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We have numerically investigated the homogeneous-planar and homeotropic-planar transitions, respectively,
in a planar-aligned cholesteric liquid crystal by using our multidimensional software based on the finite
element method. When the unwinding field is turned off abruptly, the relaxation process of a field-unwound
cholesteric liquid crystal is accompanied by an elastic-induced Helfrich deformation without introduction of
defects, which will continuously convert into a stable planar texture with natural pitch and domain wall.
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I. INTRODUCTION

A cholesteric liquid crystal(ChLC) possesses a periodic
helical structure due to the chirality of molecules. In a ChLC
with a positive dielectric anisotropysD«.0d, a field-induced
cholesteric-nematic phase transition was theoretically pre-
dicted [1] and experimentally observed[2]. When the elec-
tric field is applied perpendicular to the helical axis of a
ChLC with a planar texture, a stepwise change in the pitch
with an increase in the field is theoretically predicted[3] and
experimentally observed[4]. At sufficiently strong field
strength, the field-induced homogeneous state is obtained
[1,5], as shown in Fig. 1. The critical field is given byEc
=sp2/P0dsK22/D««0d1/2 where P0 is the natural pitch of a
ChLC andK22 is the twist elastic constant[1].

On the other hand, when the electric field is applied par-
allel to the helical axis, the ChLC layers may undergo sinu-
soidal periodic modulation under the application of a weak
electric field. The modulation results from the frustration
caused by the competition between the chirality, which fa-
vors a twist deformation, and the electric field, which favors
alignment of molecules parallel to the field. The threshold
field and period of the sinusoidal periodic deformation were
first theoretically described by Helfrich[6] and refined by
Hurault [7] and Chigrinov[8], respectively. On increasing
the electric field, a 90° rotation of the helical axis occurs and
the fingerprint(or focal conic) state forms. After the finger-
print state is formed, the untwisting process of the helix with
increase of the electric field is similar to the cholesteric-
homogeneous transition and the field-induced homeotropic
state is obtained[5], as shown in Fig. 1.

When the external field is turned off abruptly, the relax-
ation process from the field-induced homogeneous or ho-
meotropic state to the stable planar state is frustrated and
then will be accompanied by a Helfrich-like periodic modu-
lation. This modulation is due to the frustration caused by the
competition of chirality, which favors a twist deformation,
and boundary constraints, which favor the alignment of mol-
ecules parallel to the surfaces. Similar Helfrich-like periodic
deformations have been experimentally observed in a planar-
aligned ChLC by mechanically untwisting the helix or by a

temperature-induced pitch variation[9]. However, the
mechanisms of the periodic pattern formations and the de-
tailed transformation processes were not presented. One can
classify these Helfrich-like deformations into two types ac-
cording to the driving sources for the deformations[10,11].
One is the field-induced Helfrich deformation. The other is
the elastic-induced Helfrich deformation. In the former case,
the ChLC layers form the sinusoidal deformation to alleviate
the dielectric free energy of the system. However, for the
latter case, the ChLC layers from the sinusoidal deformation
in order to reduce the elastic free energy of the system.

In this paper, we will numerically investigate the dynamic
relaxation process from the field-induced homogeneous and
homeotropic states, respectively, to a stable planar state and
show the transformation between states. The transformation

FIG. 1. Schematic diagram of a field-unwound cholesteric liquid
crystal. If the electric field is applied perpendicular to the helical
axis, the field-induced homogeneous state is obtained. If the electric
field is applied parallel to the helical axis, the field-induced homeo-
tropic state is obtained.
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is an elastic-induced Helfrich deformation. We find that the
relaxation process of a field-unwound ChLC occurs via an
elastic-induced Helfrich deformation without introduction of
defect cores.

II. SIMULATION METHOD

The simulation method is based on a variational approach
to the Frank-Oseen free energy formulation and using a vec-
torial representation of the director. The modeling uses a
finite element method for calculations of the director con-
figuration and voltage distribution while it uses the finite
difference method in the time stepping process[12].

The expression for the elastic free energyFb of a ChLC
system in terms of the directornW is given by

Fb =
1

2
E E E fK11s¹W ·nWd2 + K22snW ·¹W 3 nWd2 + K33snW 3 ¹W

3 nWd2 + 2K22q0snW ·¹W 3 nWdgdx dy dz, s1d

whereK11,K22, and K33 are the elastic constants for splay,
twist, and bend deformations, respectively.q0s=2p /P0d is
the chiral parameter. The expression for the electric free en-
ergyFe of a liquid crystal system in terms of the voltagev is
given by

Fe =
1

2
E E E h«0«'s− ¹W vd2 + «0D«fnW · s− ¹W vdg2jdx dy dz,

s2d

where the dielectric anisotropyD«=«i−«' and«i ,«' are the
parallel and perpendicular permittivities of the director rela-
tive to the electric field.

Based on the finite element method, the director and volt-
age within an element can be expressed in terms of the nodal
director and nodal voltage, respectively, as well as the inter-
polation function; therefore, we have

nY = o
i=1

4

Sisx,y,zdnY i ,

v = o
i=1

4

Sisx,y,zdvi . s3d

Here Sisx,y,zd is the interpolation function,nY i is the nodal
director at nodei, andvi is the nodal voltage at nodei. By
substitution of Eq.(3) into Eqs.(1) and (2), the Gibbs free
energy in Eq.(4) for one element can be expressed in terms
of the nodal director and nodal voltage of the element:

Fg = Fb − Fe. s4d

Ignoring the flow of the director, the dynamic equation of
the director becomes a nonlinear equation for the nodal di-
rector component as expressed by[13,14]

] Fg

] nd
p −

]

] nd
pSl

2
E E E nm

pnm
pdx dy dzD

+
]

] ṅd
pSg

2
E E E ṅm

pṅm
pdx dy dzD = 0, s5d

where the Lagrange multiplierl is used to maintain the unit
length of the director and the integrations are performed over
the volume of a tetrahedral element. However, one cannot
simultaneously solve this equation forl and nY. Therefore,
the l term is dropped andnY is renormalized to have a unit
length after each time step[15,16]. In each element, ford
=x, y, or z, p=1, 2, 3, or 4, andm (=x, y, and z) implies
summation, whereg is the rotational viscosity of a liquid
crystal material. After using the forward difference approxi-
mation for the time derivative, we can obtain the numerical
update equation for the director at each node in terms of the
directors and voltage at that and surrounding nodes. Given
the initial conditions for directors and voltage, this update
equation for the nodal director can be solved by the relax-
ation method which is stable and gives acceptable conver-
gence[16].

Because the dielectric constant is anisotropic, the voltage
at each node depends on the directors at that and surrounding
nodes. After solving Maxwell’s equation in Eq.(6), a linear
equation for the nodal voltage is derived:

¹W ·DY = 0, s6d

whereDY is the electric displacement. Given a director con-
figuration, this equation can be rewritten as a numerical up-
date equation for voltage at current node in terms of the
neighboring nodal voltage and it can be directly solved using
the successive over-relaxation method[16].

In order to calculate the dynamics of the system, the new
director configuration must be calculated before any vari-
ables are updated. When the old director configuration is
updated by the new director configuration after each time
step, the voltage distribution can be calculated directly or
iterated to converge to the equilibrium distribution because
the redistribution of the voltage with the director orientation
is instantaneous.

In this simulation, we use periodic boundary conditions in
the X and Y directions. Dirichlet boundary conditions are
assumed for the planesZ=0, Z=d corresponding to strong
anchoring. If the applied electric field is larger thanEc, the
director at each node in the bulk can be initially assumed to
be (1,0,0) and(0,0,1) for the field-induced homogeneous and
homeotropic states, respectively. When the electric field is
turned off abruptly, some random noise is superposed on the
initial bulk director configuration to avoid the system being
in the metastable state. In the field-induced homogeneous
state, we setny andnz to random numbers between 0.1 and
−0.1; thennx can be determined based on the relationship
nx=s1−ny

2−nz
2d1/2. On the other hand, in the field-induced

homeotropic state, we setnx andny to random numbers be-
tween 0.1 and −0.1; thennz can be determined based on the
relationship nz=s1−nx

2−ny
2d1/2. This random noise can be
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thought to be thermal fluctuations and it affects the director
configuration very little.

In this simulation, the following LC parameters(Merck
ZLI-4792) are used: K11=13.2 pN,K22=6.5 pN,K33
=18.3 pN,D«=5.2 (at 1 kHz), «'=3.1, andg=0.133 Pa s.
The 3% chiral agent(Merck S811) is doped into the above
host and this results in a natural pitchP0=2.98mm. The
physical size of the cell in the calculation is assumed to be
6.4 and 6.4mm in theX direction (rubbing direction) andZ
direction (cell-normal direction), respectively, with 65365
node points. Thus the thickness to pitch ratiosd/P0d is 2.15.
Fixed planar-aligned boundary conditions with a 4.0° pretilt
angle are assumed.

III. RESULTS

In this section, we present our simulation results in the
following manner. In Sec. III A, we present the relaxation
process from the field-induced homogeneous state to a stable
planar state. In Sec. III B, we present the relaxation process
from the field-induced homeotropic state to the stable planar
state. In each part, we will show the two-dimensional(X-Z
plane) director configurations during the relaxation process
of a field-unwound ChLC. In these figures, the director at
each node of the element is represented as a cylindrical rod.
The orientation of the cylindrical rod indicates the average
orientation of ChLC molecules at the point in space associ-
ated with that node. For a clear view, these figures are drawn
sampled.

A. Homogeneous-planar relaxation

The planar-aligned ChLC can be unwound to a homoge-
neous state, as shown in Fig. 2(a), when the electric field is
applied perpendicular to the helical axis and the field
strength is larger thanEc. We will define the timet=0 as the
time at which the voltage is removed. Because the chiral
parameter is not equal to zero, i.e.,q0Þ0, the ChLC mol-
ecules incline to twist to the planar state. However, the
boundary constraints hinder the twist deformation. Under the
competition of chirality and boundary constraints, the mol-
ecules are seen to form the sinusoidal Helfrich deformation
to alleviate the stored high twist energy, as shown in Fig.
2(b). Moreover, the wavelength of the Helfrich deformation
roughly equals the theoretical value derived by Chigrinovet
al., which is induced by the external field[8]. The period is
given as

l = fP0ds3K33/2K22d1/2g1/2, s7d

whered is the cell gap. Considering the parameters used in
the simulation, one getsl=6.26mm. As expected, there is
one full wavelength in theX direction, as shown in Fig 2(b).
Furthermore, the direction of Helfrich deformation is parallel
to the director orientation in the middle layer of the cell.
Therefore, one will observe a stripe with direction perpen-
dicular to the rubbing direction and this result agrees well
with the previous experimental observation[4]. As can be
seen in Fig. 2(c), the amplitude of the modulation increases
with time and the twist deformation in the bulk occurs. Here,

the modulation no longer exhibits a sinusoidal appearance,
but rather appears to exhibit fingers that grow from the sur-
faces in a spatially alternating fashion. As time progresses,
the ends of the fingers spread out horizontally and overlap
each other, as shown in Fig. 2(d). In this stage, the ChLC
possesses a nonequilibrium pitch length; hence, the layers
proceed to distort and overlap each other to increase the
number of pitches, as shown in Fig. 2(e). This results in the
formation of an equilibrium region with intrinsic pitch and
domain wall that separates the stable planar texture, as
shown in Fig. 2(f). As expected, the equilibrium region has
two full 360° twistssd/P0=2.15d.

The model obtained agrees well with the previous experi-
mental observation that for an abrupt turn-off of the relax-
ation of a field-unwound ChLC is accompanied by the ap-
pearance of spatially modulated texture and this texture will
then gradually convert into a stable planar texture with a
domain wall[4,17].

B. Homeotropic-planar relaxation

For the comparison between the homogeneous-planar and
homeotropic-planar transitions, we show a similar simulation

FIG. 2. Simulated director configurations during the relaxation
from the field-induced homogeneous state to the planar state. Times
are(a) 0.2 ms,(b) 100 ms,(c) 110 ms,(d) 250 ms,(e) 700 ms, and
(f) 1500 ms.
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to that presented in previous publications[11,12]. The initial
state is a homeotropic state in which the natural twist has
been completely removed through the application of an elec-
tric field parallel to the helical axis, as shown in Fig. 3(a).
When the electric field is turned off from the homeotropic
state, the ChLC molecules first go through a one-dimensional
conical relaxation to the transient planar state, as shown in
Fig. 3(b). The transient planar state is a metastable state with
the effective pitchP* = sK33/K22dP0 [18–20]. As expected,
we have one full 360° twist in the transient planar state
sd/P* =0.76d. Due to the frustration caused by the competi-
tion between the chirality and boundary constraints, the
ChLC molecules proceed through a Helfrich undulation, as
shown in Fig. 3(c) during the transition from the transient
planar state to a planar state. We find that the wavelength of
the Helfrich undulation also matches well with the theoreti-
cal value in Eq.(7) and this has been experimentally con-
firmed [19]. As can be seen from Fig. 3(d), the modulation
increases in amplitude as the simulation progresses and then
the ends of the “fingers” mushroom out horizontally, as

shown in Fig. 3(e). Figure 3(f) shows the equilibrium state
with natural pitch and domain boundary. As expected, there
are two full 360° twists in the equilibrium regionsd/P0

=2.15d.

IV. DISCUSSION

Figures 2 and 3 show the complete dynamic relaxation
processes from the field-induced homogeneous and homeo-
tropic states, respectively, to the stable planar state. From the
viewpoint of the energy in the ChLC system, because the
homogeneous state and transient planar state are all meta-
stable states, the stored twist energy in these two states is
higher than that in the ground state(planar state). This leads
to instability of the system and the elastic-induced Helfrich
deformation occurs in order to alleviate the high twist
energy.

The random noise caused by thermal fluctuation of the
director plays an important role for the occurrence of the
Helfrich deformation. If this random fluctuation is not em-
ployed in the simulation, the ChLC molecules will relax to a
metastable state and remain there. On the other hand, the
formation process of the Helfrich deformation is a nucleation
process. Therefore, it takes a long time to initiate the Hel-
frich deformation as shown in Figs. 2(a) and 2(b) and Figs.
3(b) and 3(c). However, the stored twist energy in the homo-
geneous state is higher than that in the transient planar state.
Thus, the time to initiate the Helfrich deformation in the
homogeneous state is shorter than that in the transient planar
state.

V. CONCLUSIONS

The dynamic relaxation process of a field-unwound ChLC
has been well described by our simulation. The relaxation
from the field-induced homogeneous state to a stable planar
state is in a sequence of homogeneous-planar transitions.
However, the relaxation from the field-induced homeotropic
state to a stable planar state is in a different sequence of
homeotropic-transient planar-planar transitions. These relax-
ation processes occur via an elastic-induced Helfrich defor-
mation without introduction of defects, which continuously
converts into a stable planar texture with natural pitch and
domain wall.

Based on our simulation results, we can conclude that an
elastic-induced Helfrich deformation may be driven by the
nonequilibrium layer spacing, induced either by external
fields or mechanical strain fields or temperature variations, to
increase the number of layers in a ChLC. In these situations,
the structure of cholesteric layers favored by chirality can be
achieved without the introduction of any defects.
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FIG. 3. Simulated director configurations during the relaxation
from the field-induced homeotropic state to the planar state. Times
are(a) 0.2 ms,(b) 365 ms,(c) 600 ms,(d) 765 ms,(e) 880 ms, and
(f) 1300 ms.
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