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Short Paper

ROBUST H” OUTPUT FEEDBACK CONTROL FOR GENERAL
NONLINEAR SYSTEMS WITH STRUCTURED UNCERTAINTY

Jeng-Lang Wu* and Tsu-Tian Lee

ABSTRACT

I'n this paper, the robust H* output feedback control problem for general nonlinear
systems with L,-norm-bounded structured uncertaintiesis considered. Sufficient con-
ditions for the solvability of robust performance synthesis problems are represented
in terms of two Hamilton-Jacobi inequalities with n independent variables. Based on
these conditions, a state space characterization of a robust H* output feedback con-
troller solving the considered problem is proposed. An exampleis provided for illus-

tration.

Key Words: H” control, nonlinear systems, robust performance, structured uncertainty.

I.INTRODUCTION

In this paper, the robust H* output feedback con-
trol problem for continuous-time general nonlinear
systems with structured uncertainty will be consid-
ered. The block diagram of the considered problem
is shown in Fig. 1, where P is the normal system,
which is nonlinear and time-invariant, and A is the
structured uncertainty. The design objectiveistofind
an output feedback controller, K, such that the closed-
loop system is internally stable and its L,-gain from
w to zisless than, or equal to, some positive number,
y, for all possible structured uncertainties A.

In the case of no uncertainty, 4, in the system,
the problem becomes the well-known nonlinear H”
control problem, see, e.g., (Ball et al., 1993; Isidori
and Astolfi, 1992; Isidori, 1994; Isidori and Kang,
1995; Isidori and Lin, 1998; Lu and Doyle, 1994; Van
der Schaft, 1991; 1992; and Yung et al., 1996; 1998).
It has been shown that the solution to the nonlinear
H* output feedback control problem can be obtained
by solving two Hamilton-Jacobi equations (or
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inequalities), which are the nonlinear versions of the
Riccati equations considered in the corresponding lin-
ear H” control theory, see, e.g., (Doyle et al., 1989).

However, the H* control problem for nonlinear
systems with structured uncertainty is more difficult.
The robust H” control problem for linear systemswith
structured uncertainty has been considered in (Doyle,
1982; Lu et al., 1996; and Poola and Tikku, 1995).
The studies of nonlinear H® control problems with
structured uncertainty are few. The only result is a
state-space characterization of robustness analysis and
synthesisfor affine nonlinear systems provided by Lu
and Doyle (1997). Specifically, sufficient conditions
for the solvability of robustness synthesis problem
are represented in terms of scaling Nonlinear Matrix
Inequalities (NLMIs). However, in (Lu and Doyle,
1997), the considered system is assumed to be affine
in control input and external input. Moreover, only
the state feedback case is considered. In this paper,
we first extend the results of the robust H” state feed-
back control problem for affine nonlinear systemsin
(Luand Doyle, 1997) to the case of general nonaffine
nonlinear systems. Furthermore, not only state feed-
back but also output feedback cases are considered
in this paper. Sufficient conditions for the solvabil-
ity of robust H” output feedback control problemsfor
general nonlinear systems with structured uncertainty
are represented in terms of two Hamilton-Jacobi in-
equalitieswith nindependent variables. Finally, based
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Fig. 1 Block diagram of the considered system

on these conditions, a state space characterization of
an output feedback controller solving the considered
problem is provided.

Inwhat follows, | X |* denotes xx; | x |2, denotes
x"Mx; | P||L2 denotes the L,-norm of the system P;
M>0 means that the matrix M is positive definite;
M<0 means that the matrix M is negative definite.

Il. PROBLEM FORMULATION

Consider a smooth uncertain nonlinear system
shown in Fig. 1. The normal plant P is described by
the following dynamic equations

X =F(X, w, Vv, u)

P y=Y(X, W, V, u)

) z=Z(x,w, Vv, u)
lli=Li(x,w,v, u,i=1,2-,N

(1)

where x[OR" represents the state, uIR™ is the control
input, and wOR' represents a set of exogenous inputs,
zOR®isthe controlled variable, and yOR? is the meas-
ured variable. Without losing of generality, assume
that F(0,0,0,0)=0, Z(0,0,0,0)=0, Y(0,0,0,0)=0, and
Li(0,0,0,0)=0 for all i=1, 2, ---, N.

The uncertainty is described as

Vizﬂi(li), i=1, 2, ey N (2)
where

AOBA={ 4|4 is causal and asymptotically
stable for 1;=0, and has L,-gain<p;}
with p;>0. Or equivalently,
v=A(l)
where [=[1T 17 - I51%, v=[v] V] - w{]", and

ADA={ A=diag{ 4, 4y, ..., AN} |ADOBA}

Suppose |;0R" and v;OR™, i=1, 2, -, N. Let M=

i:im'

1
The design objective is to construct an output
feedback controller which will asymptotically stabi-
lize the resulting closed-loop system locally and
render its L,-gain (from w to z) less than or equal to y
for all ADA.
Suppose that the state of 4; is ¢. Let ¢=[¢] ¢,

- ¢yl Asin (Luand Doyle, 1997), the following

assumption is made.

Assumption (Al). Foreachil{1, 2, -, N}, 4 hasa
unique asymptotically stable equilibrium at ¢;=0 for
[;=0; in addition, thereisadifferentiable storage func-
tion U;( ;) such that

O < o1 - Ivo P+ dia) . @)

with some negative definite function ¢;(-).
I1l. STATE FEEDBACK CASE

In this section, we will focus on the robust H*
state feedback control problem for system (1). De-
fine a Hamiltonian function Hy: R™XR"xR'xR™xR™_,
R as

H,(X, p,, W, v, U)

= pIF(x, W, v, ) + | Z(x, w, v, u) |* = 2| w|?

& 2 2
+ 2 P Lo w v [ =% ] (4)
Let
Z(X, W, Vv, U)
- L.(x,w,v,u
Z(X, W, V, u) = Pib _ ) (5
pNLN(Xv W, v, U)
and set
D.. = 0Z(x, W, v, U)
1 ow (X, W, v, 1) = (0,0,0,0)
D.. = 9Z(x, w, v, U)
12 ov (x,w,v,u) =(0,0,0,0) ’
D. = 0Z(X, W, v, u)
13- ou _
(x,w,v,u)=(0,0,0,0)

Suppose plant (1) satisfies the following assumption.

Assumption (A2). The matrix D{;D,; is positive defi-

D]TlDll - y2| DJTlDlZ

nite, and T T
D12D11 DlZDlZ =1

nite.

is negative defi-
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Assumption (A2) guarantees the existence and
uniqueness of solutions w:(x, p1), v=(X, p1), and ux(X,
p1), defined in the neighborhood of (x, p;)=(0, 0),
satisfying

oH
G (% P Wa(X, P1), Vs (X, Pa), U«(X, P1))=0

oH
v (%P1, We(X, P1), V+(X, P1), Us(X, P1))=0

oH

30t (%, P Ws (X, Pa), Vs (X, Py), Us(X, P1))=0
with

w+(0, 0)=0, v+(0, 0)=0, u.(0, 0)=0

This can be drawn from the implicit function theo-
rem.

Moreover, suppose the system (1) satisfies the
“detectability” assumption given below.

Assumption (A3). Any bounded trajectory x(t) of the
system x(t)=F (x(t), 0, v(t), u(t)) satisfying Z(x(t), O,
v(t), u(t))=0 for all t=0, is such that limx(t)=0.

Then, the following result holds.

Theorem 1. Consider system (1). Suppose Assump-
tions (A1), (A2), and (A3) hold. Suppose the fol-
lowing hypothesis also holds.

(H1) There exists a smooth, positive definite func-
tion V(x), locally defined in the neighborhood
of x=0, such that the function

Y1(x) = Ha(x, Vi (x)), We (X, Vi (9), V= (%, Vi (X)),
U (% Vi (X)) (6)

is negative semidefinite near x=0, where V,(x)
denotes the row vector [@V/0x; 0V/0X5 ... OV/
ox,0
Then the system (1) with the feedback law u=u«(x,
V] (x)) is locally internally stable and has L,-gain
(from w to z) less than or equal to yfor al ATA.

Proof of Theorem 1: For simplicity of notation, we
denote Wx(X)=Wx (x, V4 (X)), V«(X)=V«(x V,(x)) and
Us(X)=u«(x, V] (x)). Let p=[w" v’ u"]". Using the
Taylor expansion theorem and noting (4) and (6), we
have

H,(x, VT (X), W, v, u)

2 3

W — Wi (X) W — Wi (X)
=Y, (x) +| | v—w(X) +0| || v—w(X)
U —U.«(x) RO U —U«(X)

where

r1a(X) rip(x) rig(x)
R(X) =] ran(X) rp(x) rxsx)
ra(X) ra(X) raX)

1 0%H(x, V] (%), w, v, u)
ap?

Nl

W =W« (X), V=Vx(X), U=Ux(X)

It is easy to show that

D1T1D11 -y D1TlD12 D1TlD13
R(0) = D1T2D11 D1T2 Dy D1TzD13
D1T3D11 DIsD12 D13D13

which is nonsingular by Assumption (A2).
Consider the candidate storage function U(x, ¢)
N
:V(x)+,Zl Ui(¢), which is positive definite. Setting
1=
u=u«(x) in (1) yields a closed-loop system satisfying

&+ 1200w v u.00) - wl?

W= (X) ][ r2() 00 | [w—wi(x)
<Yi(x) + V—Vi(X) ri(x) rZ(x) V—Vi(X)
3
+o[ Vvl |+ 2 e U

Then, from hypothesis (H1) and Assumptions (A1)
and (A2), we immediately have the following dissi-
pation inequality

% +] Z(x, W, v, u.(x)) ||2— yw|*<0

in the neighborhood of the origin. Thus, the closed-
loop system has L,—gain<y. It remains to prove that
the closed-1oop system is locally asymptotically sta-
ble. Tothisend, lettingw=0in (7), it yields

% <—]Z(x,0,v, u.(x)) |* + Y4(x)

+ [ — Wi (x) I 1) 1) | [ —we(x)
V=Ve(X) | | r2a(X) () ||V—w(X)
3
¥ o( V_—V\</(Z(>2)] ]"' igl $:(<) (8

which is negative semidefinite near the origin by
hypothesis (H1) and Assumptions (A1) and (A2). This
proves that the equilibrium [’é]:o of the closed-loop

system is stable. To prove the asymptotic stability of
the closed-loop system, note that equation (8) implies



Downloaded by [National Chiao Tung University ] at 02:33 27 April 2014

1072 Journal of the Chiness Institute of Engineers, Vol. 27, No. 7 (2004)

%Lg <—|z(x,0,v, u.(x)) |* + _ﬂl $i(c)<0  (9)

in the neighborhood of the origin. Therefore, the as-
ymptotic stability can be concluded by LaSalle’'s in-
variance principle.

IV.OUTPUT FEEDBACK CASE

The major contribution of this paper is to pro-
pose an output feedback controller

&=F (&, u.(&), v (&), w:(4)
+G(E)(y-Y(&, ux(4), v+(§), w«()))

U:U*(E) (10)
to solve the considered robust H* control problem,
where é00R"is defined in the neighborhood of the ori-
gin, and the output injection gain G(§) is a matrix to
be determined.

For convenience, the corresponding closed-
loop system is expressed as

x°=F°(x°, W, V)

y=Y°(x°, w, V)

Z=Z°(x° W, V)

li=LP(x°, w, V)

Vi:Ai(Ii)v i:l, 2, - N

where x°= é ,
oreo _| R, w, v, ux(§))
o0, w, v)= F(x, & w, V)

Yo(x°, W, V)=Y (X, W, v, ux(£))
Zo(x°, w, V)=Z(x, W, v, u=(£))
LP(x°, w, v)=Li(x, w, v, u«(4))
and
F(x, & w,V)=F (&, w-(£), v+(£), u-(£))
+G(&)(Y(x, w, v, u«())
=Y(&, w«(8), v+(8), u«(4)))

In what follows, we shall show how to

asymptotically stabilize the closed-loop system lo-
cally and render its L,—gain<y (from w to z) for all
AUA.

Define a Hamiltonian function H,: R*'xR?"xR"x
R™__Ras

H,(X°, py, W, V)
w-w.(x) |'
=pJFOo(X°, W, V) +| V—Vi(X)
U (&) —ux(x)
(L=-&)ry(x) (1—€9rp(x) I 13(X)
O (1=e)ron(X) (L—epryn(x) I 23(X)
r31(X) I 32(X) (1 + &5)rg5(X)
W — Wi (X)
0 v-w(X (11)
| U+ (&) —u.(X)

where 0<g;<1 and &3>0. Then, by implict function
theorem, there exist unique smooth functions W(x°,
p,) and ¥(x°, p,), defined in the neighborhood of (x°,
p.)=(0, 0), satisfying

OH (X9, p,, W, V)

=0
ow W= W(X, py), V=V(X°, py)
ov W=W(XC, py), V=V(X°, py)

with W(0, 0) =Q and V(0, 0) =0.
As aresult, we have the following theorem.

Theorem 2. Consider system (1). Suppose Assump-
tions (A1), (A2) and (A3), and hypothesis (H1) in Theo-
rem 1 hold. Supposethefollowing hypothesisalso holds.

(H2) There exists a smooth real-valued function
M (x°), which islocally defined in the neighbor-
hood of x°=0, and which vanishes at x=¢§ and is
positive elsewhere, such that the function

Y(%%) = Hyp(x®, Mia(x°), WX, Mo(x)) ,
U(X°, Mo(x))
vanishes at x=¢& and is negative elsewhere.

Then the system (1) with the output feedback
controller (10) islocally internally stable and has L ,-
gain (from w to z) less than or equal to yfor all ATA.

Proof of Theorem 2: Using the Taylor expansion
theorem yields
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Ha(x°, Myo(x9), W, V)

w-w(x®, MIo(x) ||

=Y o, MTox9))

Ry(x°)

W—W(X°, Myo(x°))
V=Y(X°, Mo(x9))

3
‘ (12)

where

Ry(x°)
9°H, 0°H,
ow2 ovow

0°H, 0°H,
oWovV g2

Nl

W= W(X0, M 1o(x9), v = 9(x% M fo(x9)

which is negative definite near the origin.
Consider the candidate storage function

U®, Q) = M(x) +V(X) + 2 Uy(<)

[¢]

X
which is positive for all ¢ #0. Along the trajecto-

ries of the closed-loop system, we have

o]
4O ) z0x, w, v, 0 (@) [P~ 2| wl?

w—w.(x) |"
YL+ Y00 + 2 4(@)+| Vo)
- u-(&) —u.(x)
£1r13(X) €15 12(X) 0 W= W (X)
E121(X) €1 2(X) 0 V—Vi(X)
0 0 — &3 33(X) | | U+ (&) —u.(X)
W—W.(X) 3
+0 V—V.(X)
U.(&) —u.(x)
- 2
|| W=, M)
v—U(x°, M J(x9))
- Ry(x)
w—wiee, ML) |
" | v—voxe, mLeon || |5 4

in the neighborhood of the origin. Then, we can prove
this Theorem via a procedure similar to the proof of
Theorem 1. So, the detailed proof isomitted here for
saving space.

The function Y,(x°) thus obtained has 2n

independent variables and actually involvesthe undeter-
mined matrix G(§). Inwhat follows, we shall show how
to reduce the number of independent variablesin Yx(x°),
and how to determine the output injection gain G(§).
To this end, define a Hamiltonian function Hs:

R'xR'xRPxR'xR™ R as
Ha(X, Ps, Psy W, V)
w—w.(x)]"
= paF(X, W, v, 0) — pJ Y(X, W, v, 0) + | V—Vi(X)
—Ux(X)
(L=g)ri(x) (L—&prp(x) r13(X)
O (@ =e)ron(®) (1—e&)ry(x) I 23(X)
r31(X) r32(X) (1 + &)rx)
[w—w (X)
O v—vi(x) (14)
| —Ux«(X)

and suppose the plant (1) satisfies the following ad-
ditional assumption.

Assumption (A4). The measurement output Y(x, w,
v, U) is such that the matrix D»;=[Y,/(0, 0, 0, 0) Y,(O,
0, 0, 0)] has full row rank.

Then, by implict function, theorem there exist
unique smooth functions Ww(x, ps, p,) and ¥(X, ps, Pa),
defined in the neighborhood of (X, ps, p4)=(0,0,0), sat-
isfying

OH35(X, Ps, Pay W, V)

ow =0

W =W(X, P3, Pa), V= Y(X, P3, Pa)
w(0,0,0)=0

OH3(X, P3, Pas W, V)
ov

=0
W=W(X, P3, Pa), V= (X, Pa, Pa)
v(0,0,0)=0

Moreover, it is easy to verify that

0*H3(X, P3, Pay WX, Pa, Pg), (X, Pa, Py))
opz

(X, p3, pa) =(0,0,0)

-1

1 [rn(o) 20 o1 g

= 21=6) P2 1,1(0) r(0)

which is nonsingular. Thus, there exists a smooth
function p4(X, p3), defined in the neighborhood of
(0,0) such that

OH (X, Ps, Psy WX, P3, Pg)s V(X, P, Pa))
0Py

=0 p4(0,0)=0

P4 = Pa(X, P3)

Then, we have the following result.



Downloaded by [National Chiao Tung University ] at 02:33 27 April 2014

1074 Journal of the Chiness Institute of Engineers, Vol. 27, No. 7 (2004)

Theorem 3. Consider system (1). Suppose Assump-
tions (A1), (A2), and (A3), and hypothesis (H1) in Theo-
rem 1 hold. Supposethefollowing hypothesisalso holds.

(H3) There exists a smooth, positive definite func-
tion Q(x), locally defined in the neighborhood
of the origin in R", such that the function

Y3(X) = Ha(x, Qx(X), Pa(x, Qx(x)) .
WX, QX(X), Pas (X, QX(X))).
U(x, Qx(X), Py (X, Q(X)))) (15)

is negative definite near x=0, and its Hessian matrix
isnonsingular at x=0. If the equation

QUG(X) = Py (X, Qx(¥)) (16)

has a smooth solution G(x), then the system (1) with
the output feedback controller (10) is locally inter-
nally stable and has L,-gain (from w to z) less than or
equal to yfor all ATA.

Proof of Theorem 3: It suffices to prove that
M(x%)=Q(x—&) with Qu(X)G(X)=pa=(x, QI(x)) Which
satisfies hypothesis (H2). Clearly, M(x°)=Q(x—€§)
vanishes at x=& and is positive elsewhere. Set
Y2(x9) = Ha(X, Myo(X), W(X°, Myo(X)),
U(X®, Mo(x°)))

where M(x°)=Q(x—&) and Qu(x)G(X)=pa+(x, Q}(X))-

It remainsto provethat Y,(x°) vanishesat x=¢&
and is negative elsewhere. This can be proven viaa

similar procedure as that presented in (Yung et al.,
1998). Therefore, it is omitted for saving the space.

V. EXAMPLE

Consider a system (denoted by system P) which
has the following realization

X; = A%, %o — 2X3 — X3X3 + XoW — 2X X,V + X, U2
X, = —14%, —5x3 + %xfxz -V, +2(1+x3)u

y= %xl + 5%, %, + 2X5%, + W

z=x¢+U
I, =x3
l,=x2
vi=44(l1)

Vo=4(15)

where the uncertain terms 4; and 4, satisfy ||44]]_,<3
and ||4,||_,<1. Suppose Assumption (A1) holds. Here
we want to find a state feedback controller and an
output feedback controller, respectively, such that the
closed loop system is internally stable and has L—
gain<l (form w to 2) for all possible A; and A,.
State Feedback Case:

For system P, it is easy to verify that Assump-
tion (A2) holds. From Theorem 1, it can be shown
that the positive definite function

V(X) = %xf + X3
satisfies Hypothesis (H1). The corresponding Y(X) is

9xxs  xi
4 1+

Y,(X) =—31x5 — x4

which is negative definite for all x£0. The worst-
case disturbancew is

W=Wi(X) = %xlx2

Moreover, if we choose the state feedback controller as
X% 2X.
1+x¢ ?

U=U«(X) =—

then the closed-loop system will be internally stable
and its L,—gain (from wto z) will be lessthan or equal
to 1.

Output Feedback Case:

For output feedback, it can be shown that As-
sumption (A4) holds. Moreover, the positive defi-
nite function Q(x)=x¢ + 5x3 satisfies Hypothesis (H3)
with 51=£3=%. The corresponding Yz(X) is

Y00 = (1 2o Xt - P8 -5 - 30

- xf(% + 5%, + 2x9X,)?
which is negative definite near x=0. Moreover,
Py (X) = %xl + 12X %, + 43X,

G1(X)

. Since
G,(X)

L et the output injection gain G(x)=

Qx(¥)G(X)=pa(x)

20 %1 (G0

has a smooth solution

= %xl + 12X, X, + 4X3X,

% +6X,
4x3

G1(x)
G,(X)
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So the output feedback H* control problem is solv-
able. Moreover, with the output feedback controller

&

£,=48,6,- 28+ B8+ 16,8+ £,(°1; +28)?

1+
+(Q+68,) ty-2¢, - 118,18, -283¢))
&,=—136,- 585 + 3858, - 2& + 21+ EDE)
+a8y-2e, -1 g, -28¢)

&

u=-—
1+ &2

-2¢,

the closed-1oop system will beinternally stable and its
L,-gain (from w to 2) will be less than or equal to 1.

VI. CONCLUSIONS

In this paper, a state-space characterization of
robust H* output feedback controllers for general
nonlinear systems with L,-gain-bounded structured
uncertainties has been proposed. Sufficient condi-
tions for the solvability of robust performance syn-
thesis problems have been represented in terms of two
Hamilton-Jacobi inequalities with nindependent vari-
ables. Based on these conditions, an output feedback
H* controller solving the considered problem has been
provided. The example shows that the provided
method is useful.
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