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Abstract—Optical wavelength-division multiplexed (WDM)
networks often include optical cross-connects with multigranu-
larity switching capability, such as switching on a single lambda, a
waveband, or an entire fiber basis. In addition, it has been shown
that routing and wavelength assignment (RWA) in an arbitrary
mesh WDM network is an NP-complete problem. In this paper, we
propose an efficient approximation approach, called Lagrangean
relaxation with heuristics (LRH), aimed to resolve RWA in
multigranularity WDM networks particularly with lambda and
fiber switches. The task is first formulated as a combinatorial
optimization problem in which the bottleneck link utilization is to
be minimized. The LRH approach performs constraint relaxation
and derives a lower-bound solution index according to a set of
Lagrangean multipliers generated through subgradient-based it-
erations. In parallel, using the generated Lagrangean multipliers,
the LRH approach employs a new heuristic algorithm to arrive
at a near-optimal upper-bound solution. With lower and upper
bounds, we conduct a performance study on LRH with respect
to accuracy and convergence speed under different parameter
settings. We further draw comparisons between LRH and an
existing practical approach via experiments over randomly gen-
erated and several well-known large sized networks. Numerical
results demonstrate that LRH outperforms the existing approach
in both accuracy and computational time complexity, particularly
for larger sized networks.

Index Terms—Combinatorial optimization problem, La-
grangean relaxation, multigranularity switching capabilities,
routing and wavelength assignment (RWA), wavelength-division
multiplexing (WDM).

I. INTRODUCTION

WITH advances in optical wavelength-division-multi-
plexing (WDM) technologies [1] and its potential of

providing virtually unlimited bandwidth, optical WDM net-
works have been widely recognized as the dominant transport
infrastructure for future Internet backbone networks. To main-
tain high scalability and flexibility at low cost, WDM networks
often include switching devices with different wavelength
conversion powers [2], [3] (e.g., no, limited- or full-range), and
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multigranularity switching capability [4], [5]. In particular, ex-
amples of multigranularity optical crossconnects (MG-OXCs)
include switching on a single lambda, a waveband (i.e., multiple
lambdas), an entire fiber, or a combination of the above.

One major traffic engineering challenge in such WDM
networks has been the routing and wavelength assignment
(RWA) problem [3], [6]. The problem deals with routing
and wavelength assignment between source and destination
nodes subject to the wavelength-continuity constraint [7] in
the absence of wavelength converters. It has been shown that
RWA is an NP-complete problem [7]. Numerous approxima-
tion algorithms [3], [6] have been proposed with the aim of
balancing the tradeoff between accuracy and computational
time complexity. In general, some algorithms [8], [9] focused
on the problem in the presence of sparse, limited, or full-range
wavelength converters. Some others made an effort to either
reduce computational complexity by solving the routing and
wavelength assignment subproblems separately [7], or increase
accuracy by considering the two subproblems [10] jointly.
However, with the multigranularity switching capability taken
into consideration, most existing algorithms become function-
ally or economically unviable.

In this paper, our aim is to resolve the RWA problem in
multigranularity WDM networks particularly with fiber switch
capable (FSC-OXC) and lambda switch capable (LSC-OXC)
devices. It is worth mentioning that, as shown in Fig. 1, an
MG-OXC node is logically identical to an individual FSC-OXC
node in conjunction with an external separated LSC-OXC
node. For ease of illustration, we adopt the separated node form
throughout the rest of the paper.

The problem is in short referred to as RWA . To tackle
the problem, we propose an efficient approximation approach,
called Lagrangean relaxation with heuristics (LRH). RWA
is first formulated as a combinatorial optimization problem in
which the bottleneck link utilization is to be minimized. The
LRH approach performs constraint relaxation and derives a
lower-bound solution index according to a set of Lagrangean
multipliers generated through subgradient-based iterations. In
parallel, using the generated Lagrangean multipliers, the LRH
approach employs a new primal heuristic algorithm to arrive
at a near-optimal upper-bound solution. With lower and upper
bounds, we conduct a performance study on LRH with respect
to accuracy and convergence speed under different parameter
settings and termination criteria. We further draw comparisons
between LRH and an existing practical approach [7] via ex-
periments over randomly generated and several well-known
large sized networks. Numerical results demonstrate that LRH
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Fig. 1. A combined MG-OXC node and its logically identical separated node form. (a) An MG-OXC node. (b) FSC-OXC and LSC-OXC nodes.

outperforms the existing approach in both accuracy and compu-
tational time complexity, particularly for larger sized networks.

The remainder of this paper is organized as follows. In
Section II, we first give the RWA problem formulation.
In Section III, we present the LRH approach and its primal
heuristic algorithm. In Section IV, we demonstrate numerical
results of the performance study and comparisons under ran-
domly generated and large sized networks. Finally, concluding
remarks are made in Section V.

II. RWA : PROBLEM FORMULATION

The RWA problem is formulated as a linear integer problem
stated as follows. Given a physical topology (with FSC-OXCs
and LSC-OXCs) and available wavelengths on each link, and re-
quested lightpath demands between all source-destination pairs,
determine the routes and wavelengths of lightpaths, such that the
maximum number of lightpaths on the most congested link is
minimized, subject to the wavelength continuity constraint. For
ease of illustration, we assume in the sequel that the number of
available wavelengths on each link is the same.

Due to the existence of FSC nodes, a graph transformation
is first required. For each FSC node with input (and output)
fibers, it is replaced by a bipartite subgraph with phantom
nodes connecting to input fibers, and another phantom nodes
connecting to output fibers. Besides, there are additional

phantom links connecting the phantom nodes. These
phantom links describe possible configuration combinations in-
side an FSC node. For ease of description, we summarize the
notation used in the formulation as follows.

Input values:
set of FSC nodes in the network;
set of LSC nodes in the network;
set of physical optical links;
set of phantom links within FSC nodes;
set of phantom input nodes for node ;
set of phantom output nodes for node ;
set of available wavelengths on each link; (assumed to
be the same for simplicity);
set of source-destination (SD) pairs requesting light-
path setup;
the set of SD pairs where node is the source node;
candidate path set for SD pair ;
lightpath demand for SD pair ;

, if path includes link ; , otherwise;
, if link is incident to node ; , otherwise;

Decision variables:
most congested link utilization (lightpath no. );

, if lightpath uses wavelength ; , otherwise;
, if phantom link is selected; , otherwise;

Problem (P):

subject to

(1)

(2)

(3)

(4)

(5)

(6)

or (7)

(8)

or (9)

(10)

The objective function is to minimize the highest utilization
, namely, the utilization on the most congested fiber link with

the maximum number of lightpaths passing through. Constraint
(1) requires that the number of wavelengths used on every link
be less than that of the most congested link. Constraint (2) is the
lightpath routing constraint, and restricts the lightpaths demands
of all SD pairs to be satisfied. Constraint (3) indicates that for
each link, there can be at most one lightpath using each wave-
length. Constraints (3) and (7) jointly correspond to the wave-
length continuity constraint. In particular, due to FSC nodes,
Constraints (5), (6), and (9) delineate the possible configura-
tion of FSC nodes. Constraint (4) states that paths can only
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Fig. 2. Lagrangean relaxation with heuristics (LRH).

pass through the phantom links determined by (5), (6), and (9).
Finally, Constraint (10) is a redundant constraint [11] to Con-
straints (3) and (4), which is added for optimization purpose.

The problem is NP-complete [7], and is unlikely to obtain an
exact solution for realistic networks in real-time. The problem
is approximated using the LRH approach presented in the next
section.

III. THE LRH APPROACH

The Lagrangean relaxation (LR) method [12]–[16] has been
successfully employed to solve complex mathematical prob-
lems by means of constraint relaxation and problem decompo-
sition. Particularly for solving linear integer problems, unlike
the traditional linear programming approach that relaxes integer
into noninteger constraints, the LR method generally leaves in-
teger constraints in the constraint sets while relaxing complex
constraints such that the relaxed problem can be decomposed
into independent manageable subproblems. Through such re-
laxation and decomposition, the LR method as will be shown
provides tighter bounds and shorter computation time on the
optimal values of objective functions than those provided by the
linear programming relaxation approach in many instances [14].

Essentially, the original primal problem is first simplified
and transformed into a dual problem after some constraints are
relaxed. If the objective of the primal problem is a minimization
(maximization) function, the solution to the dual problem is a
lower (upper) bound to the original problem. Such Lagrangean
lower bound is a useful by-product in resolving the Lagrangean
relaxation problem. Next, due to constraint relaxation, the
lower bound solutions generated during the computation might
be infeasible for the original primal problem. However, these
solutions and the generated Lagrangean multipliers can serve
as a base to develop efficient primal heuristic algorithms for
achieving a near-optimal upper-bound solution to the original
problem. Based on LR, the work reported in [15] and [16]
resolved the RWA problems for multifiber WDM networks

and WDM networks with limited-range wavelength converters,
respectively. To the best of our knowledge, the LR approach
is first time used in this paper to resolve an RWA problem for
multigranularity WDM networks.

In the sequel, we first give the transformed dual problem and
the derivation of the lower bound. We then present the primal
heuristic algorithm for obtaining the upper-bound solution.

A. The Dual Problem and Lower Bound

In the relaxation process, Constraints (1), (3), and (4) are first
relaxed from the constraint set. As shown in the first line of (11),
the three expressions corresponding to the three constraints, are
respectively multiplied by Lagrangean multipliers , , and ,
and then summed with the original objective function. Problem
(P) is thus transformed into a dual problem, called Dual_P, given
as follows:

Problem (Dual_P):

(11)



1744 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 9, NOVEMBER 2004

Fig. 3. MSSP algorithm.

subject to constraints (2), (5)–(10), where is
the nonnegative Lagrangean multiplier vector. To compute
the Lagrangean multipliers, we adopt the subgradient method
as delineated in the LRH algorithm outlined in Fig. 2. By
separating decision variable , and decision variable vectors
and , Problem (Dual_P) in (11) can be decomposed into three
independent subproblems—S1, S2, and S3. Specifically, we
have

(12)

where subproblem S1 is given by
, subject to constraint

(8); subproblem S2 is given by

, subject to constraints (2),
(7), and (10); and subproblem S3 is given by

, subject to
constraints (5), (6), and (9).

First, subproblem S1 is to determine the decision variable .
Clearly, is set to 1 if the corresponding cost
is negative; otherwise, is set to 0. Thus, S1 requires com-
putation time. Second, subproblem S2 is to compute the decision
variable vector . There exist (one for each source node)
independent problems, each of which is an edge-disjoint-path

problem, starting from the given source node and destined to
all destination nodes of the SD pairs with nonzero lightpath
demands. Due to multiple wavelengths on each link, the network
can be viewed as a layered graph with a total of layers, where
each layer corresponds to each wavelength. Each layer then con-
tains links and nodes. Notice that each
link can be designated with unit flow capacity and a nonnegative
cost, for example, , for each nonphantom link.

Accordingly, the edge-disjoint-path problem for each source
corresponds to a minimum-cost flow problem. Ultimately, with

layers considered as a whole, the minimum-cost flow
problem can be solved by the successive shortest path (SSP)
algorithm [14]. However, the integrated problem requires high
computational time complexity provided with large values
of . To reduce the complexity, we employ a modified
successive shortest path (MSSP) algorithm as shown in Fig. 3.
In the algorithm, we treat each layer graph individually and
perform incremental selection of minimum-cost edge-disjoint
path (from one layer). The computational complexity of MSSP
for each SD pair is , where ,

, and . All decision vari-
ables ’s for S2 can be obtained by repeatedly applying the
MSSP algorithm for all sources. Finally, subproblem S3 is to
resolve decision variable vector . The problem can be further
decomposed into (one for each FSC node) independent
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Fig. 4. Primal heuristic algorithm.

Fig. 5. Convergence speed versus accuracy on the basis of using termination requirement. (a) Sparse network. (b) Dense network.

problems, each of which can be optimally solved by a bipartite
weighted matching algorithm. Thus, for an bipartite
graph, the problem requires computation time.

According to the weak Lagrangean duality theorem [14],
in (12) is a lower bound of the original Problem (P) for any

nonnegative Lagrangean multiplier vector .
Clearly, we are to determine the greatest lower bound. Equation
(12) can be solved by the subgradient method, as shown as a
part of the LRH approach in Fig. 2. As shown in Fig. 2, the
algorithm is run for a fixed number of iterations (i.e., Itera-
tion_Number). (Notice that the algorithm can also be driven by
given a termination requirement, as will be shown in the next

section). In every iteration, the three subproblems (S1–S3) are
solved (described above), resulting in the generation of a new
Lagrangean multiplier vector value. Then, according to (12), a
new lower bound is generated. If the new lower bound is tighter
(greater) than the current best achievable lower bound (LB),
the new lower bound is designated as the LB. Otherwise, the
LB value remains unchanged.

Significantly, if the LB value remains unimproved for a
number of iterations that exceeds a threshold, called Qui-
escence_Threshold (QT), the step size coefficient of the
subgradient method is halved, in an attempt to reduce oscillation
possibility. Specifically, to update the step size and multiplier
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Fig. 6. Convergence speed versus accuracy on the basis of using fixed iteration number. (a) Sparse network. (b) Dense network.

Fig. 7. Network topology. (a) NET1 (seven nodes). (b) NET2 (ten nodes). (c) NET3 (11 nodes).

vector as specified in Fig. 2, the Lagrangean multiplier vector
is updated as , where is the step size,

determined by , in which
is the step size coefficient, is the current achievable

least upper bound obtained from the primal heuristic algorithm
described next, and is a subgradient of with vector
size .

B. The Primal Heuristic Algorithm and Upper Bound

The primal heuristic algorithm in the LRH approach is used
to find an updated upper bound . Similar to the lower bound
case, as given in Fig. 2, if the new upper bound is tighter
(smaller) than the current best achievable upper bound (UB), the
new upper bound is designated as the UB.

As shown in Fig. 4, the algorithm first settles the phantom
links suggested by the solution to subproblem S3 for all FSC
nodes, reducing the problem complexity. The cost of each link
is designated as the Lagrangean multipliers previously obtained.
Clearly, the cost of unaccepted phantom links are set to ,
excluding them from subsequent path consideration. The algo-
rithm then repeatedly applies the Dijkstra’s shortest path algo-
rithm in an effort to satisfy the lightpath demands of all SD pairs.

At the end of the computation, the costs of those links associ-
ated with the selected wavelengths/paths are set to to prevent
the links from being considered by other upcoming iterations. If
the number of wavelengths (lightpaths) used on a link is greater
than the current tightest lower bound multiplied by , indi-
cating potential congestion, the cost of the link is then scaled by
multiplying by a constant, referred to as the penalty term. This

is to avoid further lightpath setup through this link. The process
repeats until either the lightpath demands of all SD pairs are
satisfied (i.e., feasible), or there is no remaining resource (i.e.,
infeasible) in the network.

IV. EXPERIMENTAL RESULTS

We have carried out a performance study on the LRH
approach, and drawn comparisons between LRH and the
Banerjee–Mukherjee approach [7] via experiments over ran-
domly generated networks. Given the total number of nodes,
say , the greatest possible number of bidirectional links is

, where is the combination operation. Then, for a
network with nodes and connectivity , it is generated by
randomly selecting out of the bidirectional
links of the network. In the experiments, we used 32 wave-
lengths on each fiber link (i.e., ) for all networks.

A. Performance Study

We carried out two sets of experiments over 15-node random
networks with two connectivities and , which cor-
respond to sparse and dense networks, respectively. In the first
set of experiments, the LRH algorithm was terminated when
the gap between the UB and the LB on was less than or
equal to one out of the maximum number of wavelengths, or the
number of iterations exceeds 2000. While the former condition
corresponds to reaching a near-optimal upper bound solution,
the latter condition represents abnormal termination due to the
failure of achieving such accuracy or solution infeasibility. We
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Fig. 8. Comparisons of accuracy and computation time for random network NET1. (a) Accuracy for NET1. (b) Computation time for NET1.

Fig. 9. Comparison of accuracy for random networks NET2 and NET3. (a) NET2 with two FSC nodes. (b) NET3 with two FSC nodes. (c) NET2 with four FSC
nodes. (d) NET3 with four FSC nodes.

examine the total number of iterations required as a function of
the mean lightpath demand under different QT values. Numer-
ical results are plotted in Fig. 5. Notice that the absence of data
under certain demands corresponds to abnormal termination.

First, we observe that the dense network in general requires
less number of iterations before reaching a near-optimal solu-
tion. Significantly, we discover from the figure that parameter
QT plays a key role in the performance tradeoff between conver-
gence speed and accuracy. Smaller values of QT, which imply
frequent updates of the subgradient step-size coefficient, yield
faster convergence to near-optimal solutions but at the cost of
failing to reach accurate solutions under heavier lightpath de-

mands. Greater QT values on the other hand result in completely
opposite performance.

In the second set of experiments, the LRH algorithm was
terminated when the number of iteration exceeded a predeter-
mined Iteration_Number, ranging from 0 to 1500. Numerical
results are displayed in Fig. 6. We study both the lower and
upper bounds on under different QT values. We observe that
while the upper bound performance is irrelevant to QT, the lower
bound performance is highly dependent on the QT setting in the
same manner as above. Specifically, smaller QT values yield
faster convergence but only to looser lower bounds, while larger
QT values result in tighter lower bounds through gradual con-



1748 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 9, NOVEMBER 2004

Fig. 10. Comparison of computation time for random networks NET2 and NET3. (a) NET2 with two FSC nodes. (b) NET3 with two FSC nodes. (c) NET2 with
four FSC nodes. (d) NET3 with four FSC nodes.

vergence over a larger number of iterations. This fact reveals
that, by adjusting the QT value, the LRH approach is capable of
balancing the tradeoff between accuracy and efficiency for re-
solving various types of RWA problems.

B. Performance Comparisons

We further draw comparisons of accuracy and computation
time between our LRH approach and a linear programming
relaxation (LPR)-based method, i.e., Banerjee–Mukherjee [7].
For generating networks, it is impractical to experiment on
networks with smaller numbers of nodes and links. However,
for networks with greater than 11 nodes, we experienced that
the computation time using the LPR method became unman-
ageable. Accordingly in the experiment, we considered three
random networks, NET1, NET2, and NET3, as shown in Fig. 7.
NET1 consists of seven nodes including two FSC nodes, and
14 bidirectional links, corresponding to a connectivity of

. NET2 consists of ten nodes including two FSC (nodes
1–2) or 4 FSC (nodes 1–4) nodes, and 20 bidirectional links,
corresponding to a connectivity of . Finally, NET3 con-
sists of 11 nodes including two FSC (nodes 1–2) or four FSC
(nodes 1–4) nodes, and 22 bidirectional links, corresponding to
a connectivity of 0.4. Results are plotted in Figs. 8–10.

In the computation using our LRH approach, we adopted
QT and three different termination criteria. The three
criteria are: Iteration Number , and requirement

. The algorithm was written in the C
language and operated on a PC running Windows XP with a
2.53 GHz CPU power. In the LPR-based method, by removing

constraints (7) and (9), the original integer linear programming
(ILP) problem is relaxed to a linear programming (LP) problem.
Thus, the solution to the relaxed problem is a legitimate lower
bound of the original ILP problem. The upper bound is then
obtained according to the randomization procedure proposed
in [7]. In the experiment, the LP problem was solved using
the CPLEX software, operating in the same PC environment.
For both approaches, the accuracy is measured in terms of the
Gap(%), which is defined as the ratio of the difference of the UB
and LB values to the LB value in percentage.

First, we draw comparisons of accuracy and computation
time between the LRH approach and the LPR method for
random network NET1, as plotted in Fig. 8. Notice that the
LRH approach using fixed iteration numbers outperforms the
LPR method in accuracy under all lightpath demands. How-
ever, it appears that the LRH method using the termination
requirement yields a high gap under low demands. This is only
due to the magnification of the gap resulting from being divided
by a small LB value under low demands. In pafrticular, under
demand , the algorithm was terminated with UB
and LB , resulting a 100% gap. Surprisingly, we
discover from part of Fig. 8(b) that the LPR method requires
less computation time than that of the LRH approach using
fixed iterations. This indicates that LPR is an efficient approach
particularly for smaller size networks.

For random networks with size over ten nodes (NET2 and
NET3) as shown in Figs. 9 and 10, the LPR method yields
larger gaps, namely, poorer accuracy, and demands exponen-
tially increasing computation time. In contrast, the LRH ap-
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Fig. 11. LRH results for large sized networks. (a) USA network: topology. (b) ARPA network: topology. (c) USA network: computation accuracy. (d) ARPA
network: computation accuracy. (e) USA network: computation time. (f) ARPA network: computation time.

proach achieves identical lower and upper bounds, namely, the
optimal solutions under several lightpath demand cases. In fact,
we discover that both LRH and LPR approaches achieve tight
lower bounds. Significantly, the LRH heuristic algorithm ar-
rives at much improved upper bounds due to the use of the
Lagrangean multipliers derived upon seeking the Lagrangean
relaxation solution. It is worth noticing that the results of the
LRH approach using the termination requirement are not shown
in Figs. 9 and 10. This is due to its high accuracy and low com-
putation time, yielding impossible plotting within the figures.
Specifically, we discover from Fig. 9 that the LRH approach
using the 1000 iterations achieves as high accuracy as that using
the 2000 iterations under most demand cases. Significantly, the
approach using the requirement for NET2

reaches the small gap within only a total of (8, 40, 164, 480, 339,
287, 137, 424) iterations for lightpath demands ranging from 1
to 8, respectively.

Furthermore, as shown in Fig. 10, the LRH approach out-
performs the LPR method in computation time by at least one
order of magnitude under all cases. Notice that the LRH ap-
proach using the termination requirement incurs exceptionally
low computation times that are equal to (0, 1, 7, 24, 18, 17, 9, 31)
for eight lightpath demands, respectively. In this case, compared
to the LPR method, the LRH approach offers an improvement
of computation time by more than two orders of magnitude.

To observe the performance of our LRH approach for large
sized networks, we carried out experiments on two well-known
networks, i.e., USA and ARPA, as shown in Fig. 11(a) and (b),
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respectively. The USA network consists of 28 nodes including
3 FSC nodes and 90 bi-directional links, corresponding to a
connectivity of 0.12. The ARPA network has 61 nodes in-
cluding 4 FSC nodes and 148 bi-directional links, which corre-
sponds to a connectivity of 0.04. There are 64 wavelengths
on each fiber for both networks. Numerical results are displayed
in Fig. 11(c)–(f).

In the experiment, we adopted QT and two different
termination criteria, namely Iteration_Number and .
For the USA network, LRH achieves a guarantee of no more
than 8% gap between the upper and lower bounds under both
termination criteria. For the ARPA network, the LRH achieves
a guarantee of no more than 9.3% gap in less than 9400 s com-
putation time. We particularly observe from Fig. 11(d) that the
accuracy of the LRH approach based on the 500-iteration ter-
mination criterion is as high as that based on the 1000-iteration
termination criterion under most lightpath demand cases. This
again demonstrates the superiority of the LRH approach to the
RWA problem with respect to both computation accuracy and
time complexity for large sized networks.

V. CONCLUSION

In this paper, we have resolved a RWA problem using the
LRH method, which is a Lagrangean relaxation based approach
augmented with an efficient primal heuristic algorithm. With
the aid of generated Lagrangean multipliers and lower bound
indexes, the primal heuristic algorithm of LRH achieves a
near-optimal upper-bound solution. A performance study de-
lineated that the performance tradeoff between accuracy and
convergence speed can be manipulated via adjusting the qui-
escence threshold parameter in the algorithm. We have drawn
comparisons of accuracy and computation time between LRH
and the LPR-based method, under three random networks.
Experimental results demonstrated that, particularly for small
to medium sized networks, the LRH approach using a termina-
tion requirement profoundly outperforms the LPR method and
fixed-iteration-based LRH, in both accuracy and computational
time complexity. Furthermore, for large sized networks, i.e.,
the USA and ARPA networks, numerical results showed that
LRH achieves a near optimal solution within acceptable com-
putation time. The above numerical results justify that the LRH
approach can be used as a dynamic RWA algorithm for small
to medium sized networks, and as a static RWA algorithm for
large sized networks.
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