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Distributional and Inferential
Properties of the Process Loss Indices

W. L. PEARN*, Y. C. CHANG** AND CHIEN-WEI WU†
*Department of Industrial Engineering & Management, National Chiao Tung University,
Taiwan, **Department of Industrial Engineering & Management, Ching Yun University,
Taiwan, †Department of Business Administration, Feng Chia University, Taiwan

A Johnson (1992) developed the process loss index Le, which is defined as the ratio of
the expected quadratic loss to the square of half specification width. Tsui (1997) expressed the
index Le as LeóLpeòLot, which provides an uncontaminated separation between information
concerning the potential relative expected loss (Lpe) and the relative off-target squared (Lot), as
the ratio of the process variance and the square of the half specification width, and the square of
the ratio of the deviation of mean from the target and the half specification width, respectively.
In this paper, we consider these three loss function indices, and investigate the statistical properties
of their natural estimators. For the three indices, we obtain their UMVUEs and MLEs, and
compare the reliability of the two estimators based on the relative mean squared errors. In
addition, we construct 90%, 95%, and 99% upper confidence limits, and the maximum values of
L̂e for which the process is capable, 90%, 95%, and 99% of the time. The results obtained in this
paper are useful to the practitioners in choosing good estimators and making reliable decisions
on judging process capability.

K W: MLE, potential relative expected loss, relative expected loss, relative mean
squared error, relative off-target squared, UMVUE

Introduction

Process capability indices (PCIs), the purpose of which is to provide numerical
measures of whether or not the ability of a manufacturing process meets a
predetermined level of production tolerance, have received considerable research
attention and increased usage in process assessments and purchasing decisions
in the automotive industry during last decade. Those indices are effective tools
for process capability analysis and quality assurance, and the formula for those
indices are easy to understand and straightforward to apply. Kane (1986)
developed the two most commonly used process capability indices, C

p
and C

pk
.

However, they are not related to the cost of failing to meet customer desires.
Boyles (1991) noted that C

p
and C

pk
are yield-based indices, which are independ-

ent of the target value T, and may fail to consider process centring. In order to
take into account the departure of the process mean from the target, the index
C

pm
is proposed by Chan et al. (1988). Actually, the denominator of the index
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1116 W. L. Pearn et al.

C
pm
is the expected quadratic loss, which is closely related to process departure.

For on-target processes, the value of C
pm
index reaches its maximum, implying

that the process capability runs under the desired condition. On the other hand,
smaller values of C

pm
mean higher expected loss and the poorer process capability.

Therefore, the index C
pm
is considered to be more sensitive than C

p
and C

pk
in

reflecting the process loss. Pearn et al. (1992) investigated the index C
pmk
, which

takes into account the process yield as well as the process loss. Those four well-
known index indices have been defined explicitly as:

C
p
óUSLñLSL

6p
(1)

C
pk
ómin�USLñk3p

,
kñLSL
3p � (2)

C
pm
ó USLñLSL
6�p2ò(kñT)2

(3)

C
pmk
ómin� USLñk

3�p2ò(kñT)2
,

kñLSL
3�p2ò(kñT)2� (4)

The index C
p
considers the overall process variability relative to the manufac-

turing tolerance, reflecting product quality consistency. The index C
pk
takes the

process mean into consideration but can fail to distinguish between on-target
processes from off-target processes, which is a yield-based index providing lower
bounds on process yield. The index C

pm
takes the proximity of process mean

from the target value into account, which is more sensitive to process departure
than C

pk
. Since the design of C

pm
is based on the average process loss relative to

the manufacturing tolerance, the index C
pm
provides an upper bound on the

average process loss, which has been alternatively called the Taguchi index. The
index C

pmk
is constructed from combining the modifications to C

p
that produced

C
pk
and C

pm
, which inherits the merits of both indices.

Yield Index

One of the commonly understood basic criteria for interpretations of the process
capability is the yield index, which is defined as the proportion of conforming
items. Suppose a proportion conforming interpretation is the primary concern,
the most natural measure is the proportion itself called the yield, which we refer
to as Y defined as:

Yó :
USL

LSL

dF(x) (5)

where F(x) is the cumulative distribution function of the measured characteristic
X, USL and LSL are the upper and the lower specification limits, respectively.
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Process Loss Indices 1117

The disadvantage of yield measure is that it does not distinguish among the
products that fall inside of the specification limits.

Loss Index

To remedy for that, the quadratic loss function is considered to distinguish the
products that fall inside of the specification limits by increasing the penalty as
the departure from the target increases. However, the quadratic loss function
itself does not provide comparison with the specification limits and depends on
the unit of the characteristic. To address these issues, Johnson (1992) developed
the relative expected loss L

e
for the symmetric case, to provide numerical

measures on process performance for industrial applications. Tsui (1997) interpret
L

e
óL

pe
òL

ot
, which provides an uncontaminated separation between informa-

tion concerning the potential relative expected loss (L
pe
) and the relative off-

target squared (L
ot
). The index L

e
is defined as the ratio of the expected quadratic

loss and the square of half specification width as follows:

L
e
ó :

�

��
�
(xñT)2
d2 � dF(x)ó�pd�

2
ò�kñTd �

2
(6)

where k is the process mean, p is the process standard deviation, dó(USLñLSL)/
2 is the half specification width, USL and LSL are the upper and the lower
specification limits, and T is the target value. Define L

pe
ó(p/d)2 and

L
ot
ó[(kñT)/d]2, then L

e
can be expressed as L

e
óL

pe
òL

ot
. Since L

pe
measures

the process variation relative to the specification tolerance, it has been referred
to as the potential relative expected loss index. On the other hand, L

ot
measures

the relative process departure and has been referred to as the relative off-
target squared index. We note that the mathematical relationship L

e
ó(3C

pm
)�2,

L
pe
ó(3C

p
)�2 and L

ot
ó(1ñC

a
)2 can be established, where C

pm
, C

p
and C

a(defined asC
a
ó1ñDkñT D/d) are three basic process capability indices considered

by Chan et al. (1988), Kane (1986) and Pearn et al. (1998), respectively. The
advantage of L

e
over C

pm
is that the estimator of the former has better statistical

properties than that of latter, as the former does not involve a reciprocal
transformation of process mean and variance.
In this paper, we consider three loss function indices L

pe
, L

ot
and L

e
, and

investigate the statistical properties of their natural estimators. For L
pe
, we show

that the natural estimator is the UMVUE (uniformly minimum variance unbiased
estimator), which is consistent and asymptotically efficient. We also obtain the
MLE (maximum likelihood estimator), which has smaller mean squared error
than the UMVUE, hence it is more reliable, particularly, for short production
run applications. For L

ot
, we show that the natural estimator is the MLE. We

also obtain the UMVUE, which is shown to be more reliable than the MLE for
applications with nP4. We show that the UMVUE is consistent and asymptotic-
ally efficient. For L

e
, we show that the natural estimator is the MLE and also

the UMVUE, which is consistent and asymptotically efficient. In addition, we
construct tables of 90%, 95%, and 99% upper confidence limits for L

e
based on

the UMVUE. We also construct tables of the maximum values of L̂
e
under kóT
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1118 W. L. Pearn et al.

for which the process is capable 90%, 95% and 99% of the time. An efficient
UMP test based on the UMVUE of L

e
is derived. Using the UMP test, a testing

procedure is proposed. The estimators we recommend have all the desired
statistical properties, and are considered reliable in determining whether a process
meets the capability requirement.

Estimating Process Relative Inconsistency Loss

To estimate the process relative inconsistency loss, we consider the natural
estimator L̂

pe
defined as follows, where S

n�1
ó[&n

i�1
(X

i
ñX̄)2/(nñ1)]1�2 is the

conventional estimator of the process standard deviation p,

L̂
pe
ó 1
nñ1
;
n

i�1

(X
i
ñX̄)2
d2

ó
S2

n�1
d2

(7)

The natural estimator L̂
pe
can be rewritten as:

L̂
pe
ó
L

pe
nñ1

(nñ1)L̂
pe

L
pe

ó
L

pe
nñ1
;
n

i�1

(X
i
ñX̄)2
p2

(8)

If the process follows the normal distribution, then L̂
pe
is distributed as

[L
pe
/(nñ1)]s2

n�1
, where s2

n�1
is a chi-squared distribution with (nñ1) degrees of

freedom. The expected value, the variance, and the mean squared error of L̂
pecan be obtained as follows:

E(L̂
pe
)ó�

L
pe

nñ1�E(s2n�1
)óL

pe
(9)

Var(L̂
pe
)ó�

L
pe

nñ1�
2
Var(s2

n�1
)ó2(nñ1)�

L
pe

nñ1�
2
ó
2L2

pe
nñ1

(10)

MSE(L̂
pe
)óE(L̂

pe
ñL

pe
)2óVar(L̂

pe
)ò[E(L̂

pe
)ñL

pe
]2ó

2L2
pe

nñ1
(11)

If the process characteristic is normally distributed, an 100(1ña)% upper
confidence limit on L

pe
can be established in terms of the estimator L̂

pe
as

[(nñ1)L̂
pe
/s2

n�1
(a)], where s2

n�1
(a) is the (lower) ath percentile of the s2

n�1distribution. A capability testing can then be conducted. In addition, we can
show that the natural estimator L̂

pe
is the UMVUE of L

pe
, which is consistent.

We can also show that �n(L̂
pe
ñL

pe
) converges to N(0, 2L2

pe
) in distribution, and

that L̂
pe
is asymptotically efficient (see Proposition 1). These results follow from

the well-known properties of the sample variance (because L̂
pe
is just a constant

multiplied by the sample variance). Thus, in real-world applications using L̂
pe
,

which has all the desired statistical properties, as an estimate of L
pe
would be

reasonable.
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Process Loss Indices 1119

Table 1.Recommended range of L
pe
for various precision

requirements

Range Precision Requirement

0.06OL
pe
O0.11 Capable

0.05OL
pe
O0.06 Satisfactory

0.04OL
pe
O0.05 Good

0.03OL
pe
O0.04 Excellent

L
pe
O0.03 Super

Proposition 1

If the process characteristic is normally distributed, then:

(a) L̂
pe
is the UMVUE of L

pe
;

(b) L̂
pe
is consistent;

(c) �n(L̂
pe�
L

pe
) converges to N(0, 2L2

pe
) in distribution;

(d) L̂
pe
is asymptotically efficient.

We note that by multiplying the UMVUE L̂
pe
by the constant c

n
ó(nñ1)/n, we

obtain the MLE of L
pe
. We can show that the MLE L̃

pe
is consistent, and is

asymptotically unbiased. We can show that �n(L̃
pe
ñL

pe
) converges to

N(0, 2L2
pe
) in distribution, and that L̃

pe
is asymptotically efficient. Since c

n
\1,

then L̃
pe
óc

n
L̂

pe
underestimates the index L

pe
, but it has smaller variance. In

fact, we may calculate:

MSE(L̃
pe
)ó[(2nñ1)/n2](L

pe
)2 (12)

MSE(L̂
pe
)ñMSE(L̃

pe
)ó{(3nñ1)/[n2(nñ1)]}(L

pe
)2[0, for all n (13)

Therefore, the MLE L̃
pe
has smaller mean squared error than the UMVUE

L̂
pe
, hence it is more reliable, particular for short production run applications.

We consider some commonly used values of L
pe
ó0.11, 0.06, 0.05, 0.04 and 0.03,

equivalent to C
p
ó1.00, 1.33, 1.50, 1.67 and 2.00, covering the widespread range

of the precision requirements for most applications (see Table 1).
The square root of the relative mean squared error is a direct measurement,

which presents the expected relative error of the estimation from the true L
pe
.

We note that for UMVUE L̃
pe
. [MSE

R
(L̂

pe
)]1�2ó[2/(nñ1)]1�2, which is a function

of the sample size n only. Therefore, [MSE
R
(L̂

pe
)]1�2 values are the same for all

L
pe
values. For example, with nó300 we have [MSE

R
(L̂

pe
)]1�2ó0.0818. Thus, for

nó300, we expect that the average error of L̂
pe
would be no greater than 8.18%

of the true L
pe
. We note that [MSE

R
(L̃

pe
)]1�2ó[(2nñ1/n2]1�2, which is also a

function of the sample size n only. Thus, [MSE
R
(L̃

pe
)]1�2 values are the same for

all L
pe
values.

Figure 1 plots [MSE
R
(L̂

pe
)]1�2 with L

pe
ó0.11, 0.06, 0.05, 0.04, 0.03, versus

sample size nó2(1)120 and Figure 2 plots [MSE
R
(L̃

pe
)]1�2 with L

pe
ó0.11, 0.06,

0.05, 0.04, 0.03, versus sample size nó1(1)120. The sensitivity of the square root
of the relative mean squared error for both estimators due to the process relative
inconsistency loss L

pe
, as well as sample size n can then be easily understood.
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1120 W. L. Pearn et al.

Figure 1. Plots of [MSE
R
(L̃

pe
)]0	5 with L

pe
ó0.11, 0.06, 0.05, 0.04, 0.03 (overlap), versus

sample size nó2(1)120

Figure 2. Plots of [MSE
R
(L̂

pe
)]0	5 with L

pe
ó0.11, 0.06, 0.05, 0.04, 0.03 (overlap), versus

sample size nó1(1)120

For short run applications (such as accepting a supplier providing short produc-
tion runs in QS-9000 certification), the difference between the two relative errors
is considered significant for sample size nO35, and we strongly recommend using
the MLE L̃

pe
rather than the UMVUE L̂

pe
. For other applications with sample

size n[35, the difference between the two estimators is negligible (less than
0.52%).

Estimating Process Relative Off-Target Loss

To estimate the relative off-target loss, we consider the natural estimator L̂
otdefined as the following, where X̄ó&n

i�1
X

i
/n is the conventional estimator of
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Process Loss Indices 1121

the process mean k. We note that the estimator L̂
ot
can also be written as a

function of L
pe
:

L̂
ot
ó
(X̄ñT)2
d2

ó
L

pe
n

nL̂
ot

L
pe

ó
L

pe
n

n(X̄ñT)2
p2

(14)

If the process characteristic is normally distributed, then the estimator L̂
ot
is

distributed as [L
pe
/n]s2

1
(d), where s2

1
(d) is a non-central chi-squared distribution

with one degree of freedom and non-centrality parameter dón(kñT)2/p2. The
expected value, the variance, and the mean squared error of L̂

ot
, therefore, can

be calculated as:

E(L̂
ot
)ó�

L
pe
n �E[s21(d)]ó�

L
pe
n �(1òd)ó

L
pe
n
òL

ot
(15)

Var(L̂
ot
)ó�

L
pe
n �

2
Var[s2

1
(d)]ó�

L
pe
n �

2
(2ò4d)ó

4L
pe
L

ot
n
ò
2L2

pe
n

(16)

MSE(L̂
ot
)óVar(L̂

ot
)ò[E(L̂

ot
)ñL

ot
]2ó

4L
pe
L

ot
n
ò
3L2

pe
n2

(17)

If the process characteristic is normally distributed, an 100(1ña)% upper
confidence limit on L

ot
can be expressed in terms of the estimator L̂

ot
as

(dL̂
ot
/s2

1
(a, d), where s2

1
(a, d) is the (lower) ath percentile of the s2

1
(d) distribution.

A capability testing can then be conducted. In practice, we note that parameter
d is unknown and should be estimated by the sample data. Since X̄ is the MLE
of k, then by the invariance property of MLE, the natural estimator L̂

ot
is the

MLE of L
ot
. Noting that E(L̂

ot
)óL

ot
ò(L

pe
/n), and E(L̂

pe
)óL

pe
, the corrected

estimator L̃
ot
óL̂

ot
ñ(L̂

pe
/n) must be unbiased for L

ot
. We can show that L̃

ot
is

the UMVUE of L
ot
, which is consistent. We can also show that �n(L̃

ot
ñL

ot
)

converges to N(0, 4L
pe
L

ot
) in distribution, and L̃

ot
is asymptotically efficient (see

Proposition 2 for proofs). Thus, in real-world applications, using the UMVUE
L̃

ot
, which has all the desired statistical properties, as an estimate of L

ot
would

be reasonable.

Proposition 2

If the process characteristic is normally distributed, then:

(a) L̃
ot
is the UMVUE of L

ot
;

(b) L̃
ot
is consistent;

(c) �n(L̃
ot
ñL

ot
) converges to N(0, 4L

pe
L

ot
) in distribution;

(d) L̃
ot
is asymptotically efficient.

Proof

(a) Note that (X̄, S2
n�1
) is sufficient and complete for (k, p2), and that the

unbiased estimator L̃
ot
is a function of (X̄, S2

n�1
) only. By the Lehmann–

Scheffé Theorem, L̃
ot
is the UMVUE of L

ot
.
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1122 W. L. Pearn et al.

(b) For every e[0,

P( DL̃
ot
ñL

ot
D[e)\E(L̃

ot
ñL

ot
)2/e2 (18)

Since:

E(L̃
ot
ñL

ot
)2ó[4L

pe
L

ot
/n]ò[2L2

pe
/(n2ñn)] (19)

converges to zero, then L̃
ot
must be consistent.

(c) Under general conditions,�n(L̂
ot
ñL

ot
) converges toN (0, p2

ot
) in distribution,

where p2
ot
ó4(kñT)2p2/d4. Under normality assumption, �n(L̂

ot
ñL

ot
) con-

verges to N(0, 4L
pe
L

ot
) in distribution. Since �n(L̃

ot
ñL̂

ot
) converges to zero

in probability, then by Slutsky’s Theorem,

�n(L̃
ot
ñL

ot
)ó�n(L̃

ot
ñL̂

ot
)ò�n(L̂

ot
ñL

ot
) (20)

converges to N(0, 4L
pe
L

ot
) in distribution.

(d) Under normality assumption, the information matrix can be calculated as
follows. Since the information lower bound is achieved, then L̃

ot
must be

asymptotically efficient:

I(h)óI(k, p)ó�
1/p2 0
0 1/(2p4)� (21)

�
LL

ot
Lk
LL

ot
Lp2�

I�1(h)
n �

LL
ot
Lk
LL

ot
Lp2�ó 4Lpe

L
ot

n
(22)

We note that the MLE L̂
ot
has smaller variance than the UMVUE L̃

ot
.

However, we can show that MSE(L̃
ot
)ó4L

pe
L

ot
/nò[2/[n(nñ1)]}(L

pe
)2, and so

MSE(L̃
ot
)ñMSE(L̂

ot
)ó{(3ñn)/[n2(nñ1)]}(L

pe
)2, which is greater than 0 for

nó2, equal to 0 for nó3, and less than 0 for nP4. Therefore, the UMVUE L̃
othas smaller mean squared error than the MLE L̂

ot
, and is more reliable for

applications with nP4. Figure 3 plots the relative error, [MSE
R
(L̃

ot
)]1�2, of the

UMVUE L̃
ot
for L

pe
ó0.11, 0.06, 0.05, 0.04, 0.03, versus sample size nó2(1)120

(L
ot
ó0.25 is fixed). This value of L

ot
is equivalent to C

a
ó0.50. The relative

errors, [MSE
R
(L̃

ot
)]1�2, for other values of L

ot
and sample size n are available

from the authors. We note that if the process is perfectly centred, then L
ot
ó0.00

(equivalently, C
a
ó1.00). For example, for L

pe
ó0.11, L

ot
ó0.25, and nó300 we

have [MSE
R
(L̃

ot
)]1�2ó0.0770. Thus, the average error (average relative deviation)

of L̃
ot
would be no greater than 7.70% of the true L

ot
.

Figure 4 plots the relative error, [MSE
R
(L̂

ot
)]1�2, of the MLE L̂

ot
for L

pe
ó0.11,

0.06, 0.05, 0.04, 0.03, versus sample size nó1(1)120 (L
ot
ó0.25 is fixed). Tables

of [MSE
R
(L̂

ot
)]1�2 for other values of L

ot
are available from the authors. We note

that for nO30, the difference between the two relative errors (percentage of
deviations) is significant, and we recommend using the UMVUE L̃

ot
rather than
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Process Loss Indices 1123

Figure 3. Plots of [MSE
R
(L̂

ot
)]0	5 with L

pe
ó0.11, 0.06, 0.05, 0.04, 0.03 (top to bottom), versus

sample size nó2(1)120

Figure 4. Plots of [MSE
R
(L̂

ot
)]0	5 with L

pe
ó0.11, 0.06, 0.05, 0.04, 0.03 (top to bottom), versus

sample size nó1(1)120

the MLE L̂
ot
. However, for n[30, the difference between the two is negligible

(less than 0.04%), and using either of the two estimators is equally reliable.

Estimating Process Expected Relative Loss

To estimate the process expected relative loss (a combined measure of process
relative inconsistency loss and process relative off-target loss), we consider the
nature estimator L̂

e
defined as the following, where X̄ó&n

i�1
X

i
/n, which can

also be written as a function of L
pe
:

L̂
e
ó 1
n
;
n

i�1

(X
i
ñX̄)2
d2

ò
(X̄ñT)2
d2

ó
L

pe
n

nL̂
e

L
pe

ó
L

pe
n
;
n

i�1

(X
i
ñT)2
p2

(23)
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1124 W. L. Pearn et al.

If the process characteristic is normally distributed, then the estimator L̂
eis distributed as [L

pe
/n]s2

n
(d), where s2

n
(d) is a non-central chi-squared dis-

tribution with n degrees of freedom and non-centrality parameter
dón(kñT)2/p2ónL

ot
/L

pe
. The expected value, the variance, and the mean

squared error of L̂
pe
can be calculated as follows:

E(L̂
e
)ó�

L
pe
n �E[s2n (d)]ó�Lpe

n �(nòd)óLpe
òL

ot
óL

e
(24)

Var(L̂
e
)ó�

L
pe
n �

2
Var[s2

n
(d)]ó�

L
pe
n �

2
(2nò4d)ó

2L
pe
n
(L

ot
òL

e
) (25)

MSE(L̂
e
)óVar(L̂

e
)ò[E(L̂

e
)ñL

e
]2ó

2L
pe
n
(L

ot
òL

e
) (26)

If the process characteristic follows the normal distribution, then we can show
that L̂

e
is the MLE, which is also the UMVUE of L

e
. We can also show that L̂

eis consistent, �n(L̂
e
ñL

e
) converges to N(0, 2L

pe
L

ot2
L

pe
L

e
) in distribution,

and L̂
e
is asymptotically efficient (see Proposition 3 for proofs). Since the

estimator has all the desired statistical properties, in practice using L̂
e
to estimate

process expected relative loss would be reasonable.

Proposition 3

If the process characteristic is normally distributed, then:

(a) L̂
e
is the MLE of L

e
;

(b) L̂
e
is the UMVUE of L

e
;

(c) L̂
e
is consistent;

(d) �n(L̂
e
ñL

e
) converges to N(0, 2L

pe
L

ot
ò2L

pe
L

e
) in distribution;

(e) L̂
e
is asymptotically efficient.

Proof

(a) Since (X̄, S2
n
) is the MLE of (k, p2), where S2

n
ó&n

i�1
(X

i
ñX̄)2/n, and

L̂
e
ó(S2

n
/d2)ò[(X̄ñT)2/d2], then by the invariance property of MLE, L̂

e
is

the MLE of L
e
.

(b) We note that (X̄, S2
n
) is sufficient and complete for (k, p2). Since the unbiased

estimator L̂
e
is a function of (X̄, S2

n
) only, then by the Lehmann–Scheffé

Theorem, L̂
e
is the UMVUE.

(c) Under general conditions, �n(L̂
e
ñL

e
) converges to N(0, p2

e
) in distribution,

where p2
e
ó[4(kñT)2p2/d4]ò[4k

3
(kñT)/d4]ò[(k

4
ñp4)/d4]. Therefore,

�n(L̂
e
ñL

e
) converges to N(0, 2L

pe
L

ot
ò2L

pe
L

e
) in distribution if the process

is normal. Parts (c) and (e) directly follow from part (a), since MLEs must
be consistent and asymptotically efficient.
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Process Loss Indices 1125

Testing Process Capability Based on Process Loss

Under normality assumption, nL̂
e
/(L

e
ñL

ot
) is distributed as s2

n
(d), a non-central

chi-squared distribution with n degrees of freedom and non-centrality parameter
dón(kñT)2/p2ónL

ot
/L

pe
. Let UóU(X

1
, X

2
, . . . ,X

n
) be a statistic calculated

from the sample data satisfying P(L
e
OU)ó1ña, where the confidence level

1ña does not depend on L
e
. Then, U is an 100(1ña)% upper confidence limit

for L
e
. We note that:

P(L
e
OU)óP(L

e
ñL

ot
OUñL

ot
)óP(nL̂

e
/(L

e
ñL

ot
)PnL̂

e
/(UñL

ot
))
(27)

óP(s2
n
(d)PnL̂

e
/(UñL

ot
))ó1ña

Thus, nL̂
e
/(UñL

ot
)ós2

n
(a, d), where s2

n
(a, d) is the (lower) ath percentile of the

s2
n
(d) distribution. A 100(1ña)% upper confidence limit on L

e
can be expressed,

in terms of L̂
e
, as UóL

ot
ò[nL̂

e
/s2

n
(a, d)]. On the other hand, to test H

0
:

L
e
PC(incapable) versus H

1
:L

e
\C (capable), we claim that the process is

capable for at least 100(1ña)% of the time if L̂
e
Oc

0
. We can show that the

critical value c
0
ó[s2

n
(a, d)·C]/(nòd), where C is the capability requirement

preset. Then, c
0
ó[s2

n
(a, d)·C]/(nòd), is the maximum value of the estimated

expected relative loss L̂
e
in order that the process is considered capable at least

100(1ña)% of the time.
By letting mó(kñT)/p, we have dón(kñT)2/p2ónm2. The formula for calcu-

lating critical value c
0
can be written as c

0
ó[s2

n
(a, nm2)·C]/[n(1òm2)], which is

easy to understand and straightforward to apply. But, since the process measure-
ment k and pmust be estimated from the sampled data to obtain the characteristic
parameter m, a great degree of uncertainty may be introduced to capability
assessments due to sampling errors. Johnson (1992) suggested estimating k
and p by X̄ and S

n
, respectively, to obtain the upper confidence limit

[(nònm2)/s2
n
(a, nm2)]L̂

e
(which is equivalent to our expression UóL

ot
ò

[nL̂
e
/s2

n
(a, d)]) for L

e
. Such an approach introduces additional sampling errors

from estimating m, and would be less reliable. Consequently, any decisions made
would provide less quality assurance to the customers.
To eliminate the need for further estimating the characteristic parameter

mó(kñT)/p, we examine the sensitivity of the critical value c
0
against the

parameter m. The results indicate that the critical value c
0
is increasing in m and

reaches its minimum at mó0 (hence kóT) in all cases. Figures 5–8 plot the
curves of the critical value c

0
versus the parameter mó0(0.05)3.00, nó30, 50,

70, 100, 150, 200 with confidence level có0.95, for L
e
ó0.03, 0.04, 0.06 and 0.11,

respectively. Hence, for practical purposes we may calculate the critical value c
0by setting m̂ómó0 for given L

e
, n and c, without having to further estimate the

parameter m. Thus, based on such an approach, the c confidence level can be
ensured and the decisions made are indeed more reliable.

Uniformly Most Powerful Test

For testing hypotheses about L
e
, H

0
:L

e
PC (incapable) versus H

1
:L

e
\C (capa-

ble), we define a test as {*(x)ó1 (reject H
0
) if L̂

e
\c

0
, and {*(x)ó0 otherwise,

is the uniformly most powerful (UMP) test of level a under mó0 (hence kóT),
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1126 W. L. Pearn et al.

Figure 5. Plots of c
0
versus D�D for L

e
ó0.03, nó30, 50, 70, 100, 150, 200 (bottom to top)

Figure 6. Plots of c
0
versus D�D for L

e
ó0.04, nó30, 50, 70, 100, 150, 200 (bottom to top)

Figure 7. Plots of c
0
versus D�D for L

e
ó0.06, nó30, 50, 70, 100, 150, 200 (bottom to top)
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Process Loss Indices 1127

Figure 8. Plots of c
0
versus D�D for L

e
ó0.11, nó30, 50, 70, 100, 150, 200 (bottom to top)

where c
0
is determined by E

C
[{*(X)]óa. The proof is shown as follows. For the

test, the power function is:

b(L
e
,{*)óE

Le
[{*(X)]óP

Le
[s2

n
\(nc

0
)/L

e
] (28)

For a(c
0
)óa, c

0
ó[s2

n
(a)·C]/n, where s2

n
(a) is the (lower) ath percentile of the

s2
n
distribution. From the probability density function of L̂

e
, we define j(x) as:

j(x)óf
L� e
(x, L@

e
)/f

L� e
(x, L

e
)ó(L

e
/L@

e
)n�2exp�n2� 1L

e

ñ 1
L@

e
� · x� (29)

Since, for L@
e
[L

e
[0, the ratio j(x) is an increasing function of x, then

{ f
L� e
(x, L

e
) DL

e
[0} has monotone likelihood ratio (MLR) property in L

e
. There-

fore, the test {* must be the UMP test.

Making Decisions

Tables 2(a), 3(a) and 4(a) give 90%, 95% and 99% upper confidence limits for L
eunder kóT with n given, and L̂

e
calculated from the sample data. On the other

hand, we note that L̂
e
ós2

n
(a, d)(UñL

ot
)/n depends on U and L

ot
. In the special

case where kóT and U equals the recommended maximum value for L
e
, the

probability that L
e
OU would be either 1 or 0 if L

e
were known. In practice,

since L
e
is unknown, we take a random sample of size n and calculate L̂

e
. Tables

2(b), 3(b) and 4(b) give critical values of L̂
e
in the case kóT, for the process to

be considered capable (i.e. L
e
OC) 90%, 95% and 99% of the time. The following

example illustrates the use of these tables. To determine whether the process
meets the capability requirement, we first determine C, and the a-risk. Then, we
calculate the estimator L̂

e
from the sample. From the appropriate table, we find

the critical value c
0
based on the a-risk, capability requirement C, and sample

size n. If the estimated value L̂
e
is less than the critical value c

0
, then we conclude

that the process meets the preset capability requirement.
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Table 2(a). The 90% upper confidence limits for L
pe
under kóT, with given L̂

pe

Sample size n

L̂
pe

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.03 0.0862 0.0571 0.0488 0.0446 0.0422 0.0405 0.0392 0.0382 0.0375 0.0369 0.0363 0.0359 0.0355 0.0351
0.04 0.1242 0.0822 0.0702 0.0643 0.0607 0.0583 0.0565 0.0551 0.0540 0.0531 0.0523 0.0517 0.0511 0.0506
0.05 0.1533 0.1015 0.0867 0.0794 0.0749 0.0719 0.0697 0.0680 0.0666 0.0655 0.0646 0.0638 0.0631 0.0625
0.06 0.1941 0.1285 0.1097 0.1005 0.0948 0.0910 0.0882 0.0861 0.0843 0.0829 0.0817 0.0807 0.0798 0.0791
0.11 0.3450 0.2284 0.1950 0.1786 0.1686 0.1618 0.1568 0.1530 0.1499 0.1474 0.1453 0.1435 0.1419 0.1406

Sample size n

L̂
pe

80 90 100 110 120 130 140 150 160 170 180 190 200 300

0.03 0.0346 0.0341 0.0337 0.0334 0.0331 0.0329 0.0327 0.0325 0.0323 0.0322 0.0320 0.0319 0.0318 0.0310
0.04 0.0498 0.0491 0.0486 0.0481 0.0477 0.0474 0.0470 0.0468 0.0465 0.0463 0.0461 0.0459 0.0458 0.0446
0.05 0.0615 0.0606 0.0600 0.0594 0.0589 0.0585 0.0581 0.0577 0.0574 0.0572 0.0569 0.0567 0.0565 0.0551
0.06 0.0778 0.0767 0.0759 0.0752 0.0745 0.0740 0.0735 0.0731 0.0727 0.0724 0.0720 0.0718 0.0715 0.0697
0.11 0.1383 0.1364 0.1349 0.1336 0.1325 0.1315 0.1307 0.1299 0.1292 0.1286 0.1281 0.1276 0.1271 0.1239
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Table 2(b). The critical value of L̂
pe
under kóT for which the process is capable 90% of the time

Sample size n

C 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.03 0.0089 0.0135 0.0158 0.0173 0.0183 0.0191 0.0197 0.0202 0.0206 0.0209 0.0212 0.0215 0.0217 0.0220
0.04 0.0129 0.0195 0.0228 0.0249 0.0264 0.0275 0.0283 0.0291 0.0296 0.0302 0.0306 0.0310 0.0313 0.0316
0.05 0.0159 0.0240 0.0281 0.0307 0.0325 0.0339 0.0350 0.0359 0.0366 0.0372 0.0378 0.0382 0.0387 0.0390
0.06 0.0201 0.0304 0.0356 0.0389 0.0412 0.0429 0.0443 0.0454 0.0463 0.0471 0.0478 0.0484 0.0489 0.0494
0.11 0.0358 0.0541 0.0633 0.0691 0.0732 0.0763 0.0787 0.0807 0.0823 0.0838 0.0850 0.0860 0.0870 0.0878

Sample size n

C 80 90 100 110 120 130 140 150 160 170 180 190 200 300

0.03 0.0223 0.0226 0.0229 0.0231 0.0233 0.0235 0.0236 0.0238 0.0239 0.0240 0.0241 0.0242 0.0243 0.0249
0.04 0.0321 0.0326 0.0329 0.0329 0.0335 0.0338 0.0340 0.0342 0.0344 0.0346 0.0347 0.0348 0.0350 0.0359
0.05 0.0397 0.0402 0.0407 0.0407 0.0414 0.0417 0.0420 0.0422 0.0425 0.0427 0.0428 0.0430 0.0432 0.0443
0.06 0.0502 0.0509 0.0515 0.0520 0.0524 0.0528 0.0531 0.0534 0.0537 0.0540 0.0542 0.0544 0.0546 0.0561
0.11 0.0893 0.0905 0.0915 0.0924 0.0932 0.0939 0.0945 0.0950 0.0955 0.0960 0.0964 0.0968 0.0971 0.0997
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Table 3(a). The 95% upper confidence limits for L
pe
under kóT, with given L̂

pe

Sample size n

C 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.03 0.1212 0.0705 0.0574 0.0512 0.0475 0.0451 0.0433 0.0419 0.0408 0.0400 0.0392 0.0386 0.0381 0.0376
0.04 0.1746 0.1015 0.0826 0.0737 0.0684 0.0649 0.0623 0.0604 0.0588 0.0575 0.0565 0.0556 0.0548 0.0541
0.05 0.2156 0.1253 0.1020 0.0910 0.0845 0.0801 0.0769 0.0745 0.0726 0.0710 0.0679 0.0686 0.0676 0.0668
0.06 0.2728 0.1586 0.1291 0.1152 0.1069 0.1014 0.0974 0.0943 0.0919 0.0899 0.0882 0.0868 0.0856 0.0846
0.11 0.4850 0.2820 0.2295 0.2048 0.1901 0.1803 0.1731 0.1677 0.1633 0.1598 0.1569 0.1544 0.1522 0.1503

Sample size n

C 80 90 100 110 120 130 140 150 160 170 180 190 200 300

0.03 0.0368 0.0362 0.0356 0.0352 0.0348 0.0345 0.0342 0.0340 0.0337 0.0335 0.0333 0.0332 0.0330 0.0278
0.04 0.0530 0.0521 0.0513 0.0507 0.0502 0.0497 0.0493 0.0489 0.0486 0.0483 0.0480 0.0478 0.0475 0.0401
0.05 0.0654 0.0643 0.0634 0.0626 0.0619 0.0613 0.0608 0.0604 0.0600 0.0596 0.0593 0.0590 0.0587 0.0495
0.06 0.0828 0.0814 0.0802 0.0792 0.0784 0.0776 0.0770 0.0764 0.0759 0.0754 0.0750 0.0746 0.0743 0.0626
0.11 0.1472 0.1447 0.1426 0.1408 0.1393 0.1380 0.1369 0.1358 0.1349 0.1341 0.1334 0.1327 0.1321 0.1114
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Table 3(b). The critical value of L̂
pe
under kóT for which the process is capable 95% of the time

Sample size n

C 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.03 0.0064 0.0109 0.0134 0.0151 0.0162 0.0171 0.0178 0.0184 0.0189 0.0193 0.0197 0.0200 0.0203 0.0205
0.04 0.0092 0.0158 0.0194 0.0217 0.0234 0.0247 0.0257 0.0265 0.0272 0.0278 0.0283 0.0288 0.0292 0.0296
0.05 0.0113 0.0195 0.0239 0.0268 0.0289 0.0304 0.0317 0.0327 0.0336 0.0343 0.0350 0.0355 0.0360 0.0365
0.06 0.0143 0.0246 0.0303 0.0339 0.0365 0.0385 0.0401 0.0414 0.0425 0.0435 0.0443 0.0450 0.0456 0.0462
0.11 0.0255 0.0438 0.0538 0.0603 0.0649 0.0685 0.0713 0.0736 0.0756 0.0773 0.0787 0.0800 0.0811 0.0821

Sample size n

C 80 90 100 110 120 130 140 150 160 170 180 190 200 300

0.03 0.0210 0.0213 0.0216 0.0219 0.0222 0.0224 0.0226 0.0227 0.0229 0.0230 0.0231 0.0233 0.0234 0.0242
0.04 0.0302 0.0307 0.0312 0.0316 0.0319 0.0322 0.0325 0.0327 0.0329 0.0331 0.0333 0.0335 0.0337 0.0348
0.05 0.0373 0.0379 0.0385 0.0390 0.0394 0.0398 0.0401 0.0404 0.0407 0.0409 0.0411 0.0414 0.0416 0.0429
0.06 0.0472 0.0480 0.0487 0.0493 0.0498 0.0503 0.0507 0.0511 0.0515 0.0518 0.0521 0.0523 0.0526 0.0543
0.11 0.0839 0.0853 0.0866 0.0877 0.0886 0.0895 0.0902 0.0909 0.0915 0.0921 0.0926 0.0930 0.0935 0.0966
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Table 4(a). The 99% upper confidence limits for L
pe
under kóT, with given L̂

pe

Sample size n

L̂
pe

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.03 0.2506 0.1086 0.0797 0.0673 0.0603 0.0557 0.0525 0.0501 0.0483 0.0468 0.0455 0.0445 0.0436 0.0428
0.04 0.3608 0.1564 0.1147 0.0968 0.0868 0.0802 0.0756 0.0722 0.0695 0.0673 0.0655 0.0640 0.0627 0.0616
0.05 0.4455 0.1930 0.1417 0.1196 0.1071 0.0991 0.0934 0.0891 0.0858 0.0831 0.0809 0.0790 0.0775 0.0761
0.06 0.5638 0.2443 0.1793 0.1513 0.1356 0.1254 0.1182 0.1128 0.1086 0.1052 0.1024 0.1000 0.0980 0.0963
0.11 1.0023 0.4343 0.3187 0.2690 0.2410 0.2229 0.2101 0.2005 0.1930 0.1870 0.1820 0.1778 0.1743 0.1721

Sample size n

L̂
pe

80 90 100 110 120 130 140 150 160 170 180 190 200 300

0.03 0.0415 0.0405 0.0396 0.0389 0.0383 0.0378 0.0374 0.0370 0.0366 0.0363 0.0360 0.0358 0.0355 0.0339
0.04 0.0598 0.0583 0.0571 0.0561 0.0552 0.0545 0.0538 0.0533 0.0527 0.0523 0.0519 0.0515 0.0511 0.0488
0.05 0.0738 0.0720 0.0705 0.0692 0.0682 0.0673 0.0665 0.0657 0.0651 0.0645 0.0640 0.0636 0.0631 0.0602
0.06 0.0934 0.0911 0.0892 0.0876 0.0863 0.0851 0.0841 0.0832 0.0824 0.0817 0.0810 0.0804 0.0799 0.0762
0.11 0.1660 0.1619 0.1586 0.1558 0.1534 0.1513 0.1495 0.1479 0.1465 0.1452 0.1441 0.1430 0.1421 0.1355
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Table 4(b). The critical value of L̂
pe
under kóT for which the process is capable 99% of the time

Sample size n

C 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.03 0.0031 0.0071 0.0097 0.0115 0.0128 0.0138 0.0147 0.0154 0.0160 0.0165 0.0170 0.0174 0.0177 0.0180
0.04 0.0044 0.0102 0.0139 0.0165 0.0184 0.0199 0.0212 0.0222 0.0230 0.0238 0.0244 0.0250 0.0255 0.0260
0.05 0.0055 0.0126 0.0172 0.0204 0.0228 0.0246 0.0261 0.0274 0.0284 0.0293 0.0301 0.0309 0.0315 0.0321
0.06 0.0069 0.0160 0.0218 0.0258 0.0288 0.0312 0.0331 0.0346 0.0360 0.0371 0.0381 0.0390 0.0398 0.0406
0.11 0.0123 0.0284 0.0387 0.0459 0.0512 0.0554 0.0588 0.0616 0.0640 0.0660 0.0678 0.0694 0.0708 0.0721

Sample size n

C 80 90 100 110 120 130 140 150 160 170 180 190 200 300

0.03 0.0186 0.0191 0.0195 0.0198 0.0201 0.0204 0.0206 0.0209 0.0211 0.0213 0.0214 0.0216 0.0217 0.0228
0.04 0.0268 0.0274 0.0280 0.0285 0.0290 0.0294 0.0297 0.0300 0.0303 0.0306 0.0308 0.0311 0.0313 0.0328
0.05 0.0330 0.0339 0.0346 0.0352 0.0358 0.0363 0.0367 0.0371 0.0375 0.0378 0.0381 0.0384 0.0386 0.0405
0.06 0.0418 0.0429 0.0438 0.0446 0.0453 0.0459 0.0464 0.0469 0.0474 0.0478 0.0482 0.0486 0.0489 0.0512
0.11 0.0744 0.0762 0.0778 0.0793 0.0805 0.0816 0.0826 0.0835 0.0843 0.0850 0.0857 0.0863 0.0869 0.0911
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Table 5. Recommended estimator of the loss indices for different sample size

Loss
Indices Definition UMVUE MLE Estimator Recommended

L
pe

nO35: MLES2
n�1
d2

S2
n
d2�pd�

2
n[35: Difference is
negligible (\0.52%)

L
ot

nO30: UMVUE(X̄ñT)2
d2

ñ
S2

n�1
nd2

(X̄ñT)2
d2�kñTd �

2
n[30: Difference is
negligible (\0.04%)

L
e

—p2ò(kñT)2
d2

S2
n
ò(X̄ñT)2
d2

S2
n
ò(X̄ñT)2
d2

An Example of Testing Le

A practice that is becoming increasingly common in industry is to require a
supplier to demonstrate process capability as part of the contractual agreement.
Suppose a customer has told his supplier that, in order to qualify for business
with his company, the supplier must demonstrate that his process capability L

eis less than 0.06. This problem may be formulated as a hypothesis-testing
problem:

H
0
:L

e
P0.06 (incapable)

H
1
:L

e
\0.06 (capable).

In statistical hypothesis testing, rejection of H
0
is always a strong conclusion.

The supplier would like to reject H
0
, thereby demonstrating that his process is

capable. Moreover, he wants to be sure that if the process capability is below
0.06 there will be a high probability of judging the process capable (say, 0.95).
One takes a random sample of size n, and calculates the value of L̂

e
. Using

Table 3(b) based on the random sample of size nó50, for example, we obtain
c
0
ó0.0435. Thus, if the calculated L̂

e
O0.0435, then we claim that the process

is capable at least 95% of the time, or equivalently, at the significant level aó0.05.

Conclusion

Johnson (1992) introduced the relative expected loss L
e
óL

pe
òL

ot
, which pro-

vides an uncontaminated separation between information concerning the relative
inconsistency loss (L

pe
) and the relative off-target loss (L

ot
). In this paper, we

considered the three indices, and investigate the statistical properties of their
natural estimators. For the three indices, we obtained their UMVUEs and MLEs.
For each index, we compare the reliability of the two estimators based on their
relative errors (square root of the relative mean squared error). We summarize
the definitions of the process loss indices L

pe
, L

ot
and L

e
, accompanied with

different estimators corresponding to these indices (see Table 5). Which estimator
should be preferred for what sample sizes is also suggested. In addition, we
constructed 90%, 95% and 99% upper confidence limits, and the maximum
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values of L̂
e
for which the process is capable. The results obtained in this paper

are useful for practitioners in choosing good estimators and making reliable
decisions on judging process capability.
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