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Short Paper

ROBUST H ∞ OUTPUT FEEDBACK CONTROL FOR GENERAL

NONLINEAR SYSTEMS WITH STRUCTURED UNCERTAINTY

Jenq-Lang Wu* and Tsu-Tian Lee

ABSTRACT

In this paper, the robust H∞ output feedback control problem for general nonlinear
systems with L2-norm-bounded structured uncertainties is considered.  Sufficient con-
ditions for the solvability of robust performance synthesis problems are represented
in terms of two Hamilton-Jacobi inequalities with n independent variables.  Based on
these conditions, a state space characterization of a robust H∞ output feedback con-
troller solving the considered problem is proposed.  An example is provided for illus-
tration.
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I. INTRODUCTION

In this paper, the robust H∞ output feedback con-
trol problem for continuous-time general nonlinear
systems with structured uncertainty will be consid-
ered.  The block diagram of the considered problem
is shown in Fig. 1, where P is the normal system,
which is nonlinear and time-invariant, and ∆ is the
structured uncertainty.  The design objective is to find
an output feedback controller, K, such that the closed-
loop system is internally stable and its L2-gain from
w to z is less than, or equal to, some positive number,
γ, for all possible structured uncertainties ∆.

In the case of no uncertainty, ∆, in the system,
the problem becomes the well-known nonlinear H∞

control problem, see, e.g., (Ball et al., 1993; Isidori
and Astolfi, 1992; Isidori, 1994; Isidori and Kang,
1995; Isidori and Lin, 1998; Lu and Doyle, 1994; Van
der Schaft, 1991; 1992; and Yung et al., 1996; 1998).
It has been shown that the solution to the nonlinear
H∞ output feedback control problem can be obtained
by solving two Hamilton-Jacobi equations (or

inequalities), which are the nonlinear versions of the
Riccati equations considered in the corresponding lin-
ear H∞ control theory, see, e.g., (Doyle et al., 1989).

However, the H∞ control problem for nonlinear
systems with structured uncertainty is more difficult.
The robust H∞ control problem for linear systems with
structured uncertainty has been considered in (Doyle,
1982; Lu et al., 1996; and Poola and Tikku, 1995).
The studies of nonlinear H∞ control problems with
structured uncertainty are few.  The only result is a
state-space characterization of robustness analysis and
synthesis for affine nonlinear systems provided by Lu
and Doyle (1997).  Specifically, sufficient conditions
for the solvability of robustness synthesis problem
are represented in terms of scaling Nonlinear Matrix
Inequalities (NLMIs).  However, in (Lu and Doyle,
1997), the considered system is assumed to be affine
in control input and external input.  Moreover, only
the state feedback case is considered.  In this paper,
we first extend the results of the robust H∞ state feed-
back control problem for affine nonlinear systems in
(Lu and Doyle, 1997) to the case of general nonaffine
nonlinear systems.  Furthermore, not only state feed-
back but also output feedback cases are considered
in this paper.  Sufficient conditions for the solvabil-
ity of robust H∞ output feedback control problems for
general nonlinear systems with structured uncertainty
are represented in terms of two Hamilton-Jacobi in-
equalities with n independent variables.  Finally, based
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on these conditions, a state space characterization of
an output feedback controller solving the considered
problem is provided.

In what follows, x 2
 denotes xTx; x M

2  denotes
xTMx; P L2

 denotes the L2-norm of the system P;
M>0 means that the matrix M is positive definite;
M<0 means that the matrix M is negative definite.

II. PROBLEM FORMULATION

Consider a smooth uncertain nonlinear system
shown in Fig. 1.  The normal plant P is described by
the following dynamic equations

P:

x = F(x, w, v, u)
y = Y(x, w, v, u)
z = Z(x, w, v, u)
l i = Li(x, w, v, u), i = 1, 2, , N

(1)

where x∈ Rn represents the state, u∈ Rm is the control
input, and w∈ Rr represents a set of exogenous inputs,
z∈ Rs is the controlled variable, and y∈ Rp is the meas-
ured variable. Without losing of generality, assume
that F(0,0,0,0)=0, Z(0,0,0,0)=0, Y(0,0,0,0)=0, and
Li(0,0,0,0)=0 for all i=1, 2, ..., N.

The uncertainty is described as

vi=∆i(li),  i=1, 2, ..., N (2)

where

∆i∈ B∆∆i≡{∆i|∆i is causal and asymptotically

stable for li=0, and has L2-gain≤ρi}

with ρi>0.  Or equivalently,

v=∆(l)

where l=[l1
T   l2

T   ...  l N
T ]T, v=[v1

T   v2
T   ...  vN

T ]T, and

∆∈ ∆∆ ≡{∆=diag{∆1, ∆2, ..., ∆N}|∆i∈ B∆∆i}

Suppose li∈ Rni and vi∈ Rmi, i=1, 2, ..., N.  Let m =

miΣ
i = 1

N
.

The design objective is to construct an output
feedback controller which will asymptotically stabi-
lize the resulting closed-loop system locally and
render its L2-gain (from w to z) less than or equal to γ
for all ∆∈ ∆∆ .

Suppose that the state of ∆i is ςςi.  Let ςς≡[ςς1
T   ςς2

T

...  ςςN
T ] ΤΤΤΤΤ.  As in (Lu and Doyle, 1997), the following

assumption is made.

Assumption (A1).  For each i∈ {1, 2, ..., N}, ∆i has a
unique asymptotically stable equilibrium at ςςi=0 for
li=0; in addition, there is a differentiable storage func-
tion Ui(ςςi) such that

dU i(ςςi(t))
dt ≤ ρi

2 l i(t)
2 – vi(t)

2 + ϕϕ i(ςςi(t)) ,     (3)

with some negative definite function ϕ i(.).

III. STATE FEEDBACK CASE

In this section, we will focus on the robust H∞

state feedback control problem for system (1).  De-
fine a Hamiltonian function H1: Rn×Rn×Rr×R m ×Rm→
R as

H1(x, p1, w, v, u)

= p1
TF(x, w, v, u) + Z(x, w, v, u)

2
– γ2 w 2

+ [ρi
2 Li(x, w, v, u)

2
– vi

2Σ
i = 1

N
] (4)

Let

Z(x, w, v, u) =

Z(x, w, v, u)
ρ1L1(x, w, v, u)

.
ρNLN(x, w, v, u)

(5)

and set

D11 = ∂Z(x, w, v, u)
∂w (x, w, v, u) = (0, 0, 0, 0)

,

D12 = ∂Z(x, w, v, u)
∂v (x, w, v, u) = (0, 0, 0, 0)

,

D13 = ∂Z(x, w, v, u)
∂u (x, w, v, u) = (0, 0, 0, 0)

Suppose plant (1) satisfies the following assumption.

Assumption (A2). The matrix D13
T D13 is positive defi-

nite, and 
D11

T D11 – γ2I D11
T D12

D12
T D11 D12

T D12 – I
 is negative defi-

nite.

Fig. 1  Block diagram of the considered system
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Assumption (A2) guarantees the existence and
uniqueness of solutions w*(x, p1), v*(x, p1), and u*(x,
p1), defined in the neighborhood of (x, p1)=(0, 0),
satisfying

∂H1
∂w (x, p1, w*(x, p1), v*(x, p1), u*(x, p1))=0

∂H1
∂v (x, p1, w*(x, p1), v*(x, p1), u*(x, p1))=0

∂H1
∂u (x, p1, w*(x, p1), v*(x, p1), u*(x, p1))=0

with

w*(0, 0)=0, v*(0, 0)=0, u*(0, 0)=0

This can be drawn from the implicit function theo-
rem.

Moreover, suppose the system (1) satisfies the
“detectability” assumption given below.

Assumption (A3). Any bounded trajectory x(t) of the
system x(t)=F(x(t), 0, v(t), u(t)) satisfying Z(x(t), 0,
v(t), u(t))=0 for all t≥0, is such that lim

t → ∞x(t)=0.

Then, the following result holds.

Theorem 1. Consider system (1).  Suppose Assump-
tions (A1), (A2), and (A3) hold.  Suppose the fol-
lowing hypothesis also holds.

(H1) There exists a smooth, positive definite func-
tion V(x), locally defined in the neighborhood
of x=0, such that the function

Y1(x) = H1(x, Vx
T(x)), w*(x, Vx

T(x)), v*(x, Vx
T(x)),

u*(x, Vx
T(x)) (6)

is negative semidefinite near x=0, where Vx(x)
denotes the row vector ∂ V/∂x1  ∂V/∂x2  ... ∂V/
∂xn .

Then the system (1) with the feedback law u=u*(x,
Vx

T(x)) is locally internally stable and has L2-gain
(from w to z) less than or equal to γ for all ∆∈ ∆∆ .

Proof of Theorem 1: For simplicity of notation, we
denote w*(x)=w*(x, Vx

T(x)), v*(x)=v*(x, Vx
T(x)) and

u*(x)=u*(x, Vx
T(x)).  Let p≡[wT  vT  uT]T.  Using the

Taylor expansion theorem and noting (4) and (6), we
have

H1(x, Vx
T(x), w, v, u)

= Y1(x) +
w – w*(x)
v – v*(x)
u – u*(x)

R(x)

2

+ o
w – w*(x)
v – v*(x)
u – u*(x)

3

where

R(x) =
r11(x) r12(x) r13(x)
r21(x) r22(x) r23(x)
r31(x) r32(x) r33(x)

≡ 1
2

∂2H1(x, Vx
T(x), w, v, u)

∂p2
w = w*(x), v = v*(x), u = u*(x)

It is easy to show that

R(0) =
D11

T D11 – γ2I D11
T D12 D11

T D13

D12
T D11 D12

T D12 – I D12
T D13

D13
T D11 D13

T D12 D13
T D13

which is nonsingular by Assumption (A2).
Consider the candidate storage function U(x, ςς)

=V(x)+ U i(ςςi)Σ
i = 1

N
, which is positive definite.  Setting

u=u*(x) in (1) yields a closed-loop system satisfying

dU
dt + Z(x, w, v, u*(x))

2
– γ2 w 2

≤ Y1(x) +
w – w*(x)
v – v*(x)

T r11(x) r12(x)
r21(x) r22(x)

w – w*(x)
v – v*(x)

+ o
w – w*(x)
v – v*(x)

3

+ ϕ i(ςi)Σ
i = 1

N
(7)

Then, from hypothesis (H1) and Assumptions (A1)
and (A2), we immediately have the following dissi-
pation inequality

dU
dt + Z(x, w, v, u*(x))

2
– γ2 w 2 ≤ 0

in the neighborhood of the origin.  Thus, the closed-
loop system has L2–gain≤γ.  It remains to prove that
the closed-loop system is locally asymptotically sta-
ble.  To this end, letting w=0 in (7), it yields

dU
dt ≤ – Z(x, 0, v, u*(x))

2
+ Y1(x)

+
– w*(x)
v – v*(x)

T r11(x) r12(x)
r21(x) r22(x)

– w*(x)
v – v*(x)

+ o
– w*(x)
v – v*(x)

3

+ ϕ i(ςςi)Σ
i = 1

N
(8)

which is negative semidefinite near the origin by
hypothesis (H1) and Assumptions (A1) and (A2). This

proves that the equilibrium x
ςς =0 of the closed-loop

system is stable.  To prove the asymptotic stability of
the closed-loop system, note that equation (8) implies
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dU
dt ≤ – Z(x, 0, v, u*(x))

2
+ ϕ i(ςςi)Σ

i = 1

N
≤ 0 (9)

in the neighborhood of the origin.  Therefore, the as-
ymptotic stability can be concluded by LaSalle’s in-
variance principle.

IV. OUTPUT FEEDBACK CASE

The major contribution of this paper is to pro-
pose an output feedback controller

ξξ =F(ξξ , u*(ξξ ), v*(ξξ ), w*(ξξ ))

+G(ξξ )(y–Y(ξξ , u*(ξξ ), v*(ξξ ), w*(ξξ )))

u=u*(ξξ ) (10)

to solve the considered robust H∞ control problem,
where ξξ ∈ Rn is defined in the neighborhood of the ori-
gin, and the output injection gain G(ξξ ) is a matrix to
be determined.

For convenience, the corresponding closed-
loop system is expressed as

xo=Fo(xo, w, v)

y=Yo(xo, w, v)

z=Zo(xo, w, v)

li=Li
o(xo, w, v)

vi=∆i(li),  i=1, 2, ..., N

where xo= x
ξξ ,

Fo(xo, w, v)=
F(x, w, v, u*(ξξ ))

F(x, ξξ , w, v)

Yo(xo, w, v)=Y(x, w, v, u*(ξξ ))

Zo(xo, w, v)=Z(x, w, v, u*(ξξ ))

Li
o(xo, w, v)=Li(x, w, v, u*(ξξ ))

and

F(x, ξξ , w, v)=F(ξξ , w*(ξξ ), v*(ξξ ), u*(ξξ ))

+G(ξξ )(Y(x, w, v, u*(ξξ ))

–Y(ξξ , w*(ξξ ), v*(ξξ ), u*(ξξ )))

In what follows, we shall show how to

asymptotically stabilize the closed-loop system lo-
cally and render its L2–gain≤γ (from w to z) for all
∆∈ ∆∆ .

Define a Hamiltonian function H2: R2n×R2n×Rr×
R m →R as

H2(xo, p2, w, v)

= p2
TFo(xo, w, v) +

w – w*(x)
v – v*(x)

u*(ξξ ) – u*(x)

T

⋅
(1 – ε1)r11(x) (1 – ε1)r12(x) r13(x)
(1 – ε1)r21(x) (1 – ε1)r22(x) r23(x)

r31(x) r32(x) (1 + ε3)r33(x)

⋅
w – w*(x)
v – v*(x)

u*(ξξ ) – u*(x)
(11)

where 0<ε1<1 and ε3>0.  Then, by implict function
theorem, there exist unique smooth functions w(xo,
p2) and v(xo, p2), defined in the neighborhood of (xo,
p2)=(0, 0), satisfying

∂H2(xo, p2, w, v)
∂w w = w(xo, p2), v = v(xo, p2)

= 0

∂H2(xo, p2, w, v)
∂v w = w(xo, p2), v = v(xo, p2)

= 0

with w(0, 0) = 0 and v(0, 0) = 0.
As a result, we have the following theorem.

Theorem 2. Consider system (1).  Suppose Assump-
tions (A1), (A2) and (A3), and hypothesis (H1) in Theo-
rem 1 hold.  Suppose the following hypothesis also holds.

(H2) There exists a smooth real-valued function
M(xo), which is locally defined in the neighbor-
hood of xo=0, and which vanishes at x=ξξ  and is
positive elsewhere, such that the function

Y2(xo) = H2(xo, Mx o
T (xo), w(xo, Mx o

T (xo)) ,

v(xo, Mx o
T (xo)))

vanishes at x=ξξ  and is negative elsewhere.

Then the system (1) with the output feedback
controller (10) is locally internally stable and has L2-
gain (from w to z) less than or equal to γ for all ∆∈ ∆∆ .

Proof of Theorem 2: Using the Taylor expansion
theorem yields
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H2(xo, Mx o
T (xo), w, v)

= Y2(xo) +
w – w(xo, Mx o

T (xo))

v – v(xo, Mx o
T (xo))

R2(xo)

2

+ o
w – w(xo, Mx o

T (xo))

v – v(xo, Mx o
T (xo))

3

(12)

where

R2(xo)

= 1
2

∂2H2

∂w2
∂2H2
∂v∂w

∂2H2
∂w∂v

∂2H2

∂v2
w = w(xo, Mxo

T (xo)), v = v(xo, Mxo
T (xo))

which is negative definite near the origin.
Consider the candidate storage function

Uo(xo, ςς) = M(xo) + V(x) + U i(ςςi)Σ
i = 1

N

which is positive for all 
xo

ςς ≠0.  Along the trajecto-

ries of the closed-loop system, we have

dUo

dt + Z(x, w, v, u*(ξξ ))
2

– γ2 w 2

≤ Y1(x) + Y2(xo) + ϕ i(ςςi)Σ
i = 1

N
+

w – w*(x)
v – v*(x)

u*(ξξ ) – u*(x)

T

⋅
ε1r11(x) ε1r12(x) 0
ε1r21(x) ε1r22(x) 0

0 0 – ε3r33(x)

w – w*(x)
v – v*(x)

u*(ξξ ) – u*(x)

+ o
w – w*(x)
v – v*(x)

u*(ξξ ) – u*(x)

3

+
w – w(xo, Mxo

T (xo))

v – v(xo, Mxo
T (xo))

R2(x)

2

+ o
w – w(xo, Mxo

T (xo))

v – v(xo, Mxo
T (xo))

3

≤ 0 (13)

in the neighborhood of the origin.  Then, we can prove
this Theorem via a procedure similar to the proof of
Theorem 1.  So, the detailed proof is omitted here for
saving space.

The function Y2(xo) thus obtained has 2n

independent variables and actually involves the undeter-
mined matrix G(ξξ ).  In what follows, we shall show how
to reduce the number of independent variables in Y2(xo),
and how to determine the output injection gain G(ξξ ).

To this end, define a Hamiltonian function H3:
Rn×Rn×Rp×Rr×R m →R as

H3(x, p3, p4, w, v)

= p3
TF(x, w, v, 0) – p4

TY(x, w, v, 0) +
w – w*(x)
v – v*(x)
– u*(x)

T

⋅
(1 – ε1)r11(x) (1 – ε1)r12(x) r13(x)
(1 – ε1)r21(x) (1 – ε1)r22(x) r23(x)

r31(x) r32(x) (1 + ε3)r33(x)

⋅
w – w*(x)
v – v*(x)
– u*(x)

(14)

and suppose the plant (1) satisfies the following ad-
ditional assumption.

Assumption (A4). The measurement output Y(x, w,
v, u) is such that the matrix D21=[Yw(0, 0, 0, 0)  Yv(0,
0, 0, 0)] has full row rank.

Then, by implict function, theorem there exist
unique smooth functions w(x, p3, p4) and v(x, p3, p4),
defined in the neighborhood of (x, p3, p4)=(0,0,0), sat-
isfying

∂H3(x, p3, p4, w, v)
∂w w = w(x, p3, p4), v = v(x, p3, p4)

= 0

w(0, 0, 0) = 0

∂H3(x, p3, p4, w, v)
∂v

w = w(x, p3, p4), v = v(x, p3, p4)

= 0

v(0, 0, 0) = 0

Moreover, it is easy to verify that

∂2H3(x, p3, p4, w(x, p3, p4), v(x, p3, p4))
∂p4

2
(x, p3, p4) = (0, 0, 0)

= 1
2(1 – ε1) D21

r11(0) r12(0)
r21(0) r22(0)

– 1

D21
T < 0

which is nonsingular.  Thus, there exists a smooth
function p4*(x, p3), defined in the neighborhood of
(0,0) such that

∂H3(x, p3, p4, w(x, p3, p4), v(x, p3, p4))
∂p4 p4 = p4*(x, p3)

=0     p4*(0, 0)=0

Then, we have the following result.
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Theorem 3. Consider system (1).  Suppose Assump-
tions (A1), (A2), and (A3), and hypothesis (H1) in Theo-
rem 1 hold.  Suppose the following hypothesis also holds.

(H3) There exists a smooth, positive definite func-
tion Q(x), locally defined in the neighborhood
of the origin in Rn, such that the function

Y3(x) = H3(x, Qx
T(x), p4*(x, Qx

T(x)) ,

w(x, Qx
T(x), p4*(x, Qx

T(x))),

v(x, Qx
T(x), p4*(x, Qx

T(x)))) (15)

is negative definite near x=0, and its Hessian matrix
is nonsingular at x=0.  If the equation

Qx(x)G(x) = p4*(x, Qx
T(x)) (16)

has a smooth solution G(x), then the system (1) with
the output feedback controller (10) is locally inter-
nally stable and has L2-gain (from w to z) less than or
equal to γ for all ∆∈ ∆∆ .

Proof of Theorem 3: It suffices to prove that
M(xo)≡Q(x–ξξξξξ ) with Qx(x)G(x)=p4*(x, Qx

T(x)) which
satisfies hypothesis (H2).  Clearly, M(xo)≡Q(x–ξξξξξ)
vanishes at x=ξξξξξ  and is positive elsewhere.  Set

Y 2(xo) = H2(xo, Mx o
T (xo), w(xo, Mx o

T (xo)),

v(xo, Mx o
T (xo)))

where M(xo)=Q(x–ξξξξξ) and Qx(x)G(x)=p4*(x, Qx
T(x)).

It remains to prove that Y 2(xo) vanishes at  x=ξξ
and is negative elsewhere.  This can be proven via a
similar procedure as that presented in (Yung et al.,
1998).  Therefore, it is omitted for saving the space.

V. EXAMPLE

Consider a system (denoted by system P) which
has the following realization

x1 = 4x1x2 – 2x1
3 – x1

3x2
2 + x2w – 2x1x2v1 + x1u2

x2 = – 14x2 – 5x2
3 + 3

4x1
2x2 – v2 + 2(1 + x1

2)u

y = 20
3 x1 + 5x1x2 + 2x1

3x2 + w

z = x1
2 + u

l1 = x2
2

l2 = x1
2

v1=∆1(l1)

v2=∆2(l2)

where the uncertain terms ∆1 and ∆2 satisfy ||∆1||L2
≤3

and ||∆2||L2
≤1. Suppose Assumption (A1) holds.  Here

we want to find a state feedback controller and an
output feedback controller, respectively, such that the
closed loop system is internally stable and has L2–
gain≤1 (form w to z) for all possible ∆1 and ∆2.
State Feedback Case:

For system P, it is easy to verify that Assump-
tion (A2) holds.  From Theorem 1, it can be shown
that the positive definite function

V(x) = 1
2x1

2 + x2
2

satisfies Hypothesis (H1).  The corresponding Y1(x) is

Y1(x) = – 31x2
2 – x2

4 –
9x1

2x2
2

4 –
x1

4

1 + x1
2

which is negative definite for all x≠0.  The worst-
case disturbance w is

w = w*(x) = 1
2x1x2

Moreover, if we choose the state feedback controller as

u = u*(x) = –
x1

2

1 + x1
2 – 2x2

then the closed-loop system will be internally stable
and its L2–gain (from w to z) will be less than or equal
to 1.
Output Feedback Case:

For output feedback, it can be shown that As-
sumption (A4) holds.  Moreover, the positive defi-
nite function Q(x)=x1

2 + 1
2x2

2 satisfies Hypothesis (H3)
with ε1=ε3=1

2
.  The corresponding Y3(X) is

Y3(x) = ( 3
1 + x1

2 – 4)x1
4 – 3

4x2
2 – 5x2

4 – 5
2x1

2x2
2

– x1
2(20

3 + 5x2 + 2x1
2x2)2

which is negative definite near x=0.  Moreover,

p4*(x) = 40
3 x1 + 12x1x2 + 4x1

3x2

Let the output injection gain G(x)=
G1(x)
G2(x)

.  Since

Qx(x)G(x)=p4*(x)

i.e.

[2x1 x2] ⋅ G1(x)
G2(x) = 40

3 x1 + 12x1x2 + 4x1
3x2

has a smooth solution

G1(x)
G2(x) =

20
3 + 6x2

4x1
3
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So the output feedback H∞ control problem is solv-
able.  Moreover, with the output feedback controller

ξ 1 = 4ξ 1ξ 2 – 2ξ 1
3 + ξ 1

3ξ 2
2 + 1

2ξ 1ξ 2
2 + ξ 1(

ξ 1
2

1 + ξ 1
2 + 2ξ 2)2

+ (20
3 + 6ξ 2) ⋅ (y – 20

3 ξ 1 – 11
2 ξ 1ξ 2 – 2ξ 1

3ξ 2)

ξ 2 = – 13ξ 2 – 5ξ 2
3 + 3

4ξ 1
2ξ 2 – 2(ξ 1

2 + 2(1 + ξ 1
2)ξ 2)

+ 4ξ 1
3(y – 20

3 ξ 1 – 11
2 ξ 1ξ 2 – 2ξ 1

3ξ 2)

u = –
ξ 1

2

1 + ξ 1
2 – 2ξ 2

the closed-loop system will be internally stable and its
L2-gain (from w to z) will be less than or equal to 1.

VI. CONCLUSIONS

In this paper, a state-space characterization of
robust H∞ output feedback controllers for general
nonlinear systems with L2-gain-bounded structured
uncertainties has been proposed.  Sufficient condi-
tions for the solvability of robust performance syn-
thesis problems have been represented in terms of two
Hamilton-Jacobi inequalities with n independent vari-
ables.  Based on these conditions, an output feedback
H∞ controller solving the considered problem has been
provided.  The example shows that the provided
method is useful.
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