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The availability of genome-wide gene expression data provides a unique set of 

genes from which to decipher the mechanisms underlying the common transcriptional 
response. A set of transcription factors which bind to target sites regulate the gene tran-
scription cooperatively. This motivates us to discover the site associations of known 
transcription factor binding sites and certain repetitive elements. Those over-represented 
repetitive elements in the promoter regions of functionally related genes are predicted as 
putative regulatory elements. The study is to analyze how the differential site associa-
tions of the known regulatory sites and putative regulatory elements are distributed in the 
promoter regions of groups of functionally related genes. The functional-specific site 
associations are discovered by a statistical approach and the over-represented repetitive 
elements involving in the site associations are possible to be transcription factor binding 
sites. The site associations facilitate to predict functional-specific putative regulatory 
elements and to identify genes potentially co-regulated by the putative regulatory ele-
ments. Our proposed approach is applied to Saccharomyces cerevisiae and the promoter 
regions of yeast ORFs.  
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1. INTRODUCTION 
 

Identification of transcriptional regulatory elements within promoter regions is a 
topic of special interest for biologists since such elements govern the regulation of gene 
expression. Transcription factors (TFs), which are proteins, play a major role in gene 
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regulation in eukaryotic organisms. The factors can bind to specific sites, specifically 
transcription factor binding sites or regulatory sites, in the promoter region of particular 
genes and interact with RNA polymerase and other factors to regulate the transcription of 
genes. Experimental regulatory profiles of known and unknown genes can be determined 
at a genomic scale thanks to the new technologies such as DNA microarray technology. 
De Risi et al. [1] have studied the diauxic shift in yeast and found several distinct gene 
groups by clustering the gene expression profiles. De Risi et al. also show the presence 
of several regulatory sites in promoter regions of the respective genes. Helden et al. [2] 
also studies the dataset constructed by De Risi et al. and systematically searched the 
promoter region of potentially co-regulated genes for over-represented oligonucleotides 
which called be transcription factor binding sites and involve the gene regulation. A sys-
tematic analysis of over-represented sequence patterns in clusters of promoter regions 
obtained by clustering the diauxic shift expression profiles has been done by Brāzma et 
al. [3]. It was shown that over-represented pattern occurrence in promoter regions for 
genes from expression profile clusters of at least 25 genes cannot be explained by statis-
tical chance. 

Many experimental identifying transcription regulatory sites have been collected in 
TRANSFAC [4], which is the most complete and well maintained database on transcrip-
tion factors, their genomic binding sites and DNA-binding profiles [4]. Notably, consen-
sus patterns or nucleotide distribution matrices can be used to describe transcription fac-
tor binding sites. While describing binding sites, Brāzma et al. [5] stated, “The matrix 
representation is generally considered to be the best available means for representing the 
consensus. However, at present, most consensus descriptions are unreliable in the sense 
that they tend to give many false positives when compared against the genome sequences 
of even modest length”. Therefore, this study describes the binding sites using consensus 
patterns. Brāzma et al. [5] developed a general software tool for finding and analyzing 
the site associations of transcription factor binding sites that occur frequently in gene 
upstream regions in the yeast genome. In addition to analyzing the association rules of 
regulatory sites, their work focused on promoter and random regions, in which their ratio 
appears. Their tool can find all the site associations satisfying the given parameters with 
respect to the given set of gene promoter regions, its counterset, and the chosen set of 
sites. Previous research in Horng et al. [6, 7] also investigated the site associations of 
regulatory sites and over-represented repeats in yeast genome by a data mining approach, 
and some significant oligonucleotides are predicted as putative sites based on the their 
significant correlation to known sites. 

Composite regulatory elements provided in COMPEL [8] contains two closely situ-
ated binding sites for distinct transcription factors and represents minimal functional 
units providing combinatorial transcription regulation [8]. They address the fact that the 
complex differential expression of genes in higher organisms is achieved through com-
binatorial regulation of transcription by specific combination of transcription factors 
binding to their target sites in the regulatory regions of these genes. Their database em-
phasizes the key role of specific protein-protein interactions for gene regulation in a par-
ticular cellular content [8]. In comparison with our proposed approach, a data mining 
approach is used to computationally discover the site associations of target sites which 
are more than two. We investigate the site associations of more than two target sites of 
regulatory elements in contrast to the two targets sites in COMPEL. 
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The RSDB [7] database contains repetitive elements, which are classified into exact, 
tandem, and similar elements. We observe that the transcription factor binding sites in 
TRANSFAC have the property of repetitiveness. This motivates as to discover the site 
associations of known transcription factor binding sites in TRANSFAC and certain re-
petitive elements. Those over-represented repetitive elements may or may not be putative 
regulatory elements. The repetitive sequences in our experiments include direct and in-
verted repetitive sequences whose length is between 5 and 25 nucleotides. 

To deal with such a large amount of data, data mining plays a prominent role in 
knowledge extraction. The enormous number of sequenced genomes, gene identification 
data, gene expression experimental profiles, and genes categorized into functional classes 
allows the use of computational techniques to investigate transcriptional regulatory ele-
ments in the gene promoter regions and decipher the mechanisms of gene transcriptional 
regulation. Frequently used data mining approaches include association rules, statistics, 
neural network, clustering, classification, and genetic algorithms, etc. Agrawal et al. [9] 
introduced the problem of mining association rules over basket data. The data mining 
techniques might mine an enormous number of associations. Such a large number of as-
sociations makes it extremely difficult to identify those which useful or interesting. 
Chi-square testing is one of the approaches to remove insignificant ones by testing the 
occurrence correlation of the two events in a association [10]. 

This study initially identifies the site associations of known regulatory sites ex-
tracted from TRANSFAC [4] and over-represented repetitive oligonucleotides retrieved 
statistically from RSDB [7] in the promoter regions of a particular set of selected genes. 
Mining association rules are then applied to mine the associations from the combinations 
of over-represented repetitive elements and known regulatory sites. The site associations 
found in each functional gene group are then statistically analyzed in all other groups. A 
Chi-square test is applied to determine the dependence of the sites of the site associations; 
the R-value of each combination is computed among groups of genes to find its differen-
tial occurrences in each group of functionally related genes. Those target sites in highly 
dependent site associations with large R-values, i.e., small p-values, in a functional gene 
group are candidates of putative functional-specific regulatory sites in the group because 
of their specificities in that functional gene group. 

2. OBSERVATION 

We observe the repetitive property of yeast transcription factor (TF) binding sites in 
TRANSAC [4] by computationally locating the sites in the yeast genomic sequences and 
gene upstreams. The number of occurrences of yeast TF binding sites in TRANSAC are 
partially shown in Table 1. For instance, the site “GATAA” with accession number 
“[R00494]” occurs 39,395 times in the whole yeast genome, 12,401 times in the gene 
upstreams, and 9,982 times in the coding regions of genes. The site can be located in the 
coding regions or in the upstreams of 5,324 genes. The expectation of occurrence in up-
streams is 12333.48 times, while in coding regions it is 9676.35 times. In comparison 
with the other oligonucleotides occurring in the gene upstreams, we compute the occur-
rences of the oligonucleotides in the upstreams, coding regions, and the whole genome as 
shown in Table 2. For example, the repetitive oligonucleotide “ACCCTA” given in the  
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Table 1. The occurrences of partial TF binding sites for yeast genome in TRANSAC [4]. 

Amount of occurrences (times) in 
Sites in 

TRANSFAC 

Accession 

Number 

Site ID in 

TRANSFAC 
Genome 

Background 

probability 

Up-

streams 
Exp. 

Coding 

Regions 
Exp. 

No. of 

Genes 

Related 

GGGG [R00496] Y$GAL1_11 29,694 2.44*10-3 8,892 9296.37 8,417 7293.55 4,340 

CCGA [R00256] Y$CYC1_03 38,751 3.19*10-3 12,121 12131.86 9,798 9518.17 5,239 

GAGGA [R00492] Y$GAL1_07 24,972 2.05*10-3 7,859 7818.04 6,066 6133.72 4,127 

GATAA [R00494] Y$GAL1_09 39,395 3.24*10-3 12,401 12333.48 9,982 9676.35 5,324 

AGCCT [R00495] Y$GAL1_10 15,199 1.25*10-3 4,785 4758.38 3,994 3733.24 3,355 

ATATAA [R00497] Y$GAL1_12 18,120 1.49*10-3 4,853 5672.87 6,437 4450.70 4,216 

GAGTCA [R00645] Y$HIS3_02 3,911 3.22*10-4 1,243 1224.43 962 960.63 1,000 

CAGTCA [R00656] Y$HIS4_13 4,472 3.68*10-4 1,407 1400.06 1,116 1098.43 1,169 

AAGTCA [R00831] Y$ILV1_03 7,945 6.54*10-4 2,605 2487.36 1,848 1951.48 1,846 

GATGACC [R00260] Y$CYC1_07 1,148 9.44*10-5 367 359.41 269 281.98 302 

ATGAAACA [R01838] Y$STE2_04 1,054 8.67*10-5 339 329.98 261 258.89 322 

ATGAAACC [R01842] Y$MFA2_01 621 5.11*10-5 211 194.42 134 152.53 153 

ATGTAAAT [R01362] Y$STE2_02 963 7.92*10-5 278 301.49 329 236.54 376 

AAGTACAT [R01361] Y$STE2_01 701 5.77*10-5 220 219.46 197 172.18 236 

ATGACTAAT [R02023] Y$TRP4_02 93 7.65*10-6 28 29.12 35 22.84 42 

AGCCGCCGA [R02319] Y$CAR1_01 41 3.37*10-6 6 12.84 26 10.07 36 

(Abbreviation: exp. denotes the expectation amount of site occurrence times in the upstreams or coding regions.) 

 

Table 2. The occurrence amount of oligonucleotides in yeast genome. 

Amount of occurrences (times) in 
Repetitive 

Oligonucleotide 
Genome 

Background 
probability 

Up-
streams 

Exp. 
Coding 
Regions 

Exp. 

No. of 
Genes 

Related 

ACCCTA 2,724 2.24*10-4 822 853.51 793 669.63 834 

ACCCTC 2,917 2.40*10-4 881 913.98 795 717.07 851 

AGTACT 3,073 2.53*10-4 933 962.86 879 755.42 973 

AGTAGA 6,673 5.49*10-4 1,970 2090.85 1,798 1640.40 1,846 

AGTAGC 4,912 4.04*10-4 1,545 1539.08 1,299 1207.50 1,377 

GATACC 4,829 3.98*10-4 1,638 1513.07 1,005 1187.09 1,054 

GATAGA 7,030 5.79*10-4 2,163 2202.71 1,807 1728.16 1,824 

TGGTAA 10,513 8.66*10-4 3,493 3294.04 2,214 2584.37 2,129 

AGAGTTA 1,859 1.53*10-4 610 582.48 441 456.99 485 

CAATCAG 1,358 1.12*10-4 445 425.50 320 333.83 355 

CGTCTCC 592 4.87*10-5 199 185.49 148 145.53 169 

CGTCTGA 652 5.37*10-5 196 204.29 165 160.28 190 

ACAAACTC 514 4.23*10-5 175 161.05 112 126.35 133 

CACAGAAGA 164 1.35*10-5 57 51.39 39 40.32 46 

AGAGTGG 983 8.09*10-5 310 308.00 271 241.65 311 
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first row occurs 2,724 times in the whole yeast genome with probability 2.24 * 10−4 (The 
size of yeast genome is 12,146,300 bps). The expectation of occurrence times in up-
streams is 853.51 times, and in coding regions it is 669.63.  

From Tables 1 and 2, we find both known TF binding sites in TRANSFAC and re-
petitive elements have the property of repetitiveness. Therefore, the occurrences of re-
petitive sequences correlating to the occurrences of known sites can be investigated as 
putative binding sites, tissue-specific regulatory sites, functional-specific binding sites, or 
other unknown regulatory signals. After statistically analyzing and data mining, the dis-
covered association of site occurrences also reveals that the sites potentially regulate the 
transcription of a particular set of genes. 

3. METHODS 

The proposed approach is given as follows. We first preprocess the target sites and 
gene promoter regions to find the site associations of known sites and over-represented 
oligonucleotides located in the promoter regions of the groups of functionally related 
genes. Next, a mining association rule algorithm [9] is applied to mine the association 
rules by combining the known sites and over-represented repeats. A Chi-square test is 
then used to select certain interesting and significant rules. The R-value of each site com-
bination is computed to investigate the differences of transcriptional regulation in differ-
ent functional gene categories. Finally, the over-represented repeats within the significant 
and differential site associations, which are mapped to the items in the association rules, 
are selected as putative regulatory sites [6].  
 
Materials 

Before analyzing of the associations of known site homologs and over-represented 
repetitive sequences located in the upstream regions, we collect the sequence of yeast 
genome and the gene annotations from NCBI1. 6,350 yeast genes and ORFs are docu-
mented in MIPS [11], and 3,529 genes are classified into at least one functional category. 
The experimental identifying transcription factor binding sites can be obtained from 
TRANSFAC [4]. The TRANSFAC database (professional 5.4) contains 11,537 site se-
quences of which the number of yeast sites is 285. Most sites are also consensus patterns. 
The data in TRANSFAC has the following features. A transcription factor binding site 
accession number may have different consensus sequences. Different binding site acces-
sion numbers may have a same consensus sequence. Wild characters such as ‘M’ or ‘W’ 
used in TRANSFAC cause the sequences to cover other sequences. Small consensus se-
quences may appear within larger ones.  

During the detection of over-represented oligonucleotides, the occurrences of the 
oligonucleotides in yeast genome are necessary. Repetitive sequences with lengths from 
10 to 25 bps of the yeast genome can be obtained from the repetitive sequence database 
(RSDB) [7]. For oligonucleotide lengths from 4 to 9 bps, we proposed an algorithm to 
construct the yeast genome sequence into a special computational data structure, i.e., 
Suffix-array [12], to reduce the algorithmic complexity when searching an oligonucleo-

 
1 http://www.ncbi.nlm.nih.gov/. 
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tide in a yeast genome sequence. Accordingly, the occurrences of a query oligonucleo-
tide are returned efficiently by querying the suffix-array of the under consideration ge-
nome. 

Typically, the lengths of the query oligonucleotides in the application of regulatory 
site prediction do not exceed 25 bps. We construct the suffix-array and support the que-
rying of occurrences of oligonucleotides whose length is from 4 to 25 bps. When per-
forming the oligonucleotide analysis to discover over-represented repeats in the upstream 
regions of genes, the frequencies of occurrence of all possible oligonucleotides whose 
length is from 4 to 25 bps can be efficiently returned by querying in the suffix-array. Due 
to the frequent update of the genome assembly sequences, the method is designed to effi-
ciently reconstruct the index of whole genome sequences. 

Preprocessing and Mapping 
First, the transcription factor binding sites categorized in yeast from TRANSFAC 

and repetitive oligonucleotides in RSDB and the suffix-array are prepared. For each 
group of functionally related genes, all of the known regulatory sites in yeast are directly 
located the promoter region from – 1 to – 800 bps (+ 1 denotes the gene translational 
start site), and the repetitive oligonucleotides are also located. The occurrences of each 
known site and repeats are calculated and provided for statistical analysis. The occur-
rence combination of the known sites and repeats within each promoter region are stored 
for data mining.  

Statistical Analysis of Over-Represented Oligonucleotides 
To detect the over-represented (OR) oligonucleotides in upstream regions, oligo- 

analysis has been described before and is based on a systematic counting of occurrences 
for all the possible oligonucleotides of a given sequence [2]. An advantage of the method 
is that it is able to detect all the over-represented patterns of a given length in a single run. 
Here we perform a statistical method to discover statistically significant oligonucleotides, 
i.e., small length of DNA sequences, within the upstream regions of genes by comparing 
their occurrence frequencies to the background occurrence frequencies in the whole yeast 
genome, where the occurrence frequencies of oligonucleotides are obtained from the 
suffix-array. Based on the concept addressed above, we attempt to test the hypothesis of 
whether an oligonucleotide is over-represented in gene upstream regions.  

Nucleotide succession is not random, and some oligonucleotides are clearly over- 
represented, notably the poly (A), poly (T), and poly (AT) chains. An additional bias re-
sults from the fact that oligonucleotides are differently represented in coding regions 
versus non-coding sequences [2]. A specific expected frequency has thus to be used for 
each oligonucleotide sequence. Helden et al. proposed a statistical method to estimate the 
probability of observing exactly n occurrences of the oligonucleotide b within promoter 
regions of a gene family by the binomial formula. The values with the highest probability 
are the most over-represented oligomers. The advantage of the significance value is that 
its threshold can be selected and its values interpreted independently of oligonucleotide 
size, upstream sequence size, and number of genes within the family. The over-repre-
sented repetitive sequences of Yeast are obtained by applying the statistical method in [2]. 
The oligonucleotides, which have significant values exceeding the threshold, are selected 
as significant over-represented ones. 
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We classify the statistics according to several groups of genes. These datasets make 
ideal datasets to use for data mining. The function catalogues are collected from MIPS 
[11]. Then a specific expected frequency is used for each repetitive oligo-mers to deter-
mine the statistical significance.  

 
T = 2 × S × (Li − w + 1)                                              (1) 
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where Fe{b} is the frequency observed throughout all non-coding segments of the whole 
yeast genome; T represents the total number of possible matching positions for a pattern 
of length w across both strands of the sequence set; S is the number of sequences in the 
set; Li is the length of the ith sequence in the set; P(occ{b} = n) is the probability of ob-
serving exactly n occurrences of the oligomer b; P(occ{b} ≧ n) is the probability to ob-
serve n or more occurrences of the oligomer b. 

D = 4w − (4w − Npal)/2                                                (4) 

D is the distinct number of oligomers; Npal is the palindromic oligomers. Lastly we define 
a significance coefficient 

sig = − log10 [P(occ{b} ≥ n) × D]                                      (5) 

for which the highest values for this parameter correspond to the most over-represented 
sequences. 
 
Mining Site Occurrence Associations 

In the following we describe how to mine associations from the combinations of the 
transcription factor binding sites and over-represented repetitive sequences. Consider a 
large database with transactions, where each transaction consists of a set of items. An 
association rule is an expression such as A => B, where A and B are the sets of items. The 
related mining association rule is that a transaction in the database that contains A also 
tends to contain B. For example, 90% of the people who purchase beer also purchase 
diapers. Herein, 90% is called the confidence of the rule. The support of the rule A => B 
used here is the percentage of transactions that contain both A and B.  

The formal statement of the problem is described below. Let S = {s1, s2, …, sm} be a 
set of known sites of yeast in TRANSFAC and R = {r1, r2, …, rn} be a set of over-repre-
sented repetitive sequences in yeast from RSDB. The union of the sets S and R is called 
‘item set’. Let G = {g1, g2, …, gm} be a group of genes with differential expression in a 
specific tissue. Each promoter region of a gene is mapped to a transaction containing a 
set of known regulatory sites and over-represented repeats, also called items. 

Assume that a promoter region S contains A, a set of items of I, if A ⊆ S. An asso-
ciation rule is an implicate of the form A => B, where A ⊂ I, B ⊂ I, and A ∩ B = 0. The 
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rule A => B holds in the set of promoter regions D with confidence conf if c% of transac-
tions in D contains both A and B. The rule A => B has support sup in the repetitive se-
quence set D if s% of promoter regions in D contain A ∪ B. The association rules are 
generated if the rule has a higher support and confidence than specified by the user. The 
a priori algorithm [9] is then implemented to mine association rules. 

Fig. 1 presents an example of the mapping between the gene promoter regions and 
regulatory sites, i.e., known site homologs and over-represented oligonucleotides. GID 
denotes the identities of gene upstreams, and RID denotes the identities of the regulatory 
sites, i.e., known site homologs or OR oligonucleotides. For example, YAL063C gene 
upstream contains the regulatory sites RID{1, 3, 4}. Li denotes the phase of discovering 
combinations of length i. The combination of {2, 3, 5} in L3 with support 2 means two 
genes of YBR162C and YGR033C contain the site associations. 

 
Fig. 1. An illustrative example of a mining association of regulatory sites. 

 
Filtering Insignificant Site Associations 

In the site co-occurrence detection step, the site combinations co-occurring in the 
upstream regions are detected. In order to filter insignificant site combinations, two sta-
tistics, Chi-sequence tests and cumulative hypergeometric distribution, are incorporated. 
The basic idea is that the sites in the left-hand-side part and right-hand-side part of a site 
combination may emerge independently in the upstream regions in a group. Note that a 
site combination is divided into left-hand-side and right-hand-side parts and is denoted as 
the example of “aaatat, ttgaa => gcggag”. To filter insignificant ones, a Chi-square test is 
performed to investigate each site combination to test the hypothesis that the occurrence 
of sites in the left-hand-side part of the site combination is independent of the site in the 
right-hand-side part. In rejecting the hypothesis, the site combination is considered to be 
a significant site combination. This means that all sites in the left-hand-side part occur 
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significantly concurrently in the upstream regions with the site in the right-hand-side part 
of the site combination, if the chi-square value exceeds 3.84.  

In statistics, the Chi-square test (χ2) is widely used for testing independence and/or 
correlation and is applied to discover significant associations rules in [10]. A huge num-
ber of combinations is found in each group of functionally related genes and then a 
Chi-square test is used to investigate the dependence of the sites of each combination in 
all functional gene groups. However, any combinations may have very different site de-
pendence among the genes in the group when the Chi-square values exceed a threshold 
of 3.84 with degree of freedom 2 and α = 0.05. Let f0 be an observed frequency and f an 
expected frequency, Chi-square is used to test the significance of the deviation from the 
expected values. The value of χ2 is defined as 

( )2

02 f f
x

f

−
=∑                                                   (6) 

In Fig. 2, we would like present an example to show how to test the correlation of 
the sites in the combination “aaatat, ttgaa”. The two sequences, “aaatat” and ”ttgaa”, oc-
cur concurrently in 23 of 35 genes in the category “Drug Transporters”. Six genes cannot 
be found in any of the two sequences. Five genes contain the sequence “ttgaa”, but not 
“aaatat”. The four conditions are constructed as a 2 by 2 contingency table shown in Fig. 2.  

 

  ttgaa ttgaa  Row Total 

 aaatat 23 1 24 

 aaatat 5 6 11 

Column Total:  28      7 35 

Fig. 2. A contingency table to show the genes containing sites “aaatat” and “ttgaa”. 

 
If the correlation of the two sites is independent, we expect the total number of 

“aaatat” site, i.e., 24, will be divided into proportions of 80% (28/35) and 20% (7/35). A 
χ2 value of 0 implies the sites are statistically independent. If it is higher than 3.84 is at 
the 95% significance level with 1 degree of freedom, we reject the hypothesis of inde-
pendence of site occurrences, and say that the sites occurrences are correlated. 

( ) ( ) ( ) ( )2 2 2 2

2 24*0.8 23 24*0.2 1 11*0.8 5 11*0.2 6
11.965

24*0.8 24*0.2 11*0.8 11*0.2
X

− − − −
= + + + =  

Detecting Differential Site associations 
In order to investigate the occurrence of the same site combination mined in differ-

ent functional categories, we propose the R-statistic to compute the hypothesis that the 
site combination occurrence in each category is consistent with the others. If rejecting the 
hypothesis, i.e., the R-value is higher than a specified threshold 2.0 then the biological 
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meaning is the site combination occurs differentially in particular functional category. 
Computing R-statistic can extract the site associations whose occurrence varied most 
across different functional categories. The statistic is denoted as Rj for each combination 
j given by Eq. (7), where m is the number of functional categories, Xi,j is the occurrences 
of the combination j in the functional category i, and Ni is the total number of genes, i.e., 
ORFs, in the ith functional category. The frequency fj of the combination j in all of the 
functional categories is given by Eq. (8). 

,
,

1

ln
m

i j
j i j

i i j

X
R X

N f=

 
=   

 
∑                                                (7) 

,
1

1

m

i j
i

j m

i
i

x
f

N

=

=

=
∑

∑

                                                       (8) 

For instance, the number of ORFs in the numerics of MIPS functional categories of 
0104, 0201, 0316, 0510, and 0722 are 31, 34, 90, 36, and 43, respectively. The occur-
rences of the combination, “tataca, ttgaaa”, is 16, 4, 26, 12, and 13, respectively. The 
R-value in the example is 4.52 as follows. The greater the R value computed from dif-
ferent functionally gene groups, the more differential the combination among the select 
groups is. 

16 4 26 12 13
0.3

31 34 90 36 43jf
+ + + += ≈

+ + + +
 

4. RESULTS 

Table 3 shows detailed information on transcription factor binding sites in 
TRANSFAC, and over-represented oligonucleotides found in different functional catego-
ries in the yeast genome. For example, the first row in Table 3 indicates about 157 
over-represented repeats are selected after applying statistical analysis in the functional 
category of “amino-acid transport”. Also, 33 known sites in TRASFAC can be located in 
the gene promoter regions in this category. We then mine the associations from the site 
associations of these over-represented repeats and known site homologs. 

Table 4 shows the associations mined by our proposed approach in each group of 
functionally related genes. The minimum support and confidence are set to 40%. As 
given in Table 4, 110 associations are discovered in 23 promoter regions in the function 
category of “Amino-acid transport”, and 121 associations are discovered in 23 promoter 
regions in the function category of “Amino-acid transport“. After pruning by chi-square 
testing, 11 significant associations are found. 

Fig. 3 shows an example of the occurrence of the association, e.g., “RAF, GAL4, 
DBF-A => gaaata”, in the functional category of “Purine and pyrimidine transporters”. 
The gene YPL134C with the annotation “mitochondrial 2-oxodicarboxylate transport  
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Table 3. The number of known site homologs and OR oligonucleotides in the gene up-
streams of gene functional categories.  

Amount 
MIPS functional category 

MIPS in 
numeric OR 

oligonucleotides 
Known sites 

homologs 

Amino-acid transport 01.01.07 157 33 
Deoxyribonucleotide metabolism  01.03.07 134 29 
Polynucleotide degradation 01.03.16 156 33 
Nucleotide transport  01.03.19 70 36 
Lipid and fatty-acid transport 01.06.13 82 37 
Other proteolytic degradation 06.13.07 64 29 
Anion transporters (Cl, SO4, PO4, etc.)  07.04.07 85 36 
Homeostasis of protons 13.01.02 175 45 

Table 4. The associations of known sites and repeats mined in each functional category. 

MIPS functional category Amount 

 ORFs 
Site associations 
(before pruning) 

Filter by 
chi-square 

value 

Significant site 
associations 

Amino-acid transport 23 121 110 11 
Deoxyribonucleotide metabolism  12 156 143 13 
Polynucleotide degradation 22 90 78 12 
Nucleotide transport  16 59 54 5 
Lipid and fatty-acid transport 18 70 64 6 
Other proteolytic degradation 13 73 64 9 
Anion transporters (Cl, SO4, PO4, etc.)  17 123 111 12 
Homeostasis of protons 32 84 65 19 

 
Fig. 3. An example of prediction of putative regulatory sites. 

 
protein” is categorized as “Purine and pyrimidine transporters” in MIPS [11]. The asso-
ciation rule shown in Fig. 3 consists of three known sites, “CCGA/RAF”, “GA-
tAA/GAL4”, and “TTATC/DBF-4”, and one OR oligonucleotide, “gaaata”. Note that the 
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OR oligonucleotide in the site association are predicted as putative regulatory sites in the 
functional category of “Purine and pyrimidine transporters”. 

Several interesting and significant association rules in each functional category are 
given in Table 5. Column one in Table 5 is the functional categories in MIPS; column 
two is the associations containing known regulatory sites in uppercase and over-repre-
sented oligonucleotides in lowercase; column three is the confidence value of the asso-
ciation; column four is the support value; column five is the Chi-square value; and col-
umn six is similar to the second column but using the TF binding site names instead. For 
instance, the association of “TTATC => cgccg” is significant, which was discovered in 
“Amino-acid transport”; the support value is 0.522, the confidence value is 0.632, and 
the χ2 value is 5.282. “TTATC” are homologous to the known sites Y$ARS1_05 and 
“cgccg” is a significant over-represented oligonucleotide.  
 

Table 5. Significant associations mined in each of the MIPS functional categories. 

MIPS functional 
category Site associations Conf. Sup. χ 2 

Site associations 
(names of homologous known 

site with TRANSFAC ID) 
TTATC=>cgccg 0.632 0.522 5.282 Y$ARS1_05=>cgccg 
ATATAA=>TTATC 0.938 0.652 4.542 Y$GAL1_12=>Y$ARS1_05 
ATATAA=>GATAA 0.938 0.652 7.413 Y$GAL1_12=>Y$GAL1_09 
GGGG=>aagcg 0.789 0.652 4.542 Y$GAL1_11=>aagcg 
ATATAA=>cggcaa 0.625 0.435 4.537 Y$GAL1_12=>cggcaa 
cgtgc=>gcgcc 0.786 0.478 4.707 cgtgc=>gcgcc 

Amino-acid transport 

cgtgc=>gccgc 0.786 0.478 7.078 cgtgc=>gccgc 
CATCC=>TATAAA 0.857 0.5 5.182 Y$ENO2_03=>Y$CUP1_07 
GATAA=>aacgc 0.9 0.75 7.2 Y$GAL1_09=>aacgc 
cgcac=>cgtcc 1 0.5 6 cgcac=>cgtcc 
aaacg=>cgcgta 0.667 0.5 4 aaacg=>cgcgta 

Deoxyribonucleotide  
metabolism 

aaacg=>acccg 0.778 0.583 5.6 aaacg=>acccg 
ATATAA=>aatatta 0.667 0.455 5.238 Y$GAL1_12=>aatatta Polynucleotide  

degradation atatata=>atattaa 0.588 0.455 5.392 atatata=>atattaa 
TATAAA=>TTATC 0.933 0.875 7.467 Y$CUP1_07=>Y$ARS1_05 
GGGG=>aggcg 0.875 0.438 6.349 Y$GAL1_11=>aggcg 

Nucleotide transport 

ATATAA=>cgcgc 0.583 0.438 4.148 Y$GAL1_12=>cgcgc 
CATCC=>GATAA 1 0.611 5.657 Y$ENO2_03=>Y$GAL1_09 Lipid and fatty-acid  

transport ATATAA=>GATAA 1 0.778 12.6 Y$GAL1_12=>Y$GAL1_09 
GAGGA=>TTATC 1 0.615 6.24 Y$GAL1_07=>Y$ARS1_05 
TTATC=>cgcga 0.7 0.538 4.55 Y$ARS1_05=>cgcga 
atcgc=>cacgc 0.778 0.538 6.741 atcgc=>cacgc 

Other proteolytic  
degradation 

cacgc=>cgatc 0.857 0.462 6.198 cacgc=>cgatc 
CATCC=>GATAA 1 0.611 5.657 Y$ENO2_03=>Y$GAL1_09 
ATATAA=>GATAA 1 0.778 12.6 Y$GAL1_12=>Y$GAL1_09 
ATATAA=>GGGG 0.75 0.529 4.408 Y$GAL1_12=>Y$GAL1_11 
agggc=>tcgca 0.917 0.647 5.236 agggc=>tcgca 

Anion transporters 
(Cl, SO4, PO4, etc.) 

agggc=>cacac 0.75 0.529 7.969 agggc=>cacac 
GAGGA=>GATAA 1 0.562 4.256 Y$GAL1_07=>Y$GAL1_09 
ATATAA=>attataa 0.591 0.406 6.732 Y$GAL1_12=>attataa 
ATATAA=>GGGG 0.773 0.531 6.555 Y$GAL1_12=>Y$GAL1_11 
TTATC=>atatata 0.538 0.438 5.744 Y$ARS1_05=>atatata 
TTATC=>atataat 0.538 0.438 5.744 Y$ARS1_05=>atataat 
attata=>taaata 0.8 0.5 4.885 attata=>taaata 
ataatat=>taaata 1 0.438 13.037 ataatat=>taaata 

Homeostasis of  
protons 

ataaata=>ataata 0.929 0.406 5.42 ataaata=>ataata 
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The detailed positions of known sites and putative regulatory sites in the association 
“Y$ARS1_05 => cgccg” in a set of ORFs are shown in Table 8. The first column gives 
the ORFs of yeast in the set and the second shows the detailed positions of known sites 
and putative regulatory sites in each ORF. For example, the first row in Table 6, 
“YBR069C” is the ORF name, and “[-587]-TTATC-[327]-%GATAA-[77]-%cggcg-[0] 
-%cggcg-[71]-TTATC-” is the composition of known and putative regulatory sites. The 
first number “[-587]” denotes the offset of the site “TTATC” from the start position of the 
coding region either in direct or reverse strain, the symbol ”%” denotes the site appearing 
on the other strand, and the distance between “TTATC” and “GATAA” is “[327]” bps, 
and so on.  
 

Table 6. The occurrence of known and putative regulatory sites in the association 
(Y$ARS1_05 => cgccg). 

ORFs Occurrences of sites in “Y$ARS1_05 => cgccg” 

YBR069C [-587]-TTATC-[327]-%GATAA-[77]-%cggcg-[0]-%cggcg-[71]-TTATC- 

YBR132C [-482]-%GATAA-[140]-%cggcg- 

YCL025C [-351]-TTATC-[27]-%GATAA-[139]-TTATC-[124]-%cggcg- 

YPL265W [-541]-%cggcg-[25]-%cggcg-[76]-TTATC-[176]-TTATC-[13]-TTATC-[117]-%GATAA- 

YPL274W [-598]-%GATAA-[163]-TTATC-[80]-%cggcg- 

YNL270C [-360]-TTATC-[36]-cgccg- 

YLR375W [-416]-cgccg-[1]-cgccg-[94]-TTATC-[138]-cgccg- 

YNL268W [-116]-%cggcg-[79]-%GATAA- 

YHL036W [-580]-%cggcg-[24]-TTATC-[37]-TTATC-[129]-%GATAA-[96]-%GATAA-[189]-TTATC- 

 

Table 7. The regulatory families and their regulatory property [2]. 

Family Genes Common regulatory property Reference 

NIT DAL5, DAL80, GAP1, MEP1, MEP2, 

MEP3, PUT4 

Repressed when good nitrogen sources 
(glutamine glutamate, ammonia) are  
present in the medium 

Magasanik (1992) 

PHO PHO5, PHO11, PHO8, PHO84, PHO81 Repressed by Pi Oshima et al. (1996) 

MET MET3, MET2 MET14 MET6 SAM1 SAM2 

MET1 MET30 MUP3 

Repressed by methionine Hinnebusch (1992), 

Blaiseau et al. (1997) 

 
We also apply our proposed approach to the previously characterized regulatory 

families in [13, 14], which are also investigated in [2]. For each family in Table 7, we 
extracted the 600 bps upstream sequences in the genes, and used our approach to dis-
cover the associations of known site homologs and over-represented oligonucleotides. 
Table 8 shows ms (matching sequences, i.e., the number of genes from the family which 
contain at lease one occurrence of the site), occ (the number of occurrences of the site 
among all promoter regions from the family), exp (the expected number of occurrences),  
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Table 8. Alignment of OR oligonucleotides. 

Site previously characterized  Gene 
Family 

Putative 
regulatory 
elements 

Ms Occ Exp Sig Consensus 
Consensus Bound factors 

ATATAA 6 10 12.05 -0.20 
GATAAG 6 25 4.04 8.40 
ATAAGA 6 19 6.34 1.13 

AKATAAGA GATAAG
Gln3p, Nillp, Gzf3p, 
Uga43p (Zn finger) 

GGCAC 5 10 6.89 -0.91 
GCACA 5 11 9.46 -0.26 

GGCACA -- -- 

TGTGC 5 11 9.46 -0.29 

NIT 

GTGCC 5 10 6.89 -0.92 
TGTGTT -- -- 

CGCAC 4 9 3.015 -0.43 
CGCACG 4 5 0.52 0.37 

CGCACG GCACGTGGG Pho4p (bHLH) 

ACGTATA 4 6 0.72 0.07 

PHO 

ACGTATATA 4 4 0.13 -0.14 
ACGTATATA -- -- 

TCACGT 8 17 2.71 5.00 
TCACG 8 21 8.80 0.77 
CACGTG 8 11 0.83 5.51 
CACGT 8 23 8.83 1.59 
ACGTGA 8 17 2.71 5.00 

MET 

CGTGA 8 21 8.80 0.77 

TCACGTGA TCACGTG
Cbflp-Met4p-Met28p 
complex (Zn finger) 

 
and sig (significant index, calculated as in [2]). For instance, in the NIT family, the sig-
nificant value, sig, of the sites “ATATAA”, “CATAAG”, and “ATAAGA” are – 0.20, 
8.40, and 1.13, respectively. The consensus sequence “AKATAAGA” aligned from the 
putative regulatory sites is similar to the previously characterized consensus “GATAAG” 
[13]. Similarly, in the PHO family, the consensus “CGCACG” is also aligned from puta-
tive sites “CGCAC” and “CGCACG”, and is similar to the consensus “GCACGTGGG” 
characterized in [14].  

We further compute the R-value for each combination mined in each functional 
gene group to observe the dependence of a combination of regulatory sites in different 
functional categories. As shown in Table 9, we select five functional categories as an 
example; the five MIPS functional categories are “Phosphate Metabolism”, “Glycolysis 
and Gluconeogenesis”, “Cytokinesis”, “tRNA-Synthetases”, and “Transport ATPases”, 
to show the differential combinations (R-value exceeding 2.0, at least one support value 
greater than 0.5) of regulatory sites. The numbers of genes in each functional category 
are shown in the third row, along with the number of MIPS functional categories. For 
example, in the first row the combination “tataca, ttgaaa” occurs in the gene upstreams of 
functional categories, 0104, 0201, 0316, 0510, and 0722, with Chi-square values 4.84, 
2.84, 0.30, 0.01, and 1.17, respectively. Chi-square values greater than 3.84 are shown in 
parentheses. Similarly, the support values are 0.52, 0.00, 0.11, 0.28, and 0.14, respec-
tively. The support values greater than 0.5 are also shown with parentheses. The R-value 
is shown in the last column and the R-value of the combination “tataca, ttgaaa” is 4.52. 
Three combina tions of “tataca, ttgaaa”, “aattta, tatata”, and “aattta, tataca” are differential 
in functional category of “Phosphate Metabolism/0104” then other functional categories by  
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Table 9. The differential combinations of regulatory sites in five different functional 
categories (R > 2.0 and support > 0.5).  

Functional Categories (Numeric in MIPS)  

Number of  
Genes 

0104a 

31 

0201b 

34 

0316c 

90 

0510d 

36 

0722e 

43 

0104 

31 

0201 

34 

0316 

90 

0510 

36 

0722 

43  

Category 
Differential 
Combinations 

χ2values Support values R values 

tataca, ttgaaa (4.84) 2.84 0.30 0.01 1.17 (0.52) 0.00 0.11 0.28 0.14 4.52 
aattta, tatata (4.51) 0.05 1.56 0.47 1.71 (0.58) 0.24 0.16 0.14 0.26 3.83 0104 

aattta, tataca (4.84) 0.01 0.00 1.68 0.47 (0.52) 0.00 0.01 0.08 0.07 5.28 
acatat, tatata 0.42 (4.19) 3.56 (8.28) (5.14) 0.35 (0.53) 0.19 0.14 0.21 2.20 
aatgga, tatata 0.86 (5.28) 0.07 0.29 (4.77) 0.16 (0.56) 0.11 0.11 0.14 6.74 
aatgga, atatat 1.15 (5.72) 0.07 0.04 0.37 0.19 (0.53) 0.04 0.06 0.05 6.94 
TTATC, atggaa 2.40 (5.99) 0.56 0.13 0.81 0.42 (0.56) 0.16 0.17 0.14 2.19 
TATAAA, ttgaaa 0.26 (6.05) 0.26 0.17 0.19 0.39 (0.53) 0.26 0.36 0.12 2.45 
GGGG, TCTCC 0.52 (5.99) 0.04 (4.36) 0.23 0.45 (0.56) 0.00 0.00 0.00 6.39 
GATAA, atggaa 3.32 (5.99) 0.29 0.13 0.81 0.42 (0.56) 0.16 0.17 0.14 2.19 

0201 

CCGA, aggaag 0.20 (4.26) 3.80 0.18 1.45 0.32 (0.65) 0.09 0.03 0.16 8.46 
GATAA, atttga 0.04 1.88 (10.08) 0.13 1.01 0.39 0.29 (0.53) 0.28 0.37 2.92 

0316 
TTATC, atttga 0.62 1.88 (8.30) 0.13 1.01 0.39 0.29 (0.52) 0.28 0.37 2.82 

0510 attcaa, ttgaaa 0.26 1.09 2.34 (4.70) 0.19 0.39 0.18 0.36 (0.58) 0.05 6.12 
GATAA, tacata 1.01 0.19 3.10 0.01 (3.92) 0.42 0.41 0.48 0.28 (0.65) 3.20 
TTATC, tacata 0.30 0.19 2.20 0.01 (3.92) 0.45 0.41 0.47 0.28 (0.65) 3.12 0722 

aattat, tattaa 0.28 0.17 0.01 0.50 (4.53) 0.26 0.24 0.29 0.36 (0.51) 2.91 

 

Table 10. The differential combinations of regulatory sites in three different functional 
categories. (R > 2.0 and support > 0.4).  

Functional Categories (Numeric in MIPS)  

 0722a 0725b 0728c 0722 0725 0728 
 Number of ORFs 43 28 35 43 28 35  

Category 
Differential  
Combinations 

χ2values Support value R values 

atgaat, tattaa (4.72) 0.96 2.91 (0.44) 0.14 0.09 5.14 
0722 

agttaa, atttga (8.67) 3.19 0.11 (0.42) 0.14 0.03 4.53 
atagta, tcatca 0.18 (5.04) 0.00 0.09 (0.43) 0.03 4.21 
aaattg, acatat 2.87 (7.53) 0.09 0.21 (0.57) 0.09 4.50 
TCTCC, aaattg (4.06) (6.32) 1.65 0.30 (0.61) 0.00 4.26 
TATAAA, tacgaa 0.02 (6.22) 1.86 0.12 (0.57) 0.09 5.93 
TATAAA, atacgaa 2.88 (4.04) 2.76 0.09 (0.46) 0.00 6.51 
GGGG, tacgaa 2.38 (7.00) 0.72 0.09 (0.54) 0.14 6.41 

0725 

GGGG, atacgaa (4.86) (8.09) 1.23 0.02 (0.46) 0.00 12.04 
atatga, cggaaa 3.80 0.62 (8.07) 0.05 0.18 (0.43) 7.13 
atatatg, tataca 1.74 (7.60) (8.67) 0.09 0.25 (0.43) 4.63 
atatat, gtatca 1.32 2.59 (7.20) 0.09 0.14 (0.43) 5.15 
aatgtg, tataca 0.32 (5.24) (11.51) 0.12 0.25 (0.49) 4.85 
aatgtg, atatat 1.34 0.03 (5.54) 0.07 0.21 (0.46) 6.36 

0728 

aatgtg, atatac 0.13 1.62 (5.11) 0.09 0.25 (0.43) 4.63 
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considering the R-values of the three combinations greater then threshold 2.0. All the 
support values of these categories are also greater than 0.5, while in other categories the 
support values are very less than 0.5. Similarly, some combinations are also differential 
in other MIPS functional categories.  

Similarly, Table 10 shows another example with three nearly functional categories 
of transporting genes, i.e., transport ATPases, ABC Transporters, and drug transporters. 
The differential combinations (R-value exceeding 2.0, at least one support value greater 
than 0.4) of regulatory sites are also found to investigate the functional-specific combi-
nations in each group of genes.  

5. DISCUSSION 

This study finds site associations of known regulatory sites and over-represented 
oligonucleotides located within the promoter regions of groups of functionally related 
genes. Each promoter region is mapped to a “transaction”, and known regulatory sites 
and over-represented oligonucleotides are mapped to items of a transaction. The data 
mining techniques are then applied to mine the associations. The enormous number of 
associations makes it extremely difficult to identify those which are interesting and use-
ful. Finally, the redundant rules are pruned and putative regulatory elements are obtained 
from the rest of the associations.  

Our proposed approach can mine putative functional-specific regulatory elements of 
any complete genomes such as yeast in this study. The parameters needed to tailor 
over-represented repetitive sequences within promoter regions of genes can be specified 
by users according to their needs. The discovered associations of known and putative 
regulatory elements can also provide effective information to use in studying the mecha-
nisms of gene transcriptional regulation.  

Helden et al. has developed a method for deciphering the mechanism underlying the 
common transcriptional response of a set of genes, i.e. discovering cis-acting regulatory 
elements from a set of unaligned upstream sequences. This method, called dyad analysis, 
is based on the observation that many regulatory sites consist of a pair of highly con-
served tri-nucleotides, spaced by a non-conserved region of fixed width [15]. The tran-
scription factor binding sites in the dyad form are not investigated in our study. We in-
stead focus on the occurrences of combinations of known site homologs and 
over-represented oligonucleotides in particular gene groups, e.g., MIPS functional cate-
gories. The TF binding sites in dyad forms are very important in the identification of 
transcriptional regulatory sites and we plan to consider the DNA motif prediction ap-
proach and dyad analysis for the identification of regulatory sites in the future. 

Note that the occurrences of repetitive sequences and known TF binding sites indi-
cate the repetitive elements are putative regulatory elements because groups of transcrip-
tion factors usually occur cooperatively. By considering the functional-specific occur-
rence associations of known site homologs and repetitive sequences, the repetitive se-
quences can be viewed as putative functional-specific regulatory signals correlated to the 
known site homologs. However, we find several associations that do not have any known 
site homologs. The meanings and functionalities of these signals are interesting and in 
need of being verified by biologists. 
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