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A new similarity measure bchveen a digital image and its 
quantised d o n  is presented. By calculating the quantisation 
error on each of a ~ ~ I U I K X  of subdomains, we can obtain a 
quantisation mor curve as a similarity measure. This measure 
outperforms the commonly uscd measure for estimating the 
similarity betweal rrquantiacd images. 

Introduction; Image requantisation is a necessary step for display- 
ing an image on a display system with Werent grey-level resolu- 
tion. For example, when a 256-level image is to be displayed on a 
monochromatic monitor, it must be requantised to bilevel. If more 
than two grey levels are available for certain modem graphics 
devices, then a multilevel quantiser is needed to requantise the 
given image. Many techniques have been proposed to solve this 
quantisation problem [l, 21. 

However, it is diiXdt to judge fairly the similarity or dissimi- 
larity between the original image and its quantised image. The 
sum of the diITerence of corresponding pixel intensities is com- 
monly used to measure the similarity betwem two images. How- 
ever, even when this quantity is small, the difference of two images 
can be easily distinguished hy human eyes in most case.s. In other 
words, the sum of differences is not good enough when used as a 
similarity measure of two images. Therefore, we propose an 
improved similarity measure for images. This new measure, 
ref& to as the quantisation error curve (QEC), is based on a 
similarity criterion proposed by Hsueh et al. [3] and is particularly 
useful for requantised images. 

Cardinaliry distribution and QEC: Let f be an image with N, grey 
levels and g be its quantised image with N, grey levels, bothfand 
g are defmed on a f ~ t e  domain D. Let f; and g be the respective 
normalised images o f f  and g. The commonly used algorithms, 
ordered dither [4] and error diffusion [q, attempt to preserve the 
foUowing criterion: For any pixel x,, the average value of g(x) 
when x is near x, is approximately equal to fixo). However, t h i s  
criterion is not for general graphics display systems as pointed out 
by Knuth [6]. The cardinality distribution [3], on the other hand, 
tries to preserve the following property: For any subdomain S of 
D, f and g have approximately the same average value in S; that 
is 

Z E S  2 E S  

Based on th is  more general criterion, we can propose a measure of 
similarity as follows. First of all, we define the quantisation error 
of g corresponding to a given subdomain S, written as Q E A ) ,  by 

where S, is the translation of S by x,  N is a subset of D such that 
{Sx; xE N} is a cover of D, and #(N) denotes the number of pixels 
in N. When S Contains only the origin, QEs is equal to the mean 
absolute error (MAE). When S = D and N = (the origin}, QEs is 
the dflerence between the total illuminations off and g. 

Then by choosing a sequence of subdomains S, SI, ..., S,,, with 
#(SJ=2' for each i = 0, 1 ,  ..., m, we can obtain the quantisation 
errors QEj QEj for each i from eqn. 1. The curve linearly 
approximating the graph ( ( i ,  QE,) I i = 0, 1, ..., m} will then be 
called the quantisation error curye (QEC) for g. 

Given two quantised images g, and g, of the original image f. 
There is no doubt that g, is more similar tof than g, if PE&) s 
QEJgd, VS. Thus, we can use QEC to measure the similarity or 
dissimilarity between an image and its quantised image. Note that 
it is time-consuming and impractical to compute QEs for all possi- 
bilities of subdomain S. In our implementation, QEs is calculated 
only when S is a square region and N is chosen such that 
(Sx; x E N )  is a partition of D. 
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Fig. 1 

Experimental results: Three quantisation algorithms, ordered 
dither [4], dot diffusion [6] and cardinality distribution [3], are 
tested for bmarisation. The test image has size 256x256 and is dig- 
itised into 8 bits per pixel accuracy. This test image contains 12 
co-centre circles with different grey levels and the background is 
fmed at 128. That is, the circle is the only feature in the original 
image. Figs. 1 - 3 are the binary images quantised by ordered 
dither, dot diffusion and cardinality distribution, respectively. 
Quantisation error curves for these three quantised images are 
plotted in Fig. 4; here S has size 2 ' ~ 2 ~ .  From the quantised 
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images, it can he seen that the image in Fig. 3 captures more clear 
circles than those in Figs. 1 and 2. This result agrees with the QEC 
in Fig. 4. It is noted that three quantisation errors are very close 
when M = 0. That is, we cannot quantitatively distinguish those 
images if only MAE is employed. 
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Fig. 4 QEC for dgferent quantisers 

Conclusion; We have proposed the QEC to measure the similarity 
or dissimilarity between an image and its quantised counterpart. 
QEC is based on the following criterion: two similar images must 
have similar illumination in any subdomains. When the quantisa- 

tion error with fixed subdomain cannot distinguish the difference 
of two images, QEC can provide more information. 

It should be noted that the QEC can he computed for any two 
images with the same domain. Thus, the QEC can also be used as 
a similarity measure for any two images. 
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Capacities of equivalent channels in 
multilevel coding schemes 

J. Huber and U. Wachsmann 

Indexing terms: Channel couhg, Codes and coding 

The channel capacity of an M-ary digital transmission scheme M 
> 2 can in principle he achieved by multilevel codes together with 
multistage decoding, if the rates of the component codes are qual 
to the capacities of the equivalent channels for each coding level. 

Multilevel coding is a well known approach to designing power- 
and bandwidth-efficient digital communication systems based on 
M-ary modulation schemes M = 2". n E N, n > 1, such as ASK, 
PSK, QAM etc., see for example [I, 3, 3. Usually, labels 7, = 
(cm0, cmi, ..., c,q, ..., c,"') with binary components c,q are mapped 
to the elements a,, m E [I ,  2, ..., M) of the signal set A of the 
modulation scheme via a set partitioning procedure, see for exarn- 
ple [6]. Up to n individual binary codes 0, q E (0, 1, ..., n - I )  
with rates b may be applied to the binary sequences (cm 9) = (. . . , 
cmlq, CJ, . . .), p E Z at each coding level q. We restrict tlfe discus- 
sion to binary component codes for simplicity and conciseness. It 
was often proposed to choose the component codes by maximising 
the minimum squared Euclidean distance dM2 between sequences 
of signal points for given overall rate 

n-1 

R = x R 9  
9=0 

codeword length and decoder complexities, see for example [I]. 
Multilevel codes can he efficiently decoded by multistage decod- 

ing, i.e. individually decoding of each component code 0 starting 
from q = 0 and using the decisions of prior stages. Its performance 
loss compared to overall MLSE is surprisingly small. On the other 
hand, it can be observed that for the Ungerboeck set partitioning 
strategy [q, errors at the lowest coding level predominate. The 
reason for this effect is a tremendous increase in the numher of 
nearest neighbour error events due to the multiple representation 
of the binary symbol P by 2-1 different signal points a,. Thus, we 
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propose to choose the rates b from the capacities of the equiva- 
lent channels for the different coding levels which can he calcu- 
lated very simply. 

Let A,o,I ... c +  he the subset of all signal points with labels ('a, 
c', ..., c-', S, fl+', ..., pi) with arbitrary X E (0, I} at level q of 
the set partitioning tree and C(&O<I ... the channel capacity of 
this subset of signal points. It is inherent to multilevel coding that 
all signal points a, E A have equal a priori probabilities because 
the components @ of the labels are assumed to be chosen inde- 
pendently and equiprohably at each level. We assume that the 
multilevel code is based on a regular binary set partitioning tree, 
i.e. the set partitioning is carried out in such a way that all 2q sub- 
sets & O ~ I  ... <+> at level q have the same capacities C(Aco,, ,,, 
For the AWGN channel, a partitioning tree is regular if the aver- 
age Euclidean distance spxtrum from any point in A,oct ...ceIcq to 
all points in &O,I ... c + ~ ;  is equal for all subsets Acoc, This 
property is obviously given for subsets which only differ in trans- 
lation and rotation. The memoryless channel is characterised by 
M conditioned probability density functions f&&) of the channel 
output variable y for given input symbol a,. 

(i) Lemma: The capacity @ of the equivalent binary channel for 
coding level 0 is given by 

(1) CO = C(A) - C(A0) = C(A) - C(A1) 

(ii) Proof: @ is defined to he (see for example [2] 

The integral has to he evaluated over the space Y of the channel 
output variables y. The density of the channel output variable y 
for given input P is given by 

2 
fYldY) = - %am(U) co E I0, l )  (3) 

omEAco 

The capacity of any signal (mb-)set B with 1BI equiprobable ele- 
ments is 
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