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Abstract

Ant colony optimization (ACO) is a meta-heuristic proposed to derive approximate solutions for

computationally hard problems by emulating the natural behaviors of ants. In the literature, several successful

applications have been reported for graph-based optimization problems, such as vehicle routing problems and

traveling salesman problems. In this paper, we propose an application of the ACO to a two-machine flowshop

scheduling problem. In the flowshop, no intermediate storage is available between two machines and each

operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the

total completion time. We first present a transformation of the scheduling problem into a graph-based model. An

ACO algorithm is then developed with several specific features incorporated. A series of computational

experiments is conducted by comparing our algorithm with previous heuristic algorithms. Numerical results

evince that the ACO algorithm exhibits impressive performances with small error ratios. The results in the

meantime demonstrate the success of ACO’s applications to the scheduling problem of interest.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the operations research literature, many elegant mathematical models and solution methods have

been developed to cope with real-world problems. Although some exact approaches, such as branch-

and-bound algorithms and dynamic programs, have been proposed to solve the problems optimally,
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the curse of dimensionality of numerous combinatorial problems hinders the search for optimal solutions

in the solution space. Seeking approximate solutions that are feasible or good enough in an acceptable

time therefore shapes a viable alternative for the decision makers. Following this orientation, several

meta-heuristics, such as genetic algorithms (Goldberg, 1989; Holland, 1975), tabu search (Glover, 1990)

and simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), have been proposed to deal with the

computationally intractable problems. Ant colony optimization (hereafter, the acronym ACO will be

used through this paper) is a new meta-heuristic developed for composing approximate solutions. The

ant algorithm was first proposed by Colorni, Dorigo, and Maniezzo (1991) and has been receiving

extensive attention due to its successful applications to many combinatorial optimization problems

(Dorigo, Di Caro, & Gambardella, 1999). Like genetic algorithm and simulated annealing approaches,

the ant algorithms also foster its solution strategy through use of nature metaphors. The ACO is based

upon the behaviors of ants that they exhibit when looking for a path to the advantage of their colony.

Unlike simulated annealing or tabu search, in which a single agent is deployed for a single beam session,

ACO and genetic algorithms use multiple agents, each of which has its individual decision made based

upon collective memory or knowledge. Some basics of the ACO will be presented in later sections.

The problem under study in this paper is a two-machine flowshop scheduling problem to minimize the total

completion time, i.e. the sum of completion times of all jobs, under no-wait constraints. This objective is a

measurement that is commonly adopted to reflect the average flow time of all orders in the manufacturing or

service shops. Since Johnson’s seminal work concerning the minimization of makespan (Johnson, 1954),

flowshop scheduling has been one of the most extensively studied topics in the scheduling literature (Reisman,

Kumar, & Motwani, 1997). No-wait constraints arise from such situations as steel melting and molding where

interruptions between operations on successive machines are not allowed. To minimize the makespan, Gilmore

and Gomory (1964) proposed a polynomial time solution algorithm by transforming the scheduling problem

into the traveling salesman problem (TSP) with specific structures. Under the same transformation scheme, the

no-wait scheduling problem to minimize the total completion time is equivalent to the cumulative TSP, which

is known to be strongly NP-hard (Garey & Johnson, 1979; Sahni & Gonzalez, 1976). The cumulative TSP

seeks to find a Hamiltonian cycle such that the sum of distances from the source to all distinct cities is

minimized. This problem also appears in different forms in different industrial applications (Busch, 1991;

Simchi-Levi & Berman, 1991; Tsitsiklis, 1992). Fischetti, Laporte, and Martello (1993) formulated an integer

programming model and developed lower bounds for the development of branch-and-bound algorithms. Their

exact algorithm can solve problems with 35 jobs. They also proposed an approximate method based upon the 3-

Opt heuristic (Lin, 1965). van Eijl (1995) proposed a mixed integer programming model and performed

computational experiments for the cumulative TSP with time windows. For the problems in the form of

flowshops, Rajendran and Chaudhuri (1990) proposed and tested some heuristic procedures for the

manufacturing systems that contain two or more stages of machines. Aldowaisan and Allahverdi (1998) and

Aldowaisan (2001) study a new variant where setup times separated from machine operations are considered.

Setup times are required for such applications as tool-changeover for different product types. They proposed

dominance rules and several heuristic procedures, based upon some preference rules, to deliver approximate

schedules. In this study, we develop two ACO algorithms and compare the solution qualities with that produced

by the heuristic procedures of Aldowaisan and Allahverdi, Aldowaisan (2001) and Fischetti et al. (1993). For a

comprehensive survey on flowshop scheduling problems with no-wait or blocking constraints and their

applications, the reader is referred to Hall and Sriskandarajah (1996). Scheduling problems involving setup

cost/time have been receiving considerable attention since the past decade. The papers Allahverdi et al. (1999),

Cheng, Gupta, and Wang (2000), and Potts and Kovalyov (2000) are the most recent reviews in this area.
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The rest of this paper is organized as follows. In Section 2, we give a formal description of the

scheduling problem and a graph-based representation to facilitate the development of ACO systems.

Fundamental concepts of ACO systems will be given in Section 3. The features that we adopt and

develop to be incorporated into the ACO will also be presented. Section 4 is dedicated to the design,

implementation and results of our computational experiments. We implement the proposed ant

algorithms and previous heuristic procedures and compare the quality of the produced solutions.

Concluding remarks and discussions are given in Section 5.

2. Problem formulation and graph-based representation

In this section, we first describe the problem definition and introduce the notations that will be used

throughout this paper. Then, a graph-based model for the scheduling will be formulated. The

mathematical equivalence between the scheduling problem and the graph model will be illustrated

through a numerical example.

In the problem of concern, there is a set of jobs NZ{1,2,3,.,n} available from time zero onwards for

processing in a two-machine no-wait flow-shop. Each job has two operations to perform on the two

machines with a setup time required before each operation starts. The processing time of job i on

machine k, 1%i%n, kZ1 or 2, is denoted by pik, and the setup time is both job- and machine-dependent

and is denoted by sik, 1%i%n, kZ1 or 2. If the setup of a job on the second machine is completed, then

its second operation must be started on the second machine immediately when the first operation is

finished on the first machine. The setup for the second operation is anticipatory, i.e. it can be started no

matter whether the first operation is finished or not. The completion time, Ci, of job i is the time when

both operations of the job are finished. The objective function we study in this paper is to find a schedule

(or permutation) of the jobs such that the total completion time, i.e. the sum of completion times of all

jobs, is minimized. For the given job set, Z(S) denotes the total completion time of schedule S. To

illustrate the problem definition, we consider the three jobs given in Table 1 and two example schedules

S1Z123 and S2Z213. Gantt charts for the two schedules are shown in Fig. 1. As schedule S2 has a better

utilization of both machines, it attains a better total completion time.

Following the standard three-field notation adopted by Graham, Lawler, Lenstra, and Rinnooy Kan

(1979), we use F2/nwt, setup/SCi to represent the scheduling problem. The first field specifies our

machine environment, a two-machine flowshop. The second field indicates the no-wait constraints and

setup requirement. The last field represents the objective function to be optimized.

The problem of makespan minimization with no-wait constraints can be formulated as the well-

known TSP. Although, in general, the TSP is strongly NP-hard, the graph derived from an input instance

of F2/nwt/Cmax exhibits special structures that lead to the existence of polynomial-time solution

algorithms. With the attempt to minimize the total completion time, the graph-based model is also viable
Table 1

A set of three jobs

Job 1 2 3

pi1 5 3 2

pi2 4 4 2

si1 2 1 3

si2 3 3 1



Fig. 1. Two sample schedules under no-wait constraints.
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except that the problem turns out to be so-called cumulative TSP, which is equivalent to the strongly NP-

hard problem of finding a cumulative Hamiltonian path (Sahni & Gonzalez, 1976). With setup

considerations on both machines as a generalization of the original scheduling problem, we can reshape

the transformation as follows. For the given set of n jobs, we construct a weighted directed graph G(V, E)

with nC1 nodes, VZ{0,1,2,.,n} and EZV!V. In graph G, node i in VK{0} corresponds to job i in N.

A weighting function w: E/RC on the edges is defined as:

For 1% i%n;wð0; iÞ Z maxfsi1 Cpi1; si2gCpi2; (1)

For 1% i; j%n;wði; jÞ Z
ðsj1 Cpj1 Kpi2ÞCpj2; if sj1 Cpj1Rpi2 Csj2;

sj2 Cpj2; otherwise;

(
(2)

For 1% i%n;wði; 0Þ ZN; (3)

For 0% i%n;wði; iÞ ZN; (4)

In the above formulation, Eq. (1) stands for the completion time of the job scheduled first. Eq. (2)

defines the offset of completion times between job i and job j given that job j is the immediate successor

of job i. Eq. (3) prevents any traverse into node 0, while Eq. (4) avoids self-loops recurred on nodes.

With the weighted graph, the problem seeks a tour, starting from node 0, that traverses each node once

and exactly once so that the cumulative total weight is minimum. With the above set of three jobs, we

have the corresponding weighted graph with four nodes as shown in Fig. 2.

In the weighted graph, tour 0-1-2-3 has an accumulated weightZ11C(11C7)C(11C7C3)Z50,

while tour 0-2-1-3 has an accumulated weightZ8C(8C7)C(8C7C3)Z41. The results correspond to

the total completion times that we have derived for schedules S1Z123 and S2Z213.
3. Ant colony system

In this section, we first briefly review the basic principles of the ACO. The specific features of the

ACO we develop for solving the F2/nwt, setup/SCi problem will follow.



Fig. 2. Graphical representation for F2/nwt, setup/Cmax.
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3.1. Basics of ACO

The ACO was first proposed by Colorni et al. (1991) as a meta-heuristic scheme for finding near-

optimal solutions. It has been successfully used to solve many complex problems, such as TSPs (Colorni,

Dorigo, Maffioli, Maniezzo, Righini, & Trubian, 1996; Dorigo, Maniezzo, & Colorni, 1996; Dorigo &

Gambardella, 1997; Stutzle & Dorigo, 1999), quadratic assignment problems (Gambardella, Taillard, &

Dorigo, 1999), vehicle routing problems (Bullnheimer, 1999; Bullnheimer, Hartl, & Strauss, 2001), and

production scheduling problem (Colorni, Dorigo, Maniezzo, & Trubian, 1994; Shyu, Yin, Lin, &

Haouari, 2003; Shyu, Yin & Lin, 2004), just to name a few.

The ACO simulates the behaviors of real ants moving on a weighted connected graph and is

able to solve many complex combinatorial optimization problems. The basic algorithm of the ACO

introduced by Dorigo et al. (1999) and Dorigo et al. (1996) is outlined as the following:
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3.2. Specific features of the ACO for F2/nwt, setup/SCi
3.2.1. Initialization

The initialization step of the ACO includes two parts: the problem’s graph representation and the

initial pheromone setting. First, as described in the previous section, the underlying problem is

represented by a weighted directed graph G(V, E), each edge (i, j) has an associated weight w(i, j). Thus

the problem’s objective is reduced to that of the cumulative TSP. Second, unlike the strategy used by

Dorigo et al. (1999), where every edge is given a constant quantity of initial pheromone, our proposed

method initializes the pheromone on edges from the results obtained by a greedy heuristic algorithm.

The greedy heuristic positions one ant on the first node, then the ant moves to the next unvisited node

such that the connecting edge has the minimal weight. The process is repeated until every node is visited.

To obtain a better initialization of pheromone intensity, the greedy heuristic is applied n times by letting

every node be the starting node. In the world of real ants, shorter paths will retain more pheromone;

analogously, in the ACO, the paths corresponding to better solutions should receive more pheromone

and become more attractive. Let Wk be the cumulated weight of the complete tour fulfilled by ant k,

which has selected node k as its starting node. The edge (i, j) is initialized by a quantity of pheromone,

tij, defined by

tij Z
Xn

kZ1

Dtk
ij; (5)

where

Dtk
ij Z

Q

Wk

; if edge ði; jÞ belongs to the tour performed by ant k;

0; otherwise;

8<
: (6)

and Q is a given constant. The proposed pheromone initialization scheme can provide a certain degree of

guidance from scratch and thus will speed up the convergence of the running sessions of the ACO.
3.2.2. Node transition rule

During the running session, the ants moving on the graph travel from node to node through the edges.

Because no node can be visited twice, we put the nodes that are already visited in a tabu list and mark

them as inaccessible to prohibit the ants from visiting any node more than once. For the k-th ant on node

i, the selection of next node j to follow is probabilistically determined according to the node transition

probability,

fk
ij Z

ðtijÞ
aðhijÞ

bP
h;tabuk

ðtihÞ
aðhihÞ

b
; if j;tabuk;

0; otherwise;

8<
: (7)

where tij is the current pheromone intensity on edge (i, j), hij is the value of visibility, defined by

1/w(i, j), on edge (i, j), a and b are parameters controlling the relative importance of global and local

preferences for edge (i, j), and tabuk indicates the current set of nodes inaccessible from ant k. The

pheromone is a sort of long-term memory that records previous experiences of the ants about the global
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preference for edge (i, j) according to the quality of the solutions found. On the other hand, the visibility

is a sort of short-term memory that reflects the local preference for edge (i, j). The visibility is simply

determined in a greedy fashion taking into account the local information about the weight w(i, j) on edge

(i, j) only. Therefore, the probabilistic node transition rule is a trade-off between the degree of

intensification and diversification of the solution searching process in the solution space.

In this paper, we adopt a two-level probabilistic strategy developed by Dorigo et al. (1999) for the

ACO to determine the next node to transit to. In this strategy, the algorithm first draws a random number

from the interval [0, 1]. Depending on a threshold parameter l, the algorithm triggers either exploitation

or biased exploration strategy. In exploitation (where the random number generated is smaller than or

equal to l), ant k will select from the accessible neighbors the node with the largest value of fk
ij: In biased

exploration (where the random number generated is greater than l), the probability of selecting node j

out of the accessible neighborhood of node i is given in Eq. (7). Therefore, another random number is

generated from the interval [0, 1] to determine, in roulette wheels, which accessible node to visit next.
3.2.3. Pheromone updating rule

Once all of the ants have completed their tours (which is called a cycle), the intensity of pheromone on

each edge is updated by the pheromone updating rule,

tij Z ð1 KrÞtij C
Xn

kZ1

Dtk
ij; (8)

where r is the evaporation rate of previous pheromone intensity and is chosen between 0 and 1, n is the

number of distributed ants and also the number of jobs, and Dtij is the pheromone currently laid by ant k

and is calculated by Eq. (6). In Dorigo and Gambardella (1997), a local pheromone updating policy is

deployed. That is, an ant leaves reinforcement pheromone immediately when it travels through an edge.

It is a natural implication of the real world. From the experiences attained from our preliminary

experiments, incorporating the local update rule however did not provide significant improvements.

Therefore, we use global updating rules only in our setting.
3.2.4. Hybridized with a local optimizer

Since the quality of the solutions delivered by local heuristics heavily depends on the initialization

setting, there is a trend to embed local heuristics within meta-heuristics so that the meta-heuristics could

provide good initializations for the local heuristics to start with (Dorigo et al., 1996). In our

development, the best tour attained at the end of each cycle will be further improved by deploying a local

optimizer. The local optimizer tentatively swaps each pair of nodes on the best tour and then picks up the

node-pair that will be the most beneficial, i.e. will result in the best improvement. The greedy

optimization process continues until no further improvement is attainable. The pheromone on the edges

of the newly obtained best tour is therefore further reinforced by a quantity of Q/Wbest, where Wbest is the

accumulated weight of the best tour. Then, the execution of another new cycle starts over.
3.2.5. Stopping criterion

The stopping criterion of the ACO could be a maximum number of iterative cycles, specified CPU

time limit, or maximum number of cycles between two improvements of the global best solution. In this

paper, we use a given number of iterative cycles as the stopping criterion. Although, the convergence



S.J. Shyu et al. / Computers & Industrial Engineering 47 (2004) 181–193188
concept is commonly adopted in meta-heuristics, such as in simulated annealing, to determine if the

iteration process should stop or not, we found it does not necessarily boost the performance in our ACO

implementation. Therefore, in our experiment setting, the algorithm will terminate when a given number

of cycles have been executed.
4. Computational experiments

In this section, we describe the computational experiments we used in order to evaluate the

effectiveness of the application of the ACO to no-wait flowshop scheduling problems. Aldowaisan and

Allahverdi (1998) and Aldowaisan (2001) developed several heuristic algorithms for deriving

approximate solutions in a reasonable time. The approach exerted in these algorithms is first

determining job sequences based upon different preference rules and then applying dominance

properties to improve the schedules. We implemented all of the algorithms and for convenience take the

best solution as the output. We call the aggregate version as Algorithm AA. Our ant algorithm is denoted

as Algorithm ACO. And, Algorithm ACO_Loc stands for the variant with a local optimizer. To consider

the problem from the aspect of cumulative TSP, we also implemented the heuristic proposed by Fischetti

et al. (1993). This heuristic is denoted by Algorithm 3-OPT to reflects its basic 3-OPT operation.

The platform of our experiments is a personal computer with a Pentium-III 1.6 Hz CPU and 256 MB

RAM. The programs are coded in Java. Job processing times, pij’s, were randomly selected from the

interval [0, 100]. To contrast potential impacts that setup times may have on the effectiveness of the

algorithms, we drew the values of setup time, s, randomly from different intervals [0, 10], [0, 50] and

[0, 100]. The experiments consist of two parts. In part one, Algorithms AA, ACO, ACO_Loc, 3-OPT and a

simple branch-and-bound algorithm were implemented. The problem size n is set as 6, 8, 10 and 12. For

each combination of n and s, ten input instances were generated. The numerical results are averaged

through each ten instances. In the ant algorithms, we set the number of ants as 6, number of iterations as

200, evaporation rate r as 0.1, exploitation/biased-selection parameter l as 0.1, parameters a and b for

transition rules as 2 and 1, respectively.

The numerical results are summarized and tabulated in Table 2. The column BaB_Time contains

the average time required for the branch-and-bound algorithm to produce optimal solutions; Ini_sol

indicates the computational results about the simple heuristic that produces initial solutions for the

ant algorithms to initialize pheromone intensity. We keep track of the average objective value and

average elapsed running time delivered by each method. The average ratios are calculated by (ZHK
Z*)/Z*!100%, where ZH is the total completion time given by method H, and Z* is the optimal

value given by the branch-and-bound algorithm. The columns entitled ‘#Opt’ record the number of

optimal solutions encountered by the algorithms through the ten input instances. From the results,

we can find that the heuristic based upon 3-OPT for cumulative the TSP demonstrates better

performances for these small-size instances. The two ant algorithms consistently outperform

Algorithm AA. However, the numbers of optimal solutions that all the methods have encountered

decrease as the problem size grows.

The next issue of interest is the scalability of ant algorithms, i.e. to determine if the ant colony

algorithms are capable of producing quality solutions in a reasonable time for large-scale instances. In

the experimental setting, the problem sizes are 50, 100, 150, 200 and 250. As the execution of the

branch-and-bound algorithm is quite time-consuming for large-scale problems, we deploy Algorithms



Table 2

Experimental results for small scale problems

N s BaB_-

Time

Opt_-

Sol

Initial ACO ACO_Loc 3-OPT AA

Sol-

ution

Error

(%)

Sol-

ution

Error

(%)

#Opt Sol-

ution

Error

(%)

#Opt Sol-

ution

Error

(%)

#Opt Sol-

ution

Error

(%)

#Opt

8 10 0.012 2171.3 4580.2 110.94 2251.3 3.68 2 2193.8 1.04 3 2187.1 0.73 6 2345.9 8.04 1

50 0.016 3122.9 6522.6 108.86 3182.9 1.92 1 3141.3 0.59 5 3129.8 0.22 7 3241.6 3.80 1

100 0.015 3968.5 8254.2 107.99 4082.4 2.87 2 3976.2 0.19 6 3976.0 0.19 7 4089.1 3.04 0

10 10 0.868 3226.0 6759.4 109.53 3330.5 3.24 0 3245.9 0.62 5 3228.4 0.07 4 3388.3 5.03 0

50 1.091 4006.3 8298.6 107.14 4120.2 2.84 0 4050.2 1.10 3 4014.1 0.19 7 4239.5 5.82 0

100 1.551 5710.9 12,042.0 110.86 6005.4 5.16 0 5759.8 0.86 3 5729.9 0.33 4 6020.4 5.42 0

12 10 106.031 4687.7 9805.2 109.17 4878.2 4.06 0 4719.4 0.68 0 4706.9 0.41 3 4903.6 4.61 0

50 131.058 5884.3 12,445.8 111.51 6162.7 4.73 0 5927.5 0.73 3 5916.7 0.55 3 6154.9 4.60 0

100 147.858 8251.6 17,322.4 109.93 8623.3 4.50 0 8297.6 0.56 2 8290.4 0.47 2 8872.7 7.53 0
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Table 3

Numerical results for large scale problems

n s ACO_Loc ACO 3-OPT AA

Solution Time Solution Time Deviation

(%)

Solution Deviation

(%)

Solution Deviation

(%)

50 10 63,976.5 0.748 68,324.1 0.454 6.80 63,663.5 K0.49 72,138.3 12.76

50 87,384.2 0.693 91,773.5 0.44 5.02 87,280.4 K0.12 96,264.4 10.16

100 122,130.1 0.690 127,506.5 0.569 4.40 121,510.4 K0.51 134,833.8 10.40

100 10 240,672.1 6.620 258,508.2 1.982 7.41 249,430.8 3.64 281,698.9 17.05

50 346,841.5 5.826 364,489.9 2.220 5.09 354,968.7 2.34 388,539.7 12.02

100 479,551.1 6.069 499,564.1 1.939 4.17 489,288.8 2.03 530,893.8 10.71

150 10 542,957.9 31.246 583,537.2 5.408 7.47 569,500.2 4.89 632,878.0 16.56

50 773,577.8 28.461 814,150.0 4.719 5.24 799,684.7 3.37 877,652.5 13.45

100 1,074,551.2 27.228 1,114,050.5 4.310 3.68 1,097,094.7 2.10 1,197,940.8 11.48

200 10 95,9106.1 81.878 1,046,035.3 11.216 9.06 1,021,875.5 6.54 1,136,283.2 18.47

50 1,396,873.0 80.055 1,473,009.7 10.415 5.45 1,449,308.5 3.75 1,566,054.0 12.11

100 2,402,063.5 88.968 2,460,088.6 11.987 2.42 2,439,362.4 1.55 2,674,909.3 11.36

250 10 1,483,044.7 204.685 1,579,907.4 15.672 6.53 1,563,153.1 5.40 1,775,079.8 19.69

50 2,218,980.6 244.672 2,354,657.7 12.237 6.11 2,317,802.0 4.45 2,546,022.9 14.74

100 3,015,346.1 257.931 3,149,833.4 12.908 4.46 3,104,329.1 2.95 3,377,454.4 12.01
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AA, 3-OPT, ACO, and ACO_Loc only in the second part. Ten sets of jobs were also generated for each

combination of n and s. Preliminary experiments showed that it is time-consuming for Algorithm 3-OPT

to reach a local optimum. It is mainly due to a neighborhood of O(n3). Therefore, we used the time

elapsed by Algorithm ACO_Loc as a limit of execution time for 3-OPT. For comparisons of solution

values, the output produced by Algorithm ACO_Loc was deployed as the basic metrics. Therefore, we

kept track of deviations of results of the other three algorithms. The numerical results shown in Table 3

include the objective values and execution times, in seconds, of the algorithms. The execution of

Algorithm AA is relatively fast, so its elapsed time is not shown in the table. From the numerical results,

we readily find that Algorithm 3-OPT performs well when the number of jobs is 50. Its performance is

however rather diminished by as problem size becomes larger. As for ant algorithms, we see that

Algorithm ACO_Loc consistently delivers quality solutions more than Algorithm AA. Of course,

Algorithm ACO_Loc takes more time in composing solutions. If we resort to Algorithm ACO without

incorporating local optimizer, the ant colony system still provides better solutions than the heuristics

developed by Aldowaisan and Allahverdi (1998) and Aldowaisan (2001). Different from simple rules of

thumb, Algorithms ACO and ACO_Loc are both meta-heuristics and thus take a relatively longer time

converging to a steady state to report a solution. It is reasonable for decision makers to spend a few

seconds or minutes using Algorithms ACO and ACO_Loc to derive quality solutions.
5. Concluding remarks

In this paper, we have considered the no-wait two-machine flowshop problem of optimizing the total

completion time, which is known to be strongly NP-hard. To adapt the ACO for solving the scheduling

problem, we have considered a transformation of the original problem into a graph-based model. We

have developed two versions of the ACO system, i.e. either with or without local optimizers when a

complete tour in the graph is fulfilled. Computational experiments have been designed and performed to

demonstrate the potential applicability of the ACO system to the scheduling problem. Numerical results

have shown that the ACO algorithms outperform previous algorithms. In the mean time, the outcome has

also revealed that the proposed ACO algorithms are effective and robust in dealing with the scheduling

under study.

Although the applications to dealing with complex combinatorial problems so far have demonstrated

the effectiveness and robustness of the ACO, there is still considerable room for further development.

For example, incorporating different styles of convergence, pheromone updating rules and colony

relationship are worthy of further research. Another direction of potential interest may be in the study of

non-graph-based models.
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