
SOFIWARE-PRACTICE AND EXPERIENCE, VOL. 24(4), 377-386 (APRIL 1994)

Using Procedural Parameters and
Continuations in Combinatorial Searches

WEN-PING HWANG
Department of Computer and Information Science, National Chiao Tung University,

Hsinchu, Taiwan, R. 0. C. (email: wph wang@cis. nctu. edu. tw)

AND

CHING-LIN WANG
Department of Computer and Information Engineering, Tamkang University, Tamsui,

Taipei, Taiwan, R. 0. C. (email: tkutlol @twnmoelO)

SUMMARY

We use procedural parameters as a means to cut off unwanted branches in a search tree. The technique
may be used to effect non-blind backtracking. A recursive algorithm for generating all strings of n
pairs of balanced parentheses is chosen as an illustrative example, since it cannot be formulated by
conventional recursive backtracking.

KEY WORDS Imperative programming Procedural parameters Continuations Pascal

INTRODUCTION
Procedural parameters in the imperative paradigm are hardly exploited in computing
literature. Among the rare examples, used procedural parameters to
represent continuations, and van Eijk3 employed procedural parameters in generating
all paths from the root of a binary tree to each of its leaves.

To fertilize the field of procedural parameters, this note presents a use of pro-
cedural parameters to cut away unwanted branches in a search tree. The technique
is based on that of van Eijk, and may be illustrated by a couple of examples.

GENERATING BALANCED PARENTHESES
Consider the problem of generating all strings of n pairs of balanced parentheses
described by the following context-free grammar:

s+ (S)S I f
This problem has a natural recursive solution based on the grammar:

For each i, 0 I i 5 n - 1, n > 0, generate all strings of the form
'(' + si + ')' +

CCC 0038-0644/94/040377-10
0 1994 by John Wiley & Sons, Ltd.

Received 12 September 1991
Revised 5 November I993

378 W.-P. HWANG AND C.-L. WANG

subject to so = E, where sk denotes a string of k pairs of balanced parenth-
eses.

A straightforward formulation of this algorithm, as one would usually give in the
functional paradigm, is to generate a list of all sis and a list of all S,-~-~S in the first
place and then concatenate all possible pairs of elements of these two lists, with
each element of the first list being surrounded by one pair of parentheses. Clearly,
this formulation is time- and space-consuming, since there are

sks. An alternative is to use backtracking. This is easily done in a logic language
such as Prolog with built-in backtracking and non-determinism mechanisms. But
doing so in the imperative and functional paradigms turns out to be a little harder.

Er4 claimed that this algorithm cannot be formulated by conventional recursive
backtracking. This is true only for ‘conventional’ recursive backtracking. By
employing a technique known as continuation-passing style in the functional para-
digm, we come up with a variation of conventional recursive backtracking, called
continuation-passing backtracking, for formulating this algorithm,

In passing, the first part of this paper is primarily concerned with implementing
the aforesaid algorithm efficiently in the imperative paradigm using procedural
parameters and makes no attempt to solve the problem of generating all balanced
parentheses of n pairs efficiently. For efficient algorithms for solving this problem,
consult Reference 4 or adopt well-established tree-generating algorithms, since there
is a one-to-one correspondence between the set of balanced parentheses of n pairs
and the set of binary trees of n nodes. Incidentally, the formulation can be easily
rephrased in any functional language.

CONTINUATION-PASSING BACKTRACKING
In conventional recursive backtracking,s8 it is assumed that each time the recursion
reaches its end, a leaf of the search tree is encountered. But the aforementioned
algorithm does not meet this condition-each time the recursion directed by the
first non-terminal symbol S reaches its end, the computations demanded by the
second non-terminal symbol S are still pending and must be activated to extend the
path being searched to a leaf.

Thus, conventional recursive backtracking cannot be directly applied to formulate
this algorithm. It could, however, be slightly modified to cope with the situation
just described by adding an extra parameter to record the information required to
continue the pending computations. The recursive nature of the algorithm suggests
immediately that the information be held in a stack. Initially, the stack is empty,
because there is no pending computation at the outset. As the recursion winds up,
the stack grows up to reflect the pending computations accumulated so far. When
the recursion reaches its end, the stack is checked for emptiness. If it is not empty,
the information recorded in the top of the stack is retrieved and the associated
computation is activated. This causes the recursion to wind up again, and the above
process repeats. Eventually, the stack will become empty, and in that case a string
of n pairs of balanced parentheses is generated. The fact that the stack will eventually

COMBINATORIAL SEARCHES 379

become empty can be easily seen by observing that the number of pairs of balanced
parentheses remaining to be generated decreases continuously as the recursion winds
UP.

Figure 1 shows the procedure S, which should be initially called with

S(n, 1,con)

where con is an empty stack and n is the desired number of pairs. Observe that the
size of the global character array a is 2n; and the maximum size of the stack is n,
because there is one stack element for each unmatched ‘(’ in a[l..p-11 and at any
time there are at most n such ‘(’s. Observe also that the parameter con is call-by-
value, so that the changes to it within the procedure body have no effect on the
argument.

The pending computations as described above are known as continuations in the
theory of denotational semantics’ and the functional or applicative paradigm as
exemplified by Scheme. lo In these areas, continuations are represented as functions,
but in this context they may more naturally be represented as procedures. The
essential idea is simple: the information required to continue the pending compu-
tations already exists in the run-time stack and may be gathered by appropriate
procedures. The detailed formulation is given in Figure 2.

The procedure S of Figure 2 should be initially called with

S(n,l ,con)

where the initial continuation procedure con is as given. It can be verified that this
procedure version is equivalent to the stack version of Figure 1 by showing that the
stack parameter con effectively represents the procedural parameter con. l 1 Less
formally, the equivalence may be justified in terms of stack operations. First of all,

{Write every string of the form
bottom aCl..p-II + s, + Ci=top C ’) ’ + ~ ~ ~ ~ [i j 1

where a is assumed to be a global character array)
procedure S(n:integer;p:integer;con:stack);

begin
var i.m:integer;

if n = 0 then
if emptystack(con) then begin

end else begin

end
else begin
a[pl := ’(’;
for i := 0 to n-1 do begin

end

for i := 1 to p-1 do write(a[i]); writeln

a[p] := ’1’; pop(n,con); S(n,p+l,con)

push(n-i-1,con); S(i,p+l,con); pop(m.con)

end
end ;

Figure I . Continuations as stacks

380 W.-P. HWANG AND C.-L. WANG

{Write every string of the form a[l..p-11 + Sn + x, assuming
that con(q) writes every string of the form a[l..q-lI + X,

where a l l . .q-ll = a l l . .p-l] + Sn}

procedure S(n: integer;p: integer;procedure con(q: integer)) ;
var i:integer;
{Write every string of the form a[l..r-l] + ’1’ + Sn-i-1 + X.

assuming that a[l..q-11 = a[i..r-ll + ’1’ + sn-i-i .
N.B. I- a[l..r-l] 4

a[i..p-il (S i) sn-i-i x

+ a[i..q-il + 1
procedure conO(r:integer);
begin a[r] := ’) I ; S(n-i-l,r+l,con) end;

if n = 0 then con(p)
else begin a[p] := I (’ ;

begin

for i := 0 to n-1 do S(i,p+l,conO)
end

end ;

{Write a[i. .p-11 + c}
procedure con(p : integer) ;

begin for i := 1 to p-1 do write(aCi1); writeln end;
var i:integer;

Figure 2. Continuations as procedures

observe that the procedure conO carries the necessary information for the pending
computations in its non-local references to n, i and con. Passing conO around in the
call S(i,p+l,conO) corresponds to a push, and returning from the call corresponds to
a pop. The procedural parameter con is bound to either the initial continuation or
an instance of con0. The call con(p) automatically distinguishes these two cases, and
so the test for stack emptiness is not needed. If con is bound to an instance of con0,
the references to n, i and con in con0 correspond to a pop.

The procedure version has several advantages over the stack version. For one
thing, there is no need to manipulate the stack explicitly; for another thing, it is
more efficient in both time and space, because of the avoidance of duplicating
information. Table I compares these two versions running on an IBM RS/6000.
Both sequential-array and linked-list representations for stacks are considered. To
speed up the stack version, the operations on stacks are coded in line and the
operation pop(m,con) is simplified to adjusting the stack top. Also, the entire loop

Table I. Performance summary

n Procedure Stack
Array List

12
13
14

4.75 8-70 8-23
17.17 32.79 3047
62.71 125.03 109.57

COMBINATORIAL SEARCHES 381
for writing the array is removed. In each case, the time in seconds is the average
of 50 runs, and the standard deviation is less than 3 per cent.

The use of procedural parameters is controversial, due partly to expensive pro-
cedure calls and partly to obscure programs that may result. Used sparingly, however,
it can improve the efficiency of programs without compromising their clarity.

TRAVERSING SEARCH PATHS
In terms of search trees, the procedural parameter con in effect records a chain of
nodes of the path being searched. As the search progresses, this chain either extends
when con is passed con0, shortens when con is invoked, or vanishes finally when a
leaf is reached. In a like manner, one may arrange a procedural parameter for
recording a chain that extends successively as the search progresses. By means of
such a procedural parameter, a chain of nodes of the path being searched will be
available by the time a leaf is reached. This chain can then be traversed, performing
whatever operations are needed on each node of the chain. The formulation of
Figure 3 illustrates this technique, which is based on Reference 3.

The procedure S of Figure 3 should be initially called with

S(n,path,con)

{Write every string of the form x + + y, assuming that
path writes x and con(path) writes every string of the form z + y.
where z = x + sn is written by con’s parameter path}
procedure S(n: integer;procedure path;procedure con(procedure path)) ;
var i:integer;
{Write x + ’0)
procedure pathO; begin path; write(’1’) end;
{Write every string of the form w + ’1’ + Sn-i-1 + y, assuming
that path writes.w and z = w + ’1’ + Sn-i-1.

N . B . k w 4
x (S i 1 sn-i-1 y
l - - - z + }

procedure conO(procedure path) ;
{Write w + ’)I}
procedure pathl; begin path; write(’)’) end;

begin
begin S(n-i-l,pathl,con) end;

if n = 0 then con(path1
else for i := 0 to n-1 do S(i.pathO,conO)

end ;

{Write c}
procedure path; begin end;

{Write z + c , assuming that path writes z }
procedure con(procedure path); begin path; writeln end;

Figure 3. Traversing search p a t h

382 W.-P. HWANG AND C.-L. WANG

where path and con are as given. Observe that the chain recorded in the procedural
parameter path extends each time path is passed path0 or pathl. The call con(path1
ensures that the chain currently recorded in path will not be broken. On encountering
a leaf, the chain recorded in the procedure path passed to the initial continuation
is traversed from the root to the leaf while outputting a '(' or ')' accordingly on
each node of the chain.

It is interesting to note that within this formulation there is no need to have a
character array as in the earlier ones. This is not surprising because the character
array behaves just like a stack. The theme analogous to the use of continuation
procedures is: instead of holding a string of parentheses in a separate stack, we
may hold it in the run-time stack by appropriate procedures. The procedural para-
meter path essentially does this. This may be seen by imagining the characters '('
and ')' as values of local variables of S and con0, respectively.

It is also possible, though unnecessary, to use a character array within this
formulation. We leave it to interested readers.

CUTTING UNWANTED BRANCHES
We now come to the main result of this paper: by modifying the data contained in
the nodes of the chain recorded in a procedural parameter, we may even alter the
search tree. To give a case in point, suppose that instead of generating all strings
of n pairs of balanced parentheses at once, it is desired to generate the next string,
if any, only on request.

There are a number of ways of doing so. The most efficient way would be to
have a goto out of the initial continuation procedure. A more structured way requires
a test on a global flag in the procedure S to decide whether the computation should
go further, but this leads to cluttered code. An alternative structured way is to raise
an exception in the initial continuation procedure, which is then handled in the
place where S was initially invoked. But this is not possible in Pascal for lack of
exception handling mechanisms.

Using procedural parameters to alter the search tree allows one to attain advan-
tages similar to those of a typical exception handling mechanism. This is shown in
Figure 4. Now, the procedure S should be initially called with

S(n.path,cut,con)

where path, cut and con are as given. Observe that the procedure S has one more
procedural parameter, the procedure cut, which is responsible for cutting away all
the unexplored branches along the path that starts at the root and ends in the node
where S is called. Just like the procedure path, the procedure cut must also be
passed to the continuation procedure in due time so as to keep the recorded chain
growing; thus, the continuation procedure now has cut as its parameter. In response
to the request for abortion, the procedure cut passed to the initial continuation is
then invoked to prune off all of the remaining branches along the path related to
the string just generated; hence subsequent answers, if any, will not be produced.

A few notes are in order. First, the order of the two statements in the procedure
cut0 is immaterial, whereas that of the two statements in the procedure path0 cannot
be altered.

COMBINATORIAL SEARCHES 383

{cut cuts off all nodes with n > 0 related to x; path writes x}
procedure S(n:integer;procedure path;procedure cut;

procedure con(procedure path;procedure cut));
var i:integer;
procedure pathO; begin path; vrite(’(’) end;
(cut0 cuts off all nodes vith n > 0 related to x + ’(’ }
procedure cut0; begin i := n-I; cut end;
{cut cuts off all nodes pith n > 0 related to u; path vrites v)
procedure conO(procedure path;procedure cut) ;

begin S(n-i-l,pathl,cut,con) end;

if n - 0 then con(path,cut)
else begin i := 0 ;

procedure pathl; begin path; vrite(’1’) end;

begin

vhile i <= n-1 do begin

end
S(i,pathO,cutO,conO); i := i+l

end
end ;

procedure path; begin end;

procedure cut; begin end;

{cut cuts off all nodes with n > 0 related to z ; path writes z)
procedure con(procedure path;procedure cut) ;
begin path; vriteln; if no more answers ape d e s i d then cut end;

Figure 4. Cutting unwanted branches

Secondly, to cut off unwanted branches of a node, we may either assign to i a
value greater than n-2 or assign to n a value less than i+2. Obviously, both should
be coded with a WHILE, rather than FOR, loop. Although the former would illegally
jeopardize the FOR loop’s control variable, several popular Pascal compilers either
fail to detect it (e.g. Sun Pascal 2.0, Vax Pascal 4.1) or do not take it seriously
(e.g. IBM AIX Pascal 1.1). Perhaps this negligence is because threatening a FOR
loop’s control variable from outside the loop seldom occurs in practice, but then
our example suggests that it be taken seriously.

Lastly, observe that the procedure cut links together those nodes or backtrack
points that correspond to calls to S with n > 0. It is easily seen that, whichever n-
pair string is generated, there are in total n backtrack points linked up in the
corresponding procedure cut, because each call to S with n > 0, being a choice point
as to how to split the remaining pairs into two parts, must generate one pair of
parentheses in the first place.

It is possible to diminish the number of backtrack points by noting that there are
no more alternatives for a node with i = n- 1. Thus, it suffices to pass recursively
the procedure cut, instead of cut0, on condition that i = n-1 . This is shown in Figure
5(a). It might seem at first glance that the test of the condition in Figure 5(a) is
redundant, but it is needed to ensure correct cutting. In spite of its strange look,
this code is better than that of Figure 5(b), since the latter makes too many redundant

384 W.-P. HWANG AND C.-L. WANG

while i <= n-2 do begin
S(i.pathO.cutO.con0); i := i+l

end :
if i = n-1 then S(i,pathO,cut,conO)

(a) Without d u n d a n t tests

while i <= n-1 do begin
if i = n-1 then S(i.pathO.cut.con0)
else S(i,pathO,cutO,conO);
i := i+l

end

(b) With redundant tests

Figure 5. Saving backtrack points

tests of the condition. However it is coded, the number of backtrack points reduced
is stated below.

Lemma 1

At the moment an n-pair string is generated, the number of backtrack points
linked up in the corresponding procedure cut ranges from 0 to n - 1. Furthermore,
only the very first and last strings generated reach the upper and lower bounds,
respectively.

Proof
Let d,, be the maximum number of times S is called with n > 0 and not followed

by the call S(n-l,pathO,cut,conO) in the course of generating an n-pair string. Then,

d,- l , l + max (di+ dnpip1)
OsAssn-2

subject to do = dl = 0. We show by induction that d, = n - 1, for all n 2 1.
Assume for the induction step that dk = k - 1, for all 1 I k < n. Then,

d,, = 1 + max (di + d,,+,)
O s i s n - 2

1 + do + d,-l, 1 + max (di + d,,-i-l)
15i5n - 2

= max (n - 1,n - 2)
= n - 1

The maximum is reached only when i = 0. The other part may be shown either by
a similar argument with rnax replaced by min or by observing that only the last

When seen in the large, the saving of up to n backtrack points is not really worth
string has no further alternatives. 0

COMBINATORIAL SEARCHES 385
while because of the extra effort made to examine the condition i = n - 1 before
cutting. To see this, observe that the number of times the condition in Figure 5(a)
is examined for each string generated before cutting is bounded above by n - nb,
where nb is the number of backtrack points linked up in the corresponding procedure
cut. This is easily seen by Lemma 1 and the fact that some tests of the condition
are shared by strings whose search paths collide at the beginning. Furthermore, it
is bounded below by 1, because the condition must at least be examined when
generating the last pair of parentheses. It follows that the total number of times
the condition is examined before cutting is bounded below by k and above by kn,
where k is the number of strings generated before cutting.

NON-BLIND BACKTRACKING
The technique may also be adapted for cutting off the unexplored branches of some,
instead of all, backtrack points. This allows the expression of non-blind backtracking,
such as backing up several levels at once when meeting a dead-end condition.'* For
example, we modify the balanced parentheses problem to allow specifying the
number of levels, or the level, to back up before generating the next string.

What is needed is an integer variable, which could be declared globally or as a
parameter of the procedure cut, to hold the number of levels, or the level, to back
up. In the former case, the number of levels to back up is decremented by one for
each node pruned; and when it becomes zero the cutting process stops. Figure 6(a)
shows the procedure cutO written along these lines. In order for the latter case to
work, the procedure S needs an extra integer parameter to record the level of a
backtrack point. The cutting process may then go on until the level of a backtrack
point equals the level to back up. Figure 6(b) shows the procedure cutO written
along these lines. In either case, the detailed formulation should be easily obtained,

(level0 = the number of levels to back up}
procedure cutO(leve10: integer) ;
begin

if level0 > 0 then begin

end
i := n-1; cut(level0-1)

end ;

(a) Backing up a specified number of levels

(level0 = the level to back up

procedure cutO(leve10: integer) ;
begin

if level0 <> level then begin

end

(b) Backing up to a specified level

level = the level of a backtrack point)

i := n-1; cut(level0)

end ;

Figure 6. Non-blind backtracking

386 W.-P. HWANG AND C.-L. WANG

not to mention the fact that in order to record the levels of backtrack points correctly
the continuation procedure also needs an extra integer parameter.

It is worth while comparing this technique with other ways of doing the same
thing. First of all, gotos alone cannot deal with this situation, but gotos plus the
procedure cut can. To do so, simply modify the procedure cut0 by removing i : = n- 1
and adding i := i+ l ; goto label as an alternative branch of the if statement, where
label is the label of the while statement. Since jumping into branches of a conditional
statement is disallowed, the if statement of the procedure S must also be rewritten
in a non-structured way. On the other hand, the variable level0, when declared
globally, may be tested accordingly to obtain the same effect. But this would clutter
the code. Finally, exception handling mechanisms are competitive in clarity, except
that the variable level0 must be global unless exception handlers may have para-
meters.

CONCLUSIONS
Although the code is given in Pascal, the technique is applicable in other imperative
languages such as Modula-2, and impurely functional languages such as ML and
Scheme that allow side-effects. However, it is not applicable in C, since functions
may not be defined within other functions, and Ada, since recursive instantiations
of generic subprograms are disallowed.

The technique is applicable to many combinatorial problems in its own right; it
need not necessarily be used in combination with continuations.

ACKNOWLEDGEMENT

We would like to thank the referees for valuable comments on this paper.

REFERENCES
1.
2.

3.

4.

5.

6.

7.

8.
9.

10.

11.
12.

L. Allison, ‘Some applications of continuations’, The Computer Journal, 31, (l), P-11 (1988).
L. Allison, ‘Continuations implement generators and streams’, The Computer Journal, 33, (5),
M 6 5 (1990).
P. van Eijk, ‘A useful application of formal procedure parameters’, SIGPLAN Notices, 21, (9),
77-78 (1986).

% I

M. C. Er, ‘A note on generating well-formed parenthesis strings lexicographically’, The Computer
Journal, 25, (3), 205-207 (1983).
E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, MD,
1978.
G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice-Hall, Englewood Cliffs,
NJ, 1988.
E. Reingold, J. Nievergelt and N. Deo, Cornbinatorial Algorithms: Theory and Practice, Prentice-
Hall, Englewood Cliffs, NJ, 1977.
N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Englewood Cliffs, NJ, 1976.
J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory, MIT Press, Cambridge, MA, 1977.
IEEE Computer Society, IEEE Standard for rhe Scheme Programming Language, IEEE Std 1178-
1990, New York, 1991.
M. Wand, ‘Continuation-based program transformation strategies’, JACM, 27, (l), 164-180 (1980).
J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley ,
Reading, MA, 1984.

