are distinct enough to halve the defined screening
patterns.

VI. ADAPTIVE DETERMINATION OF ARGUMENTS IN CHOSEN
DESCREENING FILTER

Even if a desirable filter for descreening has been selected
correctly, an arbitrary decision of arguments in this filter might
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Fig. 10.

(©

(a) Variation of the fitness values during the evolutions of GAs by 200, 400, and 500 generations, respectively. (from left to right). (b) Testing screening

pattern for texture classification in gray scales and its binary desired output. (c) Simulated results after texture classification during the evolutions of GAs by 100,

200, 300, 400, and 500 generations, respectively. (From left to right).

Fig. 11.

Convergence curve for mean squared errors of the fitness function.

give rise to inferior descreening results. An advisable filter with
the adaptive decision of arguments can just straighten out the
problems in discussions. Two simple but applicable screening
estimates are introduced here to provide the screened images
with a well defined Gaussian or median filter. The two screening

A
counts %

nmax

n

»
L
min

min Xmax X

Fig. 12.  An x projection function of the screening pattern.

estimates are obtained by the CNN’s binary output as defined
below. First, the CNN is performed to classify the screened
image according to the extracted screening pattern and give a
binary output for texture classification. Next, both = and y pro-
jection functions can be sketched or analyzed with regard to the
digits of the dominant screening type. Fig. 12 displays an z pro-
jection function of the binary output from the chosen screening
pattern. The y projection function of the same screening pattern
can be plotted in the same way as Fig. 12. The two screening
estimates can then be calculated as

Nmax
S9 =
ymax

Nmax — Mmin

P — T'min
1= .
Tmax — Lmin — Ymin
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The CNN’s binary output stands for the distribution of the two
screening patterns and meanwhile reveals the screening degree
in the original screened image. The above estimates point out the
maximum variation in = and y directions, respectively; in other
words, the distribution of screenings in that pattern could be also
best described in two different directions. The inessential noises
can be evitable since only the dominant screening type is consid-
ered. Also, with the concern in image descreening, the range of
arguments in the Gaussian or median filter should be determined
in the first place. For the Gaussian filter, we only adjust the vari-
ance in a Gaussian function from 1.5 to 9.0 with the precision
up to 0.1. For the median filter, the size of the sliding block is
the only argument value we have to determine in our scheme,
which ranges from 3 to 15 in the width with the interval of one
pixel. From any binary output obtained by the screening classi-
fication, both of the two estimates can be calculated. Naturally,
these two estimates have to be normalized into its proper range
in accordance with the selected filter. This working interval was
encircled by the maximum and minimum estimates computed
from the screening patterns in the training phase. The maximal
estimate is assigned to 9.0 as the minimal one is assigned to 1.5,
and then the variance in Gaussian filter can be determined by in-
terpolation. For the median filter, the width of sliding blocks can
also be received in the same measure. Through the similar way
in the training phase, we can inspect which direction is more de-
cisive. In fact, we just emphasize the higher screening estimate
in two directions now that the distribution of screenings in this
direction will be evidently perceived.

VII. EXPERIMENTAL RESULTS

The experimental results reported in this section will focus
on the final results after descreening. In our approach, all the
experiments can be separated into two parts: the training and
testing phases. The training phase includes the collection of
two different types of screening patterns, CNN template design,
GA optimization, and the acquirement in the available informa-
tion of two screening estimates. The testing phase comprises
the classification of screening types, the texture classification
based on CNN:ss, filter selection, and the adaptive decision of ar-
guments in the chosen filter. The most time-consuming step in
our method is GA optimization that determines CNN template
for texture classification. In the testing phase, fortunately, we
only use the fixed CNN templates, which have been optimized
by GAs in the training phase. Actually, it takes almost no time
in the stage of the screenings classification because only a small
block (64 * 64 pixelz) in gray scales is extracted for further anal-
ysis. As a whole, we spent about 3.3 or 0.8 s (by the computer,
CPU: PIII, 800 MHz) dealing with a document image in the
size of 862 pixels by 768 pixels if a median or Gaussian filter
is selected as the descreening filter, respectively. The detailed
experimental results in these two phases will be given in Sec-
tions VII-A and B

A. Training Phase

The experimental results of using the GA for CNN template
design can be exhibited in the form of screenings classification.
Figs. 13—15 show variously assorted consequences by means of
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Fig. 13. One defined screening type. (a) Original screening pattern. (b)
Screening pattern in gray scales. (c) Desired classification result. (d) Our
experimental classification result.

(a) () (d)

Fig. 14. The other defined screening type. (a) Original screening pattern.
(b) Screening pattern in gray scales. (c) Desired classification result. (d) Our
experimental classification result.

(b) () (d)

Fig. 15. Mixed screening type. (a) Original screening pattern. (b) Screening
pattern in gray scales. (c) Desired classification result. (d) Our experimental
classification result.

Fig. 16.
indexes.

Illustrative image for the extraction of screening patterns by smooth

CNN texture classification based on GAs. The screening pat-
terns in Figs. 13 and 14 are the ones from two defined distinct
screenings. In Fig. 15, the screening is generated synthetically
by mixing these predefined screening types. Fig. 16 presents the
way to calculate the smooth indexes of the screening pattern by
the manual cropping in the training phase. Table I lists the data
of the smooth indexes with respect to two predefined screening
types and a mixed screening pattern of those two screening
types.

As Fig. 16 depicts, the screening pattern can be extracted
accordingly. When the first screening is randomly selected, the
corresponding smooth indexes can be calculated simultane-
ously. If more than three indexes are larger than 20% in those
nine indexes, the next screening pattern has to be randomly
searched until that condition is satisfied. In this case, all the
smooth indexes of the third chosen screening pattern will meet
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TABLE 1

COMPARISON OF SMOOTH INDEXES WITH RESPECT TO THREE SCREENING PATTERNS IN DISTINCT SMOOTHNESS, (A), (B), AND (C) ACCORDINGLY

(b)

Index1 Index2 Index3 Index4 Index5 Index6 Index7 Index8 Index9

(a) 8.1% 7.8% 6.9% 15.1% 5.1% 17.2% 6.6% 13.5% 7.2%

(b) 13.2% 54% 6.6% 8.5% 9.2% 9.6% 15.8% 11.2% 9.4%

(©) 11.5% 78.6% 27.6% 54.3% 43.2% 45.6% 33.1% 9.4% 19.2%
TABLE 11

COMPARISON OF CLASSIFICATION ERROR FOR SCREENING PATTERNS BY ROB, TE (OR GRAY LEVEL AVERAGE), AND OUR INTRODUCED PARAMETERS (ONE
DETERMINATIVE INDEX AND TWO SCREENING ESTIMATES) IN TERMS OF DIFFERENT OUTPUT FORMATS (BINARY/GRAY SCALE)

Histogram Average distributions of Classification
Parameters | Output - - - -
Screening 1 | Screening2 [ Screening 1 | Screening 2 error
Our B 1% 99% 06 75 2.4%
indices
ROB G 47% 53% 44% 49% 4.8%
TE G 48% 52% 31% 33% 8.7%

this requirement. Consequently, this searching procedure can
be terminated and the selected screening pattern can be applied
for the screenings classification in the screened images.

As Table I indicates, the screening patterns (a) and (b) both
have smaller index values than the screening pattern (c). It is ob-
vious that smaller index values will bring about smoother blocks
of images, which is able to provide an index to distinguish the
smoothness of an image block. In comparison with what the pre-
vious works have been doing by using their features which were
applied to texture classification and segmentation, the statistical
arguments for screening pattern classification before image de-
screening we proposed in this paper have shown a better classifi-
cation performance and a lower misclassification rate by Table IT
in 200 documental samples with various screenings. Table II
describes the classification error by several different indexes,
where one of them is the estimate that we made use of here, and
the others are the common features like ROB and texture energy
dealt with by half-toning or grayscale outputs. It is easy to ob-
serve that the two estimates we proposed for image descreening
indeed have more specific and distinguished characteristics to-
ward the classification of screening patterns than what have been
appeared in the past studies for aiming at the texture analysis
only.

B. Testing (Descreening) Phase

In this subsection, we demonstrate some descreening out-
comes of the proposed trained system on the screened images in
the testing phase. The document images in Figs. 17 and 18 are
processed by the Gaussian filter according to the screening clas-
sification result. The document image in Fig. 19 is processed by
the selected median filter obtained in the same way. The Gaussian
filter applied to Figs. 17 and 18 is facilitated with its adaptive
argument decision, so the variance in the Gaussian function is
set to be 2.4 for both of these two cases by the two introduced

(a)

Fig. 17. Testing image for descreening using the Gaussian filter. (a) Original
image. (b) Descreened image.

() (b)

Fig. 18.
image. (b) Descreened image.

Testing image for descreening using the Gaussian filter. (a) Original

screening estimates. However, in Fig. 19, the screening type
verifies the use of the median filter with the size of the sliding
block by 6 pixels in width. No matter which filter is selected to
do the image descreening, the document images after processing
are undoubtedly superior to those in the related studies.
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TABLE III
COMPARISON OF DESCREENING PERFORMANCE AND SCREENING EXTENT IN HUMAN’S OBSERVATION BY CREDITS AND DISCREDITS HALVED IN FIVE (NORMALLY
WE HAVE THREE DIFFERENT RANGES: LOW FOR DEGREE 1-3, MEDIUM FOR DEGREE 4-7, HIGH FOR DEGREE 8-10)

Images Screening texture patterns Original
Screenings - - document
Screening 1 Screening 2 images
Granulation 8 3 7
£z 8 Regularity 7 5 6
g8
g é') Coarseness 4 6 5
%]
Qverall 9 ; R
seriousness
With
Methods Without classification of screenings classification

of screenings

De-screening Median Gaussian Specific Wavelet Our method
filter filter Fixed filter | transform ur metho
Fineness 5 6 6 7 9
28
g g Sharpness 3 7 4 7 7
o
3 & | Smoothness 8 5 5 6 9
L
Q i3
& Overall 6 5 5 7 9
performance

(b)

Fig. 19. Testing image for descreening using the median filter. (a) Original
image. (b) Descreened image.

Since there is no standard method for comparison in image
quality after image-descreening processes, we devise an ex-
perimental scheme in the aspect of psychology by compiling
and integrating the opinions of around 100 persons to indicate
the acceptable degrees of the descreened images for every
screening extent in various respects like descreening results,
smooth, or sharp degrees at the point of human perception.
In Table III, the evaluation range is halved by five where the
interval below five has a higher tendency toward discredits and
the interval above five inclines a higher confidence by credits.
In the same way, a finer division by three intervals shows such
different levels as high, medium, and low. All data in Table III
represent every tester’s point of view about the unprocessed
and descreened images in an average scale. And Table III gives
a kind of representative indexes, perceived from human eyes,
which clearly demonstrates the higher descreening performance
processed by our method than that handled by some previous
approaches which were extensively used in image descreening.
From the experimental data in the descreening results, our
method is actually superior to any other one in every respect
of image qualities including smoothness, fineness, and edge
information after descreening processes.

It is also proved that a simple filter still can work as long as
the screening type could be classified first and an appropriate
lowpass filter is chosen. In spite of the variety in the screening
types, the proposed filter selection scheme can settle most of the
descreening problems.

VIII. CONCLUSION

This work was carried through with a creative idea in image
descreening. An alternative way applied to the screening
classification is the crucial part in making a correct choice
of descreening filters for the removal of screenings. By the
applications of CNN texture classification, the predefined
screening patterns can be successfully separated. By the uses
of GAs, the decisive template in the functions of CNNs can
also be well optimized. The classification based on CNNs can
be accomplished in such an easier manner that we make the
descreening results more acceptable. Also, we introduced the
smooth indexes to determine whether the screening pattern in
the testing image was smooth enough to be extracted. The de-
fined screening types can be verified for the later filter selection
according to this screening pattern. CNNss in this paper played
an influential part due to its stability and the association of
neighboring cell linking. In particular, two suggested screening
estimates in the training phase were taken to decide the range of
the same ones in the testing phase, which helped to determine
the arguments in the selected filter. In this adaptive way, an
appropriate filter with the chosen arguments not only made the
descreening processing easier but also rendered the processed
images attractive ones to human perception.

Our experimental results indicated that the descreened doc-
ument images by our schemes are more natural and acceptable
to naked eyes, for both the high and low frequency part in a de-
screened image demonstrating the smoothness and sharpness in
concord. With the selection of a proper filter and the decision
of its arguments, the screenings have been removed away effec-
tively, but the high frequency part in document images would
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still remain natural. It was shown that the descreening results
were also pleasing or even better despite of the absence of sharp-
ening processes in our approach. In the future, the binary output
of CNNs will be extended to the output in gray values or even
in color scales with more channels.
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