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Performance Analysis of Noncoherent Digital
Delay Locked Loops for Direct Sequence
Spread Spectrum Systems With Doppler

Shift and Quantized Adaptation

Wern-Ho Sheen, Ming-Jou Chang, and Cheng-Shong Wu

Abstract—The noncoherent second-order digital delay locked
loop (DLL) with the presence of Doppler shift is investigated.
The loop performance such as lock-in range, transient response,
mean time-to-lose lock (MTLL), and mean square tracking error
(MSE) are analyzed. The analysis is unique in two respects. First,
MTLL and MSE are evaluated more accurately than by previous
methods. Second, the impact of quantized adaptation on the loop
performance is examined for digital DLL that was neglected pre-
viously. Numerical results show that: 1) the quantized adaptation
may significantly alter the loop behaviors, including the lock-in
range, transient responses, MTLL, and MSE; and 2) the tradi-
tional analysis based on Gaussian approximation may result in a
large error in performance evaluation when quantized adaptation
is taken into account.

Index Terms—Direct sequence spread spectrum, doppler shift,
noncoherent digital delay locked loops (DLLs), quantized adap-
taion.

1. INTRODUCTION

SEUDONOISE (PN) code synchronization is essential

for direct-sequence spread spectrum (DSSS) systems to
work effectively. PN code synchronization is achieved in two
steps—code acquisition followed by code tracking [1], [2].
Code acquisition is a coarse alignment that aligns the received
and local PN codes to a range that is suitable for code tracking.
Code tracking, on the other hand, attempts to maintain fine
synchronism of the two codes at all times. For global posi-
tioning systems (GPS’s) and/or other broadcast applications,
PN code synchronization follows a procedure of combined
tracking/reacquisition/tracking, etc., after an initial acquisition.
Both code acquisition and tracking have been active areas of
research [1]-[18]. In this paper, we are only concerned with the
code tracking part.
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Code tracking is mostly achieved with a delay locked loop
(DLL). Extensive research has been devoted to the design,
analysis, and implementation of DLLs. For example, different
types of multipath resistant DLLs were proposed in [3]-[6]
for the multipath environment, effective DLLs were proposed
for GPS code tracking in [7]-[9], and efficient implementation
was discussed in [10] for different types of DLLs. As to the
performance analysis, the first-order analog DLL was analyzed
thoroughly in [11], [12] for the additive white Gaussian noise
(AWGN) channel. Specifically, in [12], mean square error
(MSE) and mean time-to-lose lock (MTLL) are obtained by
applying the renewal theory approach. This approach was
extended in [13] to include the effects of multipath fading and
multiuser access interference. The second-order analog DLL
was analyzed in [16], where approximate MSE and MTLL
were obtained for high signal-to-noise ratios (SNRs), under the
presence of Doppler shift. On the other hand, digital DLLs were
analyzed in [14]-[17]. In particular, in [14], MSE and MTLL of
the first-order loop were evaluated for a band-limited system,
and in [15] emphasis was on the effect of carrier frequency
uncertainty on the MSE performance. In [17], MSE of the
first- and second-order loops were obtained particularly for
the GPS applications, and finally in [18], MSE is obtained for
a low-complexity DLL with 1-b noncommensurate sampling.
Digital code tracking becomes very popular because of the
evolution toward all digital modem implementation of DSSS
systems.

In this paper, accurate nonlinear analysis for the noncoherent
second-order digital code tracking loops is investigated over
AWGN channels with the presence of Doppler shift. This
modeling of channel finds applications in GPS [17] and other
civilian or military satellite-based DSSS systems, where Doppler
shift is due to the relative movement between the satellite and the
receiver. In the analysis, based on a regenerative Markov chain
modeling of the code tracking process, the lock-inrange, transient
response, MSE, and MTLL are evaluated more accurately than
the traditional analysis. Furthermore, in a digital DLL, the
adaptation of code tracking can only be done in discrete steps,
i.e., quantized adaptation and that will result in significant
changes in the loop performance. In this analysis, the effect
of quantized adaptation is evaluated as well.

The rest of this paper is organized as follows. Section II
describes the noncoherent second-order digital DLL. In Sec-
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Fig. 1. Noncoherent digital DLL.

tion III, an accurate nonlinear analyzes is given to obtain the
lock-in range, transient response, MSE, and MTLL, with em-
phasis on the effects of code Doppler and quantized adaptation.
In Section IV, some numerical results are given and discussed.
Finally, conclusions are given in Section V.

II. NONCOHERENT DLL

A typical digital code tracking system for DS spread spec-
trum signals is shown in Fig. 1. After frequency translation,
chip matched filtering, and down sampling, the code phase of
the received signal is tracked by a noncoherent digital DLL. In
Fig. 1, wy is the estimated carrier shift obtained in the code ac-
quisition stage. The sampling could also be done in front of chip
matched filter. In any case, at least two times of over-sampling is
needed for proper operation of DLL. In this study, the two-times
over-sampling is employed. After down-sampling, as shown in
Fig. 1, the sampled signal is directed to two different routes. The
integer—chip samples are directed to a despreading unit for the
subsequent carrier recovery, data detection and other signal pro-
cessing, and the half-chip samples (early and late samples) are
directed to a digital DLL for fine code tracking.

The correlation in the early or late branches of the digital DLL
can be of passive types (moving average) or active (integrate
and dump). For passive correlation, the code phase estimate is
adjusted once per chip time 7. and, hence, the digital DLL can
track L times code Doppler than by using active correlation,
where the code phase estimate is adjusted once per LT,. L is
the number of chips involved in the correlation. Nevertheless,
passive correlation has a complexity of L times larger than that
of active correlation. Since there is no difference between these
two types of correlations from the performance analysis point
of view, only active correlation will be considered in this paper.

Let the received signal be denoted as 7(t). Then, for an
AWGN channel with the presence of Doppler shift, we have

r(t)=V2E. Y cnh(t—ml. — (1))

x co8 [(we + wa)t + 0] + n(t) (1)
where F. is the chip energy, c,, is the spreading sequence, and
h(t) is a shaping function with

/

where 7(t) and w, are the time-varying code-phase shift and
carrier-frequency shift due to Doppler effect, respectively. In
addition, @ is the initial phase uncertainty, and n(t) is AWGN
with two-sided power spectral density Ny /2 watts/hertz. In this
paper, instead of considering a specific system, we do the anal-
ysis over an AWGN channel with the presence of Doppler shift.
As mentioned, the channel model finds application in GPS and
other satellite-based DSSS systems.

Without considering the acceleration which is small in
practice, the time-varying code-phase shift 7(¢) is obtained as
7(t) = s(t)/c + to, where s(t) = wv -t is the time-varying
distance between the satellite and receiver, ¢ is the initial delay
att = 0, and v and c are the speed of the satellite and light,
respectively. Define a = v/c, 7(t) at + 7. In practice,
a < 107 and is called as the normalized code Doppler factor
[19].

h2(t)dt = 1 2
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Let y.(t) and ys(t) be the in- and quadrature-phase compo-
nents at the matched filter output. Then

Ye(t) = VEe Z Cm [h(t — mT. — at — 70) @ h(t)]

x cos(wat +6) +n.(t) (3)
and

ya(t) = VEe Y cm[h(t —mT. — at — 79) ® h(t)]

m=—0o0

x sin(wat + 0) +ns(t) (4)

where wa = wy — W4, @ denotes convolution, and 7).(¢) and
75(t) are the baseband in- and quadrature-phase white Gaussian
noise, respectively. After sampling at 7(1) + (n + 1/2)T,, it can
be shown that for the case a < 1, the half-chip samples are give
by

yc(nJ):\/Ec Z CmRh

[0 (w27 )
x cos(wanT,. + 6;) + 1. (n + %, l) 5)

and

yS(”’: l) = \/E Z Cm Ry,

m=—0oo

X [(%(l) + <n+ %) Tr:) —mT, —To}

1
x sin(wanTe. + 0;) + 75 <n + 5,1) (6)

where 7 (1) is the code phase estimated at the instant of [- LT,, n
is the chip index, §; = wa(T./2+7(1)) +6,n.(n+1/2,1) and
ns(n + 1/2,1) are independent Gaussian noises with variance
equal to Ny/2, and

Ru6) = / B(OR(C — £)d¢ )

is the auto-correlation function of the chip-matched filter.
Furthermore, after correlation, the complex-valued early and
late correlator outputs are defined as

z5(1) = 25 () + 325 (). (8)

Writing 2 (1) and z£(1) as the sum of their DC and noise terms,
we have, for the case of a < 1

zE(1) = B [zE ()] + NE(D) ©9)

(&
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and

2ZE(1) =E [Z£1)] + NE() (10)

where

(11)

x cos(wanT, + 0;)

IL-1

S R <+(1) C )+ %)

n=(-1)L
x sin(wanT,. + 6;)

B L)) ~ Y2

12)

IL-1

>

n=(l-1)L

X | > encm B K%(Z)Jr <nj: %) TC) —mT, —To}

m#n

NEw =Y

-cos(wanT, + 6;)]
IL—1

1 1
+f Z CnTlc <7’L:I:§/l>

n=(l-1)L

13)

IL-1

>

n=(l-1)L

X Z cncm R K%(l)—l— <ni%> Tc) _mTc_TO:|

. sin(wAnTc + 91)]

= 1
+E Z cn775<n:t§7l>

n=(l-1)L

S

(14)

and E[-] denotes the expectation operation. The first term in (13)
and (14) is the code-self noise and can be neglected for a mod-
erate to large L, although it can also be incorporated in the anal-
ysis as in [14], [17]. As a result, { NX(I)} and {NZ(I)} are
independently and identically distributed (i.i.d.) Gaussian vari-
ables with zero mean and variance 02 = Ny /(2L).

From Fig. 1, the error signal e(l) is given by

k (15)

2 -
e() =[] = 27 ()
Again, writing the error signal into the sum of DC and noise

terms, (15) becomes

e(l) = S(e1) + Nr() (16)
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where

S(er) =Ele(D)]
=B’z ]+ B2 ()] - B[22 (D] - B[z (1)]
a7

is the actually the S-curve of the loop, the useful term for
tracking the code phase 7(t) through the quantizer, loop filter,
and numerical control oscillator (NCO). The total noise Nt (1)
is defined as

Np(l) = Ni(I) + Na(1) (18)
where
Ni(l) = (Ne())* + (Na(D)F)* = (V1)) = (Nsa);l);
and
No(l) = 2{E [zF (D] NF () + E [z ()] NS (1)
—E[z-()] N-()—E[z; ()] N7 (D)} . (20)

Clearly, {Nz(I)} are non-Gaussian i.i.d. random variables, al-
though they have been approximated as Gaussian in previous
analysis [14]-[16].

For al, < 1, the case of practical interest, then 7(IL) =
7(IL+14),i=0---L — 1, and hence, (11) and (12) become

E[2X(1)] ~ \/f_CRh ((a T %) TC)

IL-1

X Z cos(wanT. +6;) (21)
n=(—1)L

IL-1

X Z sin(wanT, + 60;) (22)
n=(l—1)L

where ¢; = [7(IL) — 7(1)]/Te, is the normalized tracking error
at the instant of [ - LT, and

St ~ B.D*ws) |7 (a0 5) 72)

e <(51 4 %) Tﬂ 23)

1 LwaT. 1
D(wa) = 7 - sin <wTA> cosec <wA2 > .

In (23), RZ((e;—1/2)T.) — RZ((e:+1/2)T.) is the S-curve of
the noncoherent DLL with no Doppler shift, and D?(w ) is the
well-known SNR loss due to the carrier frequency discrepancy
WA .

As is mentioned, in digital DLLs, the adaptation of code
tracking can only be done in discrete steps. In Fig. 1, the quan-
tizer Qs(e) which quantizes the error signal e(l) is employed

with

(24)
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N (1)
g
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Fig. 2. Nonlinear baseband equivalent model for digital DLL.

to investigate this effect. The quantizer has the following input
and output characteristics:

e* =Qs(e)
67 e>(
=S k-2 (k—g)d<e< (k+3)6
—a e<—(q—%)6,
—(g-1)<k<q-1

(S

(25)

where « is the quantization limit, § = «/q is the unit quantiza-
tion level and 2q + 1 is the total number of quantization levels.

In addition, since we consider the second-order loop, F'(z),
the transfer function of the loop filter, is given by F'(2) = g1 +
g2/(1 — z71), where g1 and go are constants, and, as usual,
NCO is modeled as D(z) = 271 /(1 —271).1If g2 = 0, the loop
becomes a first order. By using (15) and Fig. 1, the nonlinear
model for the digital DLL is obtained as in Fig. 2.

III. PERFORMANCE ANALYSIS

As discussed, for GPS and/or other satellite based broad-
casting DSSS systems, PN code synchronization follows a pro-
cedure of combined tracking/reacquisition/trackin, etc., after an
initial acquisition. That is, during tracking whenever |¢;| >
Emaz > 0, anew acquisition will be initiated and a new tracking
follows. Hence, for a stationary channel as we considered here,
the tracking process will restart itself after each code reacquisi-
tion and, hence, can be modeled as a regenerative process [20].
In the following, the independent tracking process after each
reacquisition will be named as an element process of the regen-
erative process, and MTLL and MSE will be analyzed based on
this regenerative process modeling of the tracking process.

Starting from Fig. 2 and following a procedure similar to that
in [17], [21], it can be shown that for an element process of the
regenerative tracking process

e1r=a-L+ey—(91+92)Qs[S(c0) + Nr(0)] (26)
and for [ > 1
eiv1 — 261+ &1 = —(g91 + 92)Qs [S(e1) + Nr(1)]
+91Qs [S(e1—1) + Np(I - 1)]. (27)
Define
y=1+2 (28)
g1
and
€1 =u —yuj41, >0, (29)
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Then, from (27), we have

wpr=2u; — w1+ g1Qs [S(ur—1—yuw)) +Nr(l-1)], 1>2

(30)
with the initial conditions g, u1, and uy determined by
€0 = Up — YU1 (€1))
and
€1 = UL — YUo. (32)

Furthermore, let 31 (1) = w; and y2(I) = w41, the element
tracking process can be described by the following state equa-
tions:

yi(l) = y2(l = 1) (33)
and
y2(l) = 2y2(l = 1) =1 (I = 1) + 91 Qs
X [S(y1(l =1) —yy2(l = 1)) + Nr(I = 1)]. (34

Since {Nr(l)} are stationary white noises, it is evident that
(33) and (34) describe a homogeneous two-dimensional Markov
chain.

Define A = g1/1 - a/q, where I is a positive integer, and let
€o and €1 be quantized to the values of A and jA, respectively.
Then, from (30)—(34), w; and, hence, y; (1) and y2 (1), will take
on the values of multiples of A, if -y is a rational number! and
ug, w1, and ug in (31) and (32) are properly selected. Note that
from (34), I A is the unit adaptation step of the loop and A is
a parameter relevant to the resolution of analysis. For example,
from (29), the tracking error ¢ can only take the values of mul-
tiple A, if «y is a positive integer. (y = 2 has been known to
give the best transient response for the case with no quantiza-
tion [17], [21].)

A. Mean Time-to-Lose Lock

Define AV be the number of steps from the start of an (element)
Markov chain to reach the absorbing state. The absorbing state
is the state with |e; = y1(1) — Yy2(l)| > €maz. By definition,
the MTLL of an element process is given by

MTLL = Y "IP{N =1}
=1
=N UPAN 2D - PN > 1Y) (35)
=1

Since P.{N > [} is the probability that the loop still remains
in lock at the [ — 1 step, i.e.,

PAN 21} = )

e(m)emM

e(m)) (36)

I'This will practically place no restriction on the applicability of this method.
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where P.,(e(m)) = P.{e; = e(m)} and M is the set of pos-
sible |e| < €42 defined in (29), (35) can be rewritten as

MTLL =1+ > iPE, (e(m

e(myem I=1
=1+ > (37)

e(m)eM
where T'(e(m)) = > .2, P-,(¢(m)). Furthermore, de-

fine Py)(i,j) = Pfy(l) = iA,5a() = jA} and

Ty(i.J) = >y Pyay(i, ), then from (29), (33), and (34), we
also have
K K
MTLL =1+ Y > T(i (38)
1=—K j=—K
In Appendix A, it is shown that for |¢;| < ez, —KA < 41,

y2 < KA for some positive integer K . In addition, Ty, (¢, 7) = 0
for some of the states in the set {y = (y1,y2)] — KA <
y1(1),y2(l) < KA}, i.e., not all the states are legitimate states.
(The legitimate states are actually the transient states of the (el-
ement) Markov chain.) For simplicity of notation, however, the
illegitimate states are also included in (38). The same practice
will be employed in (39)-(45).

According to the homogeneous Markovian property, it can be
shown that

Z

wly (45 3|, 1) Ty(n, 7)

+ Z Pyy(i, jln, i) Pyay(n,i)  (39)

where Py, (i, j|r, s) is the transition probability from the state
(1 (I — 1) = rA, yo(l — 1) = sA) to the state (y1(I) = A,
poll) = jA). Since y1(1) = (I — 1), Pyy (i, jlr,s) = 0, if
1 # 5. (39) can also be written in matrix form as follows:

T=b+QT (40)
and
I-QT= 41)
where
T =[I,(-K,-K)--T,(-K,K) -
CTy(K,—K) - Ty(K, K)]" (42)
b=[b(-K,-K)---b(-K,K)---
-bmrm b(K,K)]" (43)
Z |y i,7|n, 1) (1)(71,2') (44)

and (45), located at the bottom of the page. Thus, the problem
of finding MTLL reduces to solving the system of linear equa-
tions in (41). Before to proceed further, three observations are in
order. First, the equations associated with Ty (¢, j) = 0 in (41)
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should be removed, i.e., (y1(I) = iA, y2(l) = jA) is an unal-
lowed state. Second, Q is a sparse matrix and, after removing the
rows and columns corresponding to the illegitimate states, is ac-
tually the transition matrix for the transient states of the Markov
chain. Third, the system of linear equations (41) might have a
very large dimension, depending the numbers g and A. As an
example, T' is a 2113 x 2113 matrix for the numerical exam-
ples in Section IV. Hence, the direct solution methods such as
Gaussian elimination or matrix factorization may be too com-
plex to be used. On the other hand, however, since @ is a sparse
matrix, iterative methods is expected to provide a solution more
efficiently [22].

From (34), the transition probability Py, (i, j|r, %) is given by

Pyy(i, jlr,1) = Pr{g1Qs [S ((r = 7i)A) + N (I = 1)]
=(j—2i+7r)A} (46)
or equivalently, Py, (i,j|r,i) = P{Nr(l) < —(q —
1/2)6—=S(rA — i)} for j — 2i +r = —q, Pyy(4,j|r,i) =
Po{(j — 2i+7—1/2)6 - S((r — vi)A)< Np(l) < (j - 2+
r+1/2)6—S((r—~i)A)} forj—2i+r=—(¢—1)---(¢—1),
and Py (i, j|r,i) = P {NT (1) > (¢ —=1/2)8 = S((r — 7i)A)}
for j — 24 + r = gq. Clearly, the transition probability can
be evaluated if the cumulative probability density (CDF) or
complementary CDF of the random variable N (1) is known.
In Appendix B, the method of saddle point integration is
employed to evaluate complementary CDF of Nz(I). This
evaluation is more accurate than the previous analysis, where

Nr(l) is assumed to be a Gaussian variable.
Let A =1 — @, (41) becomes

AT =b A7)

where the equations associated with Ty(%,j) = 0 in (41) have
been removed implicitly. In Appendix B, it is shown that A is an
M -matrix and, hence, the iterative successive relaxation method
(SOR) can be used to solve (47) in a way that is much more
efficient than the direct solution method [22]. As in [22], let

A=D-L-U (48)

where D is the diagonal matrix consisting of the main diagonal
elements of A, and L and U are the lower and upper block ma-
trix triangular parts of A, respectively. Then, the SOR iterative
algorithm is given by

(D—wL)T"™™ =[(1 —w)D + wU]|T +wb, i=0,1-
| (49)
where T" is the approximate solution at the stage 7, and w is the
algorithm parameter, called relaxation parameter that needs to

be determined for the fastest convergent rate.

2113

B. MSE

As discussed, the operation of code tracking can be modeled
as a regenerative Markov chain. Hence, from Theorem 3.7.1 of
[20], the stationary state probability at the state ¢ = e(m) (of the
regenerative Markov chain) is given by (50),2 located at bottom
of the following page. In (50), T'(¢(m)) can be evaluated by
using (29), after Ty (%, j) is solved in (47). Hence, the MSE can
be evaluated easily as follows:

MSE = Z P (g(m)) - €(m).

e(m)emM

(51

IV. NUMERICAL RESULTS

For the numerical results that follow, the following set of
system parameters are employed: €,,4, = 0.5, L = 128, A =
1/64, wa = 0,and h(t) = 1/\/T.,0 < t < T, and h(t) = 0,
otherwise. Here, A = 1/64 means that the analysis resolution
is 1/64 - T.. Basically, the selection of g; and + is a tradeoff
between the tracking error due to noise and the ability to track
the dynamics of the input code phase. Here, we are mainly con-
cerned with the effect of discrete adaptation, and hence the fixed
values of g1 = 1/(4E.) and v = 2 are used throughout.

Two extreme cases will be employed to examine the effects of
discrete adaptation on the loop behaviors, including the transient
response, lock-in range, MSE and MTLL. The first (Case 1) is
to fix the quantization limit o to E., the maximum value of
S-curve, and ¢ (hence, I) is varied to see the effects. Recall that
A = g1/ - «a/q, and TA is the unit adaptation step. The other
(Case II) is to fix TA equal to 1/64, i.e., I = 1, and « is then
changed according to & = ¢ - E./16. In practice, however, the
selection « and ¢ is often a tradeoff between performance and
complexity.

Figs. 3 and 4 show example effects of quantized adaptation
on the transient response of the loop. For Case I, ¢ > 16 behaves
almost the same as the continuous adaptation (no quantization)
case. However, a large tracking error is observed for ¢ < 4
due to large quantization error. On the other hand, for Case II,
the convergence of the loop is slowed significantly for ¢ < 2
because of the limitation on the value of a. That is the useful
signal for error correction has been cut off. The tracking error
is not much different for different ¢ after convergence, though.
In Figs. 3 and 4, the residual tracking error for the case of no
quantization is due to the distortion in S-curve incurred by a
large code Doppler shift [5].

2Note that for an element process, P(¢(m)) = 0V m because eventually
the process will lose lock.

Pyy(-K,-K|—- K,-K)0---0

Py|y(_K7_K|_K7_K+1)0”'0

[ Pyy(—K,—K| - K,K)0---0

(45)
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Fig. 3. Effects of quantized adaptation on the transient response.
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Fig. 4. Effects of quantized adaptation on the transient response.

Figs. 5 and 6 are the loop lock-in ranges with different quan-
tization levels. The lock-in rage is defined as the range of initial
conditions [aL, £¢] such that the tracking error will never exceed
€max during the subsequent tracking process, i.e., no reacquisi-
tion. For case I, the lock-in range varies slightly for ¢ > 2. (For
q = 1, the lock-in range is very irregular because of very large
quantization error.) For Case II, on the other hand, the lock-in
range is significantly reduced for a small ¢, again because of
the incurred limitation on the value of . Note that the lock-in
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range is odd-symmetric with respect to eg = 0 because of the
very same property associated with the S-curve [5].

Fig. 7 shows the effects of quantized adaptation on MSE and
MTLL for case 1. As is evident, for a large code Doppler, too
small a ¢ will result in a significant performance loss; ¢ > 4 isa
necessity in this case. Fig. 8 shows the same effects for Case
II. As seen, unlike Case I an optimal ¢ exists, depending on
SNR; a large ¢ not necessarily gives a better performance. This
is especially true at low SNRs, where the tail ends of Nr (1)
impose a significant adverse effect on the loop performance.

P(e(m)) = lim P, {e; = e(m)}

_ E[amount of time in state ¢ = ¢(m) during an element process]

X1 P (e(m)
o MTLL
T (e(m)

MTLL

MTLL

(50)
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Fig. 9 compares the MSE and MTLL with those obtained
by using Gaussian approximation for Case II. It is clear in the
figure that the analysis based on the Gaussian approximation
may result in a large error for a small ¢q. Nevertheless, it becomes
more accurate for a large ¢, as already discussed in previous
analysis where quantization is not taken into account [14]-[16].
Fig. 9, simulation results are also given and that agree very well
with the analysis. The simulations are Fig. 11 gives example
probability mass functions. Again, the simulations agree very
well with the analysis.

V. CONCLUSION

The noncoherent second-order digital delay lock loops for
direct sequence spread spectrum systems is analyzed with the
presence of Doppler shift. A new analysis based on a regenera-
tive Markov chain modeling of the tracking process is proposed
with the loop quantized adaptation being taken into account that
has been neglected in previous analysis. For second order loops,
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it is shown that the transition matrix of the transient states of the
Markov chain is a sparse matrix with a very nice property, called
M -matrix, that leads to an efficient analysis. Numerical results
show that quantized adaptation has a significant impact on the
loop performance, including transient responses, lock-in range,
MSE, and MTLL. In addition, without imposing a Gaussian ap-
proximation in the analysis, MTLL and MSE are evaluated more
accurately than previous methods.

APPENDIX A

In this Appendix, we discuss the range of y; (1) and y»(!) for
the tracking loop to remain in lock. From (34), it can be shown
that

y2() + (v = 2)u1(l) = —e1-1 + 91Qs

X [S (y1(l = 1) = yy2(l = 1)) + Ne(l = 1)]. (A-1)
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Fig. 11. Range of y;(!) and y2(1) for I = 1 and v = 2.
Since |1Qs[]| < ¢IA, we have
ly2(1) + (v = 2)y1 (D] < (M + ¢])A (A-2)

where M = |emaz/A], |x] is the largest integer less than z,
and |e;| < M A for the tracking loop to remain in lock. On the
other hand, since ¢; = y1 (1) — vy2(I), we also have

ly1 (1) — vy2(1)] < MA. (A-3)

Finally, by definition

vi(l) = w2l - 1) (A-4)

and, hence, y;(l) and yo(!) has the same range. From
(A-2)~(A-4), it is clear that — KA < y1(1), y2(l) < KA
for some positive integer K < oo. As an example, Fig. 11
shows the range of y; (1) and y»(1) for the cases of v = 2 and
I =1, where K = M + q. In addition, from Fig. 11, we note
that not all the states y = (y1(l),y2(l)) within the range of
—KA < y1(1), y2(I) < KA are legitimate states, due to the
constraint in (A-2)—(A-4), where + = j = K for v = 2 is one
of such examples.

APPENDIX B

In this Appendix, the saddle-point integration is used for cal-
culating the probability of

Py, (1) 2 / For(n)dne, w0 (B-)

where fn.(n:) is the probability density function (pdf) of
Nr(l). Recall that {Np(l)} are i.i.d. random variables. Let
U, (s) be the moment generating function of Nr. That is

Uy, (s) SE[e™M7]

oo

= / efsnthf (nt)dnt. (B-2)

— 00
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Then, (B-1) becomes

c+joo
1 Un..(s
Py, (z) = paw / %() - exp[sz] ds (B-3)
c—joo

where s = ¢ + jz with ¢ < 0. For easy of computation, we
define

DN, (s) =log [M -exp[sz]| . (B-4)
Then s
) c+joo
Pan(e) = 5= [ explon, (9] ds
c—joo

:%/Re{exp [®ny(c+j2)]} dz. (B-5)
0

In (B-5), we have used the property that Re{exp[®(c, + jz)|}
is an even function of z [23]. The integration (B-5) would be
most efficient if carried along the path of steepest descent of
the integrand. For simplicity, however, the integration path is
usually deformed to a straight line that passes through the saddle
point of the integrand [23]. This method of integration is the
so called saddle-point integration. The saddle point ¢, is the
negative root of the equation

N (€)=0 (B-6)
where @’y (c) is the first derivative of ®(c). Since for ¢ < 0,
exp[®(c)] is a convex function, there is only one negative root
in the (B-6) [23]. After obtaining the saddle point, then the in-
tegration (B-5) can be evaluated by using the trapezoidal rule as
follows [23].

c
—dz 1 .
Py, ()= — Re 3 exp[®(c,)]+ g exp[Pn, (co+jldz)]

=1
(B-7)

for a positive integer £. The approximation (B-7) can be made
as accurate as desired by using a large and a small enough £
and dz, respectively. As in [23], the step size dz can be initially
taken as

dz = [0, (c)] * (B-8)

and then halved successively until the desired precision is ob-
tained.

From (18)—(20), Nr(l) can be written as the following
quadratic form:

Np(l) = tTWt+ Tt (B-9)
where t = [N ()N ()N (DN, (D)7
10 0 0

w-lon tol ww
00 0 -1
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and ¢ = [c1 2 3 c4]T with ¢; = 2E[zF ()], co = 2E[zF(])],
c3 = 2E[z7(1)], and ¢4 = 2E[z, (I)]. Note that E[t] = 0, and

o2 0 0 0

. 0 o2 0 0
V=Ett"] = | "0 2 (B-11)

0 0 0 o2

From [24], the moment generating function for this quadratic
form is given by

2
U, (5) = [T+2sWV| "% exp {% V(I + 2sWV)—1c} .

(B-12)
With this U .. (s), the probability (B-1) can be evaluated by
using (B-7).

APPENDIX C

In this Appendix, we prove that A in (47) is an M -matrix,
so that the successive over relaxation (SOR) iterative method is
convergent and can be employed to solve (47) very efficiently.
Before to proceed, the following definitions and theorem are
useful.

Definition 1 [22]: A matrix X = [z;;] is said to be nonneg-
ative, denoted X > 0, if z; ; > 0.

Definition 2 [22]: A real-square matrix X = [x;;] is called
a nonsingular M-matrix if z; ; < 0 for ¢ # j, and if it is
monotone, i.e., X ! > 0.

Theorem 1 (Lemma 5.2 in [22]): For a arbitrary square ma-
trix X = [1177]]

1) limg_oo X* = 0, iff p(X) < 1, where p(X), called
spectral radius, is the maximum absolute value of any
eigenvalues of X.

) IpX)<Lthen(I-X) L =T+X+X*+ -is
convergent.

Theorem 2: The matrix A = I — @ is an M -matrix.

Proof: First, since @ is the transition matrix of the tran-
sients states of a Markov chain, lim_, Qk = 0,and A =
[ai;], a;; < 0, fori # j.Second, from Theorem 1, Al =
I+Q+@Q*+---isconvergent and A~* > 0. From the defini-
tion 1, the theorem follows.
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