
1182 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 11, NOVEMBER 2004
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Abstract—In this paper, a learnable cellular nonlinear network
(CNN) with space-variant templates, ratio memory (RM), and
modified Hebbian learning algorithm is proposed and analyzed.
By integrating both the modified Hebbian learning algorithm
with the self-feedback function and a ratio memory into CNN
architecture, the resultant ratio-memory (RMCNN) is called
the self-feedback RMCNN (SRMCNN) which can serve as the
associative memory. It can generate the absolute weights and
then transform them into the ratioed A-template weights as the
ratio memories for recognizing noisy input patterns. Simulation
results have shown that with the stronger feature enhancement
effect, the SRMCNN under constant leakage current can store
and recognize more patterns than the RMCNN. For 18 18
SRMCNN, 93 noisy patterns with a uniform distribution noise
level of 0.8 and a variance of normal distribution noise of 0.3 can
be learned, stored, and recognized with 100% success rate. The
SRMCNN has greater learning and recognition capability when
the learned patterns are simpler and the noise is lower. For the
learning and recognition of complicated patterns, the allowable
pattern number is decreased for a 100% success rate. Simulation
results have successfully verified the correct functions and better
performance of SRMCNN in the pattern recognition. With high
integration capability and excellent pattern association perfor-
mance, the proposed SRMCNN can be applied to nanoelectronic
associative-memory systems for image processing applications.

Index Terms—Cellular nonlinear network, modified Hebbian
learning algorithm, nanoelectronic, ratio memory, template.

I. INTRODUCTION

AS INTRODUCED by Chua and Yang [1], [2], cellular non-
linear network (CNN) with locally connected neighboring

cells have the inherent advantage of being easily implemented in
VLSI for various applications. Many image operations in CNN
with suitable templates have been successfully explored [3], [4]
and realized in many applications. Moreover, the CNN can be
used to classify and recognize image patterns through appro-
priate learning algorithms. Recently, this innovative application
of CNN has attracted more research effort. Some important re-
sults have been reported in the literature [5]–[13].
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The Hebbian learning algorithm can be used to perform
unsupervised learning operations in a neural network system, in
which the learned pattern signal is equal to the neuron’s output.
One Hebbian learning algorithm, called the discrete Hebbian
learning algorithm, has been incorporated into CNN with some
modification terms to generate associative memories for the
learning and recognizing of image patterns [12], [13]. Modified
Hebbian learning is used to implement the 18 18 CNN for
pattern learning over a fixed period. The ratio memory (RM)
in the Grossberg out-star structure is also used to form the
template coefficients in the CNN for image recognition. The
resultant structure is called the ratio-memory CNN (RMCNN)
[12], [13]. To determine the four coefficients of the template
but not self-feedback coefficient for the cell of the
proposed RMCNN, the pixel values of the nearest four neigh-
boring cells are multiplied by the pixel value of cell ,
and the products are summed for all input patterns. Then, the
accumulated product is transformed into a ratio to form the
coefficient of the A template. The proposed RMCNN can learn
and recognize three (five) patterns in the 9 9 (18 18)
neuron array. The structure of RMCNN has been implemented
in CMOS technology and its function has been successfully
verified [12], [13].

The modified Hebbian learning algorithm used in the
RMCNN can be modified to include a self-feedback term [14].
The modified algorithm is called the modified Hebbian learning
algorithm with self-feedback. In this paper, the RMCNN
with the modified Hebbian learning algorithm with self-feed-
back is proposed and analyzed. The new RMCNN is called
self-feedback RMCNN (SRMCNN). In the learning process
of the proposed SRMCNN, the features from input exemplar
patterns are considered to update the weights. The operation of
SRMCNN retains the feature enhancement effect of the RM.
Detailed analysis and simulation results has shown that the
SRMCNN can recognize up to 93 noisy patterns with a 100%
success rate and 98 noisy patterns with a 97% success rate
after learning the input exemplar patterns in uniform (normal)
noise level is 0.8 (0.3). Thus, the capacity for learning and
recognizing patterns is greatly improved.

The paper is organized as follows. In Section II, the oper-
ational principles, the modified Hebbian learning algorithm
with self-feedback, and the embedded ratio memory in the
SRMCNN are presented. Section III describes the architecture
of the SRMCNN. In Section IV, the simulation results of
SRMCNN are demonstrated and analyzed. Some phenomena
are also discussed. Finally, conclusions are drawn.
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Fig. 1. General architecture of the SRMCNN.

II. OPERATIONAL PRINCIPLE AND LEARNING ALGORITHM

In a CNN, the behavior of a regular cell and its neigh-
boring cells can be expressed by the differential state
equation, in terms of their input, state, and output variables as
[1]–[4]

(1)

and the equation of the cell output is [1]–[4]

if
if
if

(2)

where represents the cell state, is the cell output
from cell in the r-neighborhood system of the
cell , is the cell input from cell in ,
is the threshold of cell , is bipolar activation function,
and is the weight of template that correlates

to . In an M N CNN cell array, the r-neigh-
borhood system of cell is defined as a set of
cells that includes cell and its neighborhood cells. The
term r is an integer that represents the number of the neighbor-
hood layers. can be expressed by the following:

(3)
The general architecture of the SRMCNN is depicted in

Fig. 1 [12], [13] where the RM is used to realize the -tem-
plate weights of two neighboring cells, and SRM is used to
realize the self-feedback weight of the cell. In the SRMCNN,
a coupled template, an uncoupled template, and
neighborhood is adopted. The space-variant template has a

self-feedback coefficient and four nearest neighboring coeffi-
cients. The template has only one coefficient that corresponds
to the input of cell . Both and templates of
can be expressed as

for (4)

The outermost boundary cells are called the edge cells. They are
commonly used to realize fixed (Dirichlet) boundary conditions.
The output and input of those boundary cells are set to zero.

The modified Hebbian learning algorithm with self-feedback
is applied in the SRMCNN to determine the updated volume of
the weight vector at as

(5)

(6)

where m is the number of learning patterns, is the pixel value
of the th row, and the th column in the th pattern of m learned
patterns with the value 1 or 1, is the pixel of the cell

of neighboring cells including cell ,
in (5) is the weight associated with cell and its neigh-
boring cells , and in (6) is the threshold of cell

, which is set to zero. Note that the self-feedback terms
is defined in (5).

In the learning period, the weights are generated in
parallel from and accumulated for all m learned exemplar
patterns. They are updated simultaneously when an exemplar
pattern is input at a given time. Then its magnitude
is stored on the capacitor to generate the ratio weights. Ac-
cording to (5), if the product of is positive, the weight

of template is increased. Otherwise, is de-
creased. Since the self-feedback term is always positive,
the self-feedback weight is one of the largest weights
among the five weights in (5).

In the elapsed period, starting from , the leakage cur-
rent associated with capacitor gradually decreases
the stored voltage as time elapses. Since the leakage
current is almost constant, the change of on capacitor

can be written as

(7)

The RM is used to generate the ratio weight of the
template in the recognition period. The noisy patterns are input
to the SRMCNN with the ratio weights to perform the recog-
nition operation. The derivative of the cell state is ex-
pressed as

(8)
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Fig. 2. Detailed architecture of (a) two neighboring cells and their ratio memories (RM) and (b) the S block in the SRMCNN during the learning period.

and the ratio weights are generated according
to [15]

(9)

The ratio weight in (9) has the effect of feature en-
hancement. When the weight magnitude exceeds the mean value
of all terms of the cell , it is increased gradually
with time. Otherwise, the weight decreases gradually. Since the
self-feedback weight or is one of the largest
weights in the cell , the corresponding self-feedback ratio
weight is the largest in the template. With the fea-
tures of patterns can be enhanced to reject the noise. Thus, the
capability of recognition for noisy patterns is significantly im-
proved by the SRMCNN.

In the recognition period, the outputs are adjusted according
to (8) for noisy input patterns with either uniform or Gaussian
(normal) noise distribution. The output pattern noise is gradu-
ally eliminated through a feedback-type interaction. The out-
puts of all neurons are adjusted to eliminate noise during the
recognition period until no further change is detected. Finally,
the SRMCNN reaches its stable state.

The energy function of a CNN in quadratic form [16] can be
expressed as

(10)

When all the cells become saturated in the recognition period,
we have and the SRMCNN results in a stable output

with the energy function converged to its local minimum. The
minima of E correspond to stable states. The final recognized
pattern represents one local minimum of the energy function.

III. SRMCNN ARCHITECTURE

The detailed block diagram of two neighboring CNN cells
and their RM in the SRMCNN are shown in Fig. 2(a), and the de-
tailed block diagram of the S block is shown Fig. 2(b) when the
SRMCNN is operated during the learning period. In Fig. 2(a),
the block T1 is a V–I converter used to convert the voltage of
input patterns into current. The block T2d is a V–I converter with
a one-half absolute-value circuit and a sign-detection circuit to
generate the absolute value of output current and detect the sign
of the cell state , respectively. The CNN cell is
formed by T1, T2d, , and as indicated in Fig. 2(a) [13].

The block M/D [13] in Fig. 2(a) is a combined four-quad-
rant multiplier and a two-quadrant divider circuit. The block is
used to realize the modified Hebbian learning algorithm with
self-feedback during the learning period. It is also used to mul-
tiply perform the multiplication and in the recog-
nition period. The resultant absolute weight during the
learning period is stored in the capacitor in the S block of
Fig. 2(b). In Fig. 2(b), the block T2L transfers the absolute value
of the voltage stored in to and stores its sign in the latch
circuit. The resistor in parallel with is used to gener-
ated the absolute voltage from the output current of block T2L
and to store the voltage on . Block T3 is also a V-I converter
to convert the voltage of into current. The output current of
T3 is sent to the sum block and summed with the currents from
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Fig. 3. Detailed architecture of (a) two neighboring cells and their ratio memories (RM) and (b) the S block in the SRMCNN during the elapsed period.

neighboring cells. The summed current is sent to the M/D block
to generate ratio-memory. Both M/D and S blocks form the RM
among CNN cells as indicated in Fig. 2(a).

In Fig. 2(a), the exemplar patterns are input in order read
into the cell and the input voltage of the th input
pattern is sent to T1 to be converted into current and then
to T2d to extract its absolute current value and sign. Then
the converted absolute currents and from two neigh-
boring cells are sent to the four-quadrant multiplier in the M/D
block to generate the product. The generated product in the cur-
rent mode charges the capacitor for the period to gen-
erate the voltage on . This operation is repeated for pat-
terns to sum the voltages of . Finally, the weight voltage

stored on at when the learning period
ends, can be written as

(11)
where is the current of the th input patterns sent to the
cell , is the current of the th pattern sent to the
cell of neighboring cells, Ib is a constant bias
current, is the weight voltage stored on
at , and is the learning time of each input pattern.
Through T2L, the absolute value of the weight

is stored on the capacitor , whereas the sign of
is stored in the latch circuit of T2L.

In Fig. 2(a), the voltage weight is di-
rectly generated by the current product of changing on

the capacitor for the period . is stored on the
capacitor . Then, the absolute value of is trans-
ferred and stored on the capacitor .

In the elapsed period, the configuration of SRMCNN is
shown in Fig. 3(a), where is disconnected from the block
T2L as shown in Fig. 3(b). The leakage current associ-
ated with gradually decreases of .

In the recognition period, the configuration of the SRMCNN
is shown in Fig. 4, and that of S block are the same as that in
the elapsed period. The voltage of the test pattern to be
recognized is input to T1 and converted into the current .
The absolute weight voltage stored on
is converted into the current through T3 and
summed with the currents from other neighboring cells. The
summed current, the weight current , and the
cell output current are sent to the M/D block to yield
the current that corresponds to the term in (1),
which is then summed with the currents from other neighboring
cells, the input current , and the threshold current to
generate the cell state current . The current is
converted into the voltage through resistor . Thus,

can be expressed as

(12)

where is the empirical gain. Ideally . The ratioed
weight in (12) is
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Fig. 4. Detailed architecture of two neighboring cells and their ratio memories (RM) in the SRMCNN during the recognition period.

generated by the two-quadrant divider in the M/D block with its
sign equal to the sign of latched in T2L, whereas the

is multiplied by the ratioed weight by the four-quadrant
multiplier of M/D using the latched sign of and the
sign of in T2d. The current of input patterns is summed
with the five weighted outputs from neighboring cells during
the recognition period and converted into a voltage through the
resistor and the parasitic capacitor to form the cell state

.
The generated is sent to T2d to generate the cur-

rent and . The block T2d realizes
by separating its magnitude and sign. The sign

is detected in the block T2d and the voltage is
.

In the proposed SRMCNN, each cell requires an extra self-
feedback ratio-memory with M/D and S block to realize the self-
feedback weight or . As in the original RMCNN,
eight sets of M/D and S block are required to generate and store
the ratio weight from cell and the ratio weight
from cell , respectively. Thus, five sets of M/D and S
block per cell are required in the architecture of SRMCNN. As
compared with RMCNN, the increased hardware is small but
the performance in pattern recognition is greatly improved.

The SRMCNN also can be integrated into the conventional
CNNUM, and is called SRMCNNUM. The chip area of the cell,
the core cell array, and the SRMCNNUM are estimated by using
different CMOS process technologies. Table I lists these areas.

IV. SIMULATION RESULTS

Matlab software is used to simulate the operations of the pro-
posed SRMCNN with 18 18 neurons, the direct neighbor-
hood , and the modified Hebbian learning algorithm
with self-feedback. The 18 18 SRMCNN can process pat-
terns with 324 pixels. In each pattern, a black pixel is expressed
by 1 whereas a white pixel by 1. To elucidate the effect of

TABLE I
ESTIMATED CHIP AREAS OF CELL, CORE CELL ARRAY, AND SRMCNNUM

FOR DIFFERENT TYPES OF CMOS TECHNOLOGY

leakage current in the simulation, a constant leakage current of
0.8 fA is applied to the capacitor of 2 pF, the stored voltage

will gradually decreased. The capacitance of 2 pF is
chosen as a compromise between the weight storage time and
the capacitor chip area.

The total of 98 exemplar patterns to be processed in the
SRMCNN are classified into four groups. Group 1 includes 35
(no. 1 no. 35) Chinese characters with vertical-horizontal
lines of two-pixel width. group 2 includes 52 (no. 36 no.
87) English characters (capital and small letters) with the slant
lines. Group 3 includes six (no. 88 no. 93) patterns with ver-
tical-horizontal grid lines. Group 4 includes five (no. 94 no.
98) patterns with slant lines only. It has the most complicated
patterns. Variations of the selected weights in the template
during various operation periods in some selected cells are
examined to verify the RM phenomenon in the SRMCNN. In
Table II(a), the generated ratio weights and of
the cells (3,1), (6,2), (9,3), (11,17), and (15,5) after the learning
period and the elapsed period with the learned 36 (no. 1 No
36) exemplar patterns are listed. In Table II(b), the weights of
the cells (5,10), (8,6), (11,2), (13,16), and (16,12) with learned
98 exemplar patterns. As shown in both Tables II(a) and II(b),
the learned templates for different input exemplar patterns
are different. The template for larger number learned patterns
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TABLE II
GENERATED RATIO WEIGHTS OF SOME NEURON CELLS IN THE 18 � 18

SRMCNN FOR (a) 36 LEARNED PATTERNS, AND (b) 98 LEARNED PATTERNS

AFTER DIFFERENT OPERATION PERIODS

has fewer elements than that for small number of learned pat-
terns. Moreover, the constant leakage current can enhance the
larger ratioed weights while suppressing the smaller is to zero.
For N larger ratio weights, they are enhanced to 1/N during the
elapsed period. The effect is called the feature enhancement
effect [12], [13].

Due to the feature enhancement effect, the variations of the
ratio weights of two templates of and versus the
elapsed time factor is shown in Fig. 5(a) and (b), respectively,
during the elapsed period.. The elapsed time factor is normal-
ized by the elapsed time of 50 sec. As seen from Fig. 5(a) and
(b), the value of the weight is increased to 1 or 1/N whereas the
others are decayed to zero. For example, the template weights
of the cell , at

is changed to
at as shown in Fig. 5(a). Sim-
ilarly, The weights at

is changed to at
as shown in Fig. 5(b). It is found that

the success rate of pattern recognition is related to the elapsed
time factor. The minimum required elapsed time factors that

Fig. 5. Variations of the ratioed weights: (a) A and (b) A under
constant leakage current.

TABLE III
MATLAB SIMULATION RESULTS OF MINIMUM REQUIRED ELAPSED TIME

FACTOR: FOR MAXIMUM SUCCESS RATE OF RECOGNITION

yield the maximum success recognition rate of with different
numbers of the learned patterns are given in Table III. The
minimum required elapsed time factors are from 8 to 18 for
different patterns, which corresponds a range from 400 to 900 s.
Note that the maximum elapsed time is generally proportional
to the number of the learned patterns and their complexity.

One hundred noisy test patterns and two types of noise are
used in simulations to determine the success rate of pattern
recognition. One type is the uniform distribution random noise
at the levels between 0 and 0.05 , where n is a noise level
factor. The other type is the normal distribution random noise
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Fig. 6. (a) Input test patterns with uniform noise level of 0.8. (b) Recognized
output patterns.

with a noise standard variance of 0.05 , where is a noise
variance factor. As verified by the simulation results, the 18
18 SRMCNN can learn 93 patterns and successfully recognize
the corresponding 93 noisy patterns of groups 1–3 with uniform
(normal) distribution noise at a level of (variance of

). The success rate is 100%. The simulation shows that
the learned template already catch the features of all three
groups of patterns. Thus, actually more than 93 patterns in the
same groups can be recognized correctly. Fig. 6(a) shows some
noisy test patterns with uniform noise level of 0.8, whereas
Fig. 6(b) shows the correctly recognized patterns. The success
rate versus the noise level factor n and the noise variance factor

for 93 (no. 1 no. 93) noisy test patterns with uniform
and normal distribution noise are shown in Fig. 7(a) and (b),
respectively. The figures show that the success rate decreases
as the noise level increases beyond 0.8 and the noise variance
exceeds 0.3.

The success rate versus the noise level factor and the noise
variancefactor for98noisypatternsof thefourgroupswithuni-

Fig. 7. Success rate versus (a) uniform distribution noise level of 0.05 n and
(b) normal distribution noise variation of 0.05m for 93 (no. 1 � no. 93) noisy
test patterns.

form and normal distribution noise shown in the Fig. 8(a) and (b),
respectively.Thesuccessrateis97%foruniformnoiselevelsof0.8
and a normal noise variance of 0.25. The rate is rapidly decreased
atnoise levelsover1.0ornoisevariancesover0.25.Analysis indi-
cates that the two patterns include only slanted lines within group
4, as shown in Fig. 9, and cannot be completely recognized. Ac-
cordingly, thesuccessrate isdegradedto97%.Ifonlyfivepatterns
ingroup4arelearnedandrecognizedunderuniformnoise,thesuc-
cess rate can reach 100% when the uniform noise level is 0.8, as
shown in Fig. 8(c)

Allthesimulationresultsconcerningthesuccessrateforvarious
numbersofpatternsanddifferenttypesofnoisearesummarizedin
Table IV.Thosesimulation results indicate that theSRMCNNhas
a better learning and recognition capability if the learned patterns
are simpler and the noise is lower. For complex patterns like those
ofgroup4, thenumbersofpattern learningandrecognitionshould
be decreased to yield a 100% success rate.

If one pattern with vertical-horizontal lines in group 3 is
added to group 4, the success rate is decreased to 90% due
to the learning of a different type of pattern from those five
patterns with slant lines only.

The patterns not already learned, are included in the noisy
patterns to be recognized and to verify the effect of learning on
that of recognition in the SRMCNN. It is found that almost no
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Fig. 8. Success rate versus (a) uniform distribution noise level of 0.05 n for 98 (no. 1� no. 98) noisy test patterns; (b) normal distribution noise variance of 0.05
m for 98 (no. 1 � no. 98) noisy test patterns; and (c) uniform distribution noise level of 0.05 n for five (no. 94 � no. 98) noisy test patterns.

unlearned patterns can be recognized correctly. Thus, pattern
learning is required to recognize a correct pattern.

To investigate the recognition convergence of SRMCNN, a
noisy pattern with a uniform noise level of 0.8, as shown in
Fig. 10(a) is recognized as the stable pattern in Fig. 10(b). The
value corresponding to the energy function of each iteration in
the recognition operation during the recognition period is shown
in Fig. 10(c). It can be seen that the value of energy function
is decreased to the minimum value and the correct pattern is
generated after two iterations.

It has been shown that the number of connection weights in
the SRMCNN is much less then that in the Hopfield neural net-
work, and the SRMCNN can achieve higher capabilities with 93
patterns. The 18 18 SRMCNN has 1620 weight connections
while the 18 18 Hopfield network has 104 652. The circuit
complexity of SRMCNN is approximately 1/65 of that of the
Hopfield network.

For comparisons, conventional CNN associative memories
have been proposed with the learned weights of the A template
processed without RM and leakage during the recognition oper-
ation [5]–[9]. It is shown that the maximum numbers of stored
and recognized patterns is 25 (12) for a 9 9 CNN with 49 (25)
weight connections. The 18 18 RMCNN without a self-feed-
back weight in the A template can learn and recognize five pat-

terns [13]. The proposed SRMCNN with RM and self-feedback
weight can enhance the feature of the exemplar patterns and sig-
nificantly improve the capability of recognition. As shown in the
simulation results, the 18 18 SRMCNN can learn and recog-
nize 93 noisy patterns with five weights connection. This veri-
fies the improved recognition capability of the SRMCNN.

Using the same learning algorithm but without RM and
leakage current, 15 exemplar patterns can be learned in the
18 18 CNN and only 6 (11) patterns could be correctly
recognized from input noisy patterns with a uniform noise level
of 0.5 (0.3). The success rate of recognition is 40% (73%). This
verifies the importance of the effect of RM on the learning and
recognition capability of the SRMCNN.

V. CONCLUSION

In this paper, the ratio memory cellular nonlinear network
with self-feedback (SRMCNN) is proposed and analyzed. In the
SRMCNN, the modified Hebbian learning algorithm with self-
feedback is applied to the generation the absolute weights from
the sets of input exemplar patterns, and then transform them into
ratio weights through the ratio memory to form the coefficients
of space-variant A template. With RM and the modified Heb-
bian learning algorithm with self-feedback, the SRMCNN can
be used as the associative memory for learning, recognizing, and
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Fig. 9. Two specific patterns in group 4 with only slant lines.

TABLE IV
SUCCESS RATE FOR VARIOUS SETS OF LEARNED PATTERNS WITH NOISE

Including 2 patterns in group 4 as shown in Fig. 10

recovering patterns. The simulation results have shown that the
18 18 SRMCNN with five weights connection can learn and

Fig. 10. (a) Input noisy test pattern. (b) Output stable pattern. (c) Energy
function during the recognition period.

recognize 93 noisy patterns with a 100% success rate at a uni-
form distribution level of 0.8 and a normal distribution variance
of 0.3. This has successfully verified the correct function and
superior performance of SRMCNN in the patterns recognition.

The proposed SRMCNN with the feature enhancement effect
of the RM under constant leakage on the template coefficients
can learn and recognize patterns with fewer weight connections
than that of the Hopfield neural network. Moreover, the pro-
posed SRMCNN with the self-feedback ratio weight can learn
and recognize more patterns than the CNN associative mem-
ories with RM and without RM, given the same learning al-
gorithm and the same constant leakage in the coefficients of
space-variant templates. Simulation results have successfully
verified the correct function of 18 18 SRMCNN. Since the
proposed SRMCNN has the advantages in learning, storing,
and recognizing image patterns, it is suitable for appropriate
applications of nanoelectronic associative memory systems for
real-time image processing.
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