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SUMMARY 

We use procedural parameters as a means to cut off unwanted branches in a search tree. The technique 
may be used to effect non-blind backtracking. A recursive algorithm for generating all strings of n 
pairs of balanced parentheses is chosen as an illustrative example, since it cannot be formulated by 
conventional recursive backtracking. 
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INTRODUCTION 
Procedural parameters in the imperative paradigm are hardly exploited in computing 
literature. Among the rare examples, used procedural parameters to 
represent continuations, and van Eijk3 employed procedural parameters in generating 
all paths from the root of a binary tree to each of its leaves. 

To fertilize the field of procedural parameters, this note presents a use of pro- 
cedural parameters to cut away unwanted branches in a search tree. The technique 
is based on that of van Eijk, and may be illustrated by a couple of examples. 

GENERATING BALANCED PARENTHESES 
Consider the problem of generating all strings of n pairs of balanced parentheses 
described by the following context-free grammar: 

s+ (S)S I f 
This problem has a natural recursive solution based on the grammar: 

For each i, 0 I i 5 n - 1, n > 0, generate all strings of the form 
'(' + si + ')' + 
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subject to so = E, where sk denotes a string of k pairs of balanced parenth- 
eses. 

A straightforward formulation of this algorithm, as one would usually give in the 
functional paradigm, is to generate a list of all sis and a list of all S,-~-~S in the first 
place and then concatenate all possible pairs of elements of these two lists, with 
each element of the first list being surrounded by one pair of parentheses. Clearly, 
this formulation is time- and space-consuming, since there are 

sks. An alternative is to use backtracking. This is easily done in a logic language 
such as Prolog with built-in backtracking and non-determinism mechanisms. But 
doing so in the imperative and functional paradigms turns out to be a little harder. 

Er4 claimed that this algorithm cannot be formulated by conventional recursive 
backtracking. This is true only for ‘conventional’ recursive backtracking. By 
employing a technique known as continuation-passing style in the functional para- 
digm, we come up with a variation of conventional recursive backtracking, called 
continuation-passing backtracking, for formulating this algorithm, 

In passing, the first part of this paper is primarily concerned with implementing 
the aforesaid algorithm efficiently in the imperative paradigm using procedural 
parameters and makes no attempt to solve the problem of generating all balanced 
parentheses of n pairs efficiently. For efficient algorithms for solving this problem, 
consult Reference 4 or adopt well-established tree-generating algorithms, since there 
is a one-to-one correspondence between the set of balanced parentheses of n pairs 
and the set of binary trees of n nodes. Incidentally, the formulation can be easily 
rephrased in any functional language. 

CONTINUATION-PASSING BACKTRACKING 
In conventional recursive backtracking,s8 it is assumed that each time the recursion 
reaches its end, a leaf of the search tree is encountered. But the aforementioned 
algorithm does not meet this condition-each time the recursion directed by the 
first non-terminal symbol S reaches its end, the computations demanded by the 
second non-terminal symbol S are still pending and must be activated to extend the 
path being searched to a leaf. 

Thus, conventional recursive backtracking cannot be directly applied to formulate 
this algorithm. It could, however, be slightly modified to cope with the situation 
just described by adding an extra parameter to record the information required to 
continue the pending computations. The recursive nature of the algorithm suggests 
immediately that the information be held in a stack. Initially, the stack is empty, 
because there is no pending computation at the outset. As the recursion winds up, 
the stack grows up to reflect the pending computations accumulated so far. When 
the recursion reaches its end, the stack is checked for emptiness. If it is not empty, 
the information recorded in the top of the stack is retrieved and the associated 
computation is activated. This causes the recursion to wind up again, and the above 
process repeats. Eventually, the stack will become empty, and in that case a string 
of n pairs of balanced parentheses is generated. The fact that the stack will eventually 
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become empty can be easily seen by observing that the number of pairs of balanced 
parentheses remaining to be generated decreases continuously as the recursion winds 
UP. 

Figure 1 shows the procedure S, which should be initially called with 

S(n, 1,con) 

where con is an empty stack and n is the desired number of pairs. Observe that the 
size of the global character array a is 2n; and the maximum size of the stack is n, 
because there is one stack element for each unmatched ‘(’ in a[l..p-11 and at any 
time there are at most n such ‘(’s. Observe also that the parameter con is call-by- 
value, so that the changes to it within the procedure body have no effect on the 
argument. 

The pending computations as described above are known as continuations in the 
theory of denotational semantics’ and the functional or applicative paradigm as 
exemplified by Scheme. lo In these areas, continuations are represented as functions, 
but in this context they may more naturally be represented as procedures. The 
essential idea is simple: the information required to continue the pending compu- 
tations already exists in the run-time stack and may be gathered by appropriate 
procedures. The detailed formulation is given in Figure 2. 

The procedure S of Figure 2 should be initially called with 

S(n,l ,con) 

where the initial continuation procedure con is as given. It can be verified that this 
procedure version is equivalent to the stack version of Figure 1 by showing that the 
stack parameter con effectively represents the procedural parameter con. l 1  Less 
formally, the equivalence may be justified in terms of stack operations. First of all, 

{Write every string of the form 
bottom aCl..p-II + s, + Ci=top C ’ ) ’  + ~ ~ ~ ~ [ i j 1  

where a is assumed to be a global character array) 
procedure S(n:integer;p:integer;con:stack); 

begin 
var i.m:integer; 

if n = 0 then 
if emptystack(con) then begin 

end else begin 

end 
else begin 
a[pl := ’(’; 
for i := 0 to n-1 do begin 

end 

for i := 1 to p-1 do write(a[i]); writeln 

a[p] := ’1’; pop(n,con); S(n,p+l,con) 

push(n-i-1,con); S(i,p+l,con); pop(m.con) 

end 
end ; 

Figure I .  Continuations as stacks 
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{Write every string of the form a[l..p-11 + Sn + x, assuming 
that con(q) writes every string of the form a[l..q-lI + X,  

where a l l .  .q-ll = a l l .  .p-l] + Sn} 

procedure S(n: integer;p: integer;procedure con(q: integer)) ; 
var  i:integer; 
{Write every string of the form a[l..r-l] + ’1’ + Sn-i-1 + X.  

assuming that a[l..q-11 = a[i..r-ll + ’1’ + sn-i-i .  
N.B. I- a[l..r-l] 4 

a[i..p-il ( S i  ) sn-i-i x 

+ a[i..q-il + 1 
procedure conO(r:integer); 
begin a[r] := ’ ) I ;  S(n-i-l,r+l,con) end; 

if n = 0 then con(p) 
else begin a[p] := I ( ’ ;  

begin 

for i := 0 to n-1 do S(i,p+l,conO) 
end 

end ; 

{Write a[i. .p-11 + c} 
procedure con(p : integer) ; 

begin for i := 1 to p-1 do write(aCi1); writeln end; 
var i:integer; 

Figure 2. Continuations as procedures 

observe that the procedure conO carries the necessary information for the pending 
computations in its non-local references to n, i and con. Passing conO around in the 
call S(i,p+l,conO) corresponds to a push, and returning from the call corresponds to 
a pop. The procedural parameter con is bound to either the initial continuation or 
an instance of con0. The call con(p) automatically distinguishes these two cases, and 
so the test for stack emptiness is not needed. If con is bound to an instance of con0, 
the references to n, i and con in con0 correspond to a pop. 

The procedure version has several advantages over the stack version. For one 
thing, there is no need to manipulate the stack explicitly; for another thing, it is 
more efficient in both time and space, because of the avoidance of duplicating 
information. Table I compares these two versions running on an IBM RS/6000. 
Both sequential-array and linked-list representations for stacks are considered. To 
speed up the stack version, the operations on stacks are coded in line and the 
operation pop(m,con) is simplified to adjusting the stack top. Also, the entire loop 

Table I. Performance summary 

n Procedure Stack 
Array List 

12 
13 
14 

4.75 8-70 8-23 
17.17 32.79 3047 
62.71 125.03 109.57 
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for writing the array is removed. In each case, the time in seconds is the average 
of 50 runs, and the standard deviation is less than 3 per cent. 

The use of procedural parameters is controversial, due partly to expensive pro- 
cedure calls and partly to obscure programs that may result. Used sparingly, however, 
it can improve the efficiency of programs without compromising their clarity. 

TRAVERSING SEARCH PATHS 
In terms of search trees, the procedural parameter con in effect records a chain of 
nodes of the path being searched. As the search progresses, this chain either extends 
when con is passed con0, shortens when con is invoked, or vanishes finally when a 
leaf is reached. In a like manner, one may arrange a procedural parameter for 
recording a chain that extends successively as the search progresses. By means of 
such a procedural parameter, a chain of nodes of the path being searched will be 
available by the time a leaf is reached. This chain can then be traversed, performing 
whatever operations are needed on each node of the chain. The formulation of 
Figure 3 illustrates this technique, which is based on Reference 3. 

The procedure S of Figure 3 should be initially called with 

S(n,path,con) 

{Write every string of the form x + + y, assuming that 
path writes x and con(path) writes every string of the form z + y.  
where z = x + sn is written by con’s parameter path} 
procedure S(n: integer;procedure path;procedure con(procedure path)) ; 
var i:integer; 
{Write x + ’0) 
procedure pathO; begin path; write(’1’) end; 
{Write every string of the form w + ’1’ + Sn-i-1 + y, assuming 
that path writes.w and z = w + ’1’ + Sn-i-1. 

N . B .  k w 4 
x ( S i  1 sn-i-1 y 
l - - - z +  } 

procedure conO(procedure path) ; 
{Write w + ’)I} 
procedure pathl; begin path; write(’)’) end; 

begin 
begin S(n-i-l,pathl,con) end; 

if n = 0 then con(path1 
else for i := 0 to n-1 do S(i.pathO,conO) 

end ; 

{Write c} 
procedure path; begin end; 

{Write z + c ,  assuming that path writes z }  
procedure con(procedure path); begin path; writeln end; 

Figure 3. Traversing search p a t h  



382 W.-P. HWANG AND C.-L. WANG 

where path and con are as given. Observe that the chain recorded in the procedural 
parameter path extends each time path is passed path0 or pathl. The call con(path1 
ensures that the chain currently recorded in path will not be broken. On encountering 
a leaf, the chain recorded in the procedure path passed to the initial continuation 
is traversed from the root to the leaf while outputting a '(' or ')' accordingly on 
each node of the chain. 

It is interesting to note that within this formulation there is no need to have a 
character array as in the earlier ones. This is not surprising because the character 
array behaves just like a stack. The theme analogous to the use of continuation 
procedures is: instead of holding a string of parentheses in a separate stack, we 
may hold it in the run-time stack by appropriate procedures. The procedural para- 
meter path essentially does this. This may be seen by imagining the characters '(' 
and ')' as values of local variables of S and con0, respectively. 

It is also possible, though unnecessary, to use a character array within this 
formulation. We leave it to interested readers. 

CUTTING UNWANTED BRANCHES 
We now come to the main result of this paper: by modifying the data contained in 
the nodes of the chain recorded in a procedural parameter, we may even alter the 
search tree. To give a case in point, suppose that instead of generating all strings 
of n pairs of balanced parentheses at once, it is desired to generate the next string, 
if any, only on request. 

There are a number of ways of doing so. The most efficient way would be to 
have a goto out of the initial continuation procedure. A more structured way requires 
a test on a global flag in the procedure S to decide whether the computation should 
go further, but this leads to cluttered code. An alternative structured way is to raise 
an exception in the initial continuation procedure, which is then handled in the 
place where S was initially invoked. But this is not possible in Pascal for lack of 
exception handling mechanisms. 

Using procedural parameters to alter the search tree allows one to attain advan- 
tages similar to those of a typical exception handling mechanism. This is shown in 
Figure 4. Now, the procedure S should be initially called with 

S(n.path,cut,con) 

where path, cut and con are as given. Observe that the procedure S has one more 
procedural parameter, the procedure cut, which is responsible for cutting away all 
the unexplored branches along the path that starts at the root and ends in the node 
where S is called. Just like the procedure path, the procedure cut must also be 
passed to the continuation procedure in due time so as to keep the recorded chain 
growing; thus, the continuation procedure now has cut as its parameter. In response 
to the request for abortion, the procedure cut passed to the initial continuation is 
then invoked to prune off all of the remaining branches along the path related to 
the string just generated; hence subsequent answers, if any, will not be produced. 

A few notes are in order. First, the order of the two statements in the procedure 
cut0 is immaterial, whereas that of the two statements in the procedure path0 cannot 
be altered. 
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{cut cuts off all nodes with n > 0 related to x; path writes x} 
procedure S(n:integer;procedure path;procedure cut; 

procedure con(procedure path;procedure cut)); 
var i:integer; 
procedure pathO; begin path; vrite(’(’) end; 
(cut0 cuts off all nodes vith n > 0 related to x + ’( ’ }  
procedure cut0; begin i := n-I; cut end; 
{cut cuts off all nodes pith n > 0 related to u; path vrites v) 
procedure conO(procedure path;procedure cut) ; 

begin S(n-i-l,pathl,cut,con) end; 

if n - 0 then con(path,cut) 
else begin i := 0 ;  

procedure pathl; begin path; vrite(’1’) end; 

begin 

vhile i <= n-1 do begin 

end 
S(i,pathO,cutO,conO); i := i+l 

end 
end ; 

procedure path; begin end; 

procedure cut; begin end; 

{cut cuts off all nodes with n > 0 related to z ;  path writes z )  
procedure con(procedure path;procedure cut) ; 
begin path; vriteln; if no more answers ape d e s i d  then cut end; 

Figure 4. Cutting unwanted branches 

Secondly, to cut off unwanted branches of a node, we may either assign to i a 
value greater than n-2 or assign to n a value less than i+2. Obviously, both should 
be coded with a WHILE, rather than FOR, loop. Although the former would illegally 
jeopardize the FOR loop’s control variable, several popular Pascal compilers either 
fail to detect it (e.g. Sun Pascal 2.0, Vax Pascal 4.1) or do not take it seriously 
(e.g. IBM AIX Pascal 1.1). Perhaps this negligence is because threatening a FOR 
loop’s control variable from outside the loop seldom occurs in practice, but then 
our example suggests that it be taken seriously. 

Lastly, observe that the procedure cut links together those nodes or backtrack 
points that correspond to calls to S with n > 0. It is easily seen that, whichever n- 
pair string is generated, there are in total n backtrack points linked up in the 
corresponding procedure cut, because each call to S with n > 0, being a choice point 
as to how to split the remaining pairs into two parts, must generate one pair of 
parentheses in the first place. 

It is possible to diminish the number of backtrack points by noting that there are 
no more alternatives for a node with i = n- 1.  Thus, it suffices to pass recursively 
the procedure cut, instead of cut0, on condition that i = n-1 . This is shown in Figure 
5(a). It might seem at first glance that the test of the condition in Figure 5(a) is 
redundant, but it is needed to ensure correct cutting. In spite of its strange look, 
this code is better than that of Figure 5(b), since the latter makes too many redundant 
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while i <= n-2 do begin 
S(i.pathO.cutO.con0); i := i+l 

end : 
if i = n-1 then S(i,pathO,cut,conO) 

(a) Without d u n d a n t  tests 

while i <= n-1 do begin 
if i = n-1 then S(i.pathO.cut.con0) 
else S(i,pathO,cutO,conO); 
i := i+l 

end 

(b)  With redundant tests 

Figure 5. Saving backtrack points 

tests of the condition. However it is coded, the number of backtrack points reduced 
is stated below. 

Lemma 1 

At the moment an n-pair string is generated, the number of backtrack points 
linked up in the corresponding procedure cut ranges from 0 to n - 1. Furthermore, 
only the very first and last strings generated reach the upper and lower bounds, 
respectively. 

Proof 
Let d,, be the maximum number of times S is called with n > 0 and not followed 

by the call S(n-l,pathO,cut,conO) in the course of generating an n-pair string. Then, 

d,- l , l  + max (di+ dnpip1)  
OsAssn-2 

subject to do = dl = 0. We show by induction that d,  = n - 1, for all n 2 1. 
Assume for the induction step that dk = k - 1, for all 1 I k < n. Then, 

d,, = 1 + max (di + d,,+,) 
O s i s n - 2  

1 + do + d,-l, 1 + max (di + d,,-i-l) 
15i5n - 2 

= max (n - 1,n - 2) 
= n - 1  

The maximum is reached only when i = 0. The other part may be shown either by 
a similar argument with rnax replaced by min or by observing that only the last 

When seen in the large, the saving of up to n backtrack points is not really worth 
string has no further alternatives. 0 
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while because of the extra effort made to examine the condition i = n - 1 before 
cutting. To see this, observe that the number of times the condition in Figure 5(a) 
is examined for each string generated before cutting is bounded above by n - nb, 
where nb is the number of backtrack points linked up in the corresponding procedure 
cut. This is easily seen by Lemma 1 and the fact that some tests of the condition 
are shared by strings whose search paths collide at the beginning. Furthermore, it 
is bounded below by 1, because the condition must at least be examined when 
generating the last pair of parentheses. It follows that the total number of times 
the condition is examined before cutting is bounded below by k and above by kn, 
where k is the number of strings generated before cutting. 

NON-BLIND BACKTRACKING 
The technique may also be adapted for cutting off the unexplored branches of some, 
instead of all, backtrack points. This allows the expression of non-blind backtracking, 
such as backing up several levels at once when meeting a dead-end condition.'* For 
example, we modify the balanced parentheses problem to allow specifying the 
number of levels, or the level, to back up before generating the next string. 

What is needed is an integer variable, which could be declared globally or as a 
parameter of the procedure cut, to hold the number of levels, or the level, to back 
up. In the former case, the number of levels to back up is decremented by one for 
each node pruned; and when it becomes zero the cutting process stops. Figure 6(a) 
shows the procedure cutO written along these lines. In order for the latter case to 
work, the procedure S needs an extra integer parameter to record the level of a 
backtrack point. The cutting process may then go on until the level of a backtrack 
point equals the level to back up. Figure 6(b) shows the procedure cutO written 
along these lines. In either case, the detailed formulation should be easily obtained, 

(level0 = the number of levels to back up} 
procedure cutO(leve10: integer) ; 
begin 

if level0 > 0 then begin 

end 
i := n-1; cut(level0-1) 

end ; 

(a) Backing up a specified number of levels 

(level0 = the level to back up 

procedure cutO(leve10: integer) ; 
begin 

if level0 <> level then begin 

end 

(b) Backing up to a specified level 

level = the level of a backtrack point) 

i := n-1; cut(level0) 

end ; 

Figure 6. Non-blind backtracking 
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not to mention the fact that in order to record the levels of backtrack points correctly 
the continuation procedure also needs an extra integer parameter. 

It is worth while comparing this technique with other ways of doing the same 
thing. First of all, gotos alone cannot deal with this situation, but gotos plus the 
procedure cut can. To do so, simply modify the procedure cut0 by removing i : = n- 1 
and adding i := i+ l ;  goto label as an alternative branch of the if statement, where 
label is the label of the while statement. Since jumping into branches of a conditional 
statement is disallowed, the if statement of the procedure S must also be rewritten 
in a non-structured way. On the other hand, the variable level0, when declared 
globally, may be tested accordingly to obtain the same effect. But this would clutter 
the code. Finally, exception handling mechanisms are competitive in clarity, except 
that the variable level0 must be global unless exception handlers may have para- 
meters. 

CONCLUSIONS 
Although the code is given in Pascal, the technique is applicable in other imperative 
languages such as Modula-2, and impurely functional languages such as ML and 
Scheme that allow side-effects. However, it is not applicable in C, since functions 
may not be defined within other functions, and Ada, since recursive instantiations 
of generic subprograms are disallowed. 

The technique is applicable to many combinatorial problems in its own right; it 
need not necessarily be used in combination with continuations. 
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