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SUMMARY

In the framework of the speci�ed-time-interval scheme, the accuracy of the characteristic method is
greatly related to the form of the interpolation. The linear interpolation was commonly used to couple
the characteristics method (LI method) in open channel �ow computation. The LI method is easy to
implement, but it leads to an inevitable smoothing of the solution. The characteristics method with the
Hermite cubic interpolation (HP method, originally developed by Holly and Preissmann, 1977) was
then proposed to largely reduce the error induced by the LI method. In this paper, the cubic-spline
interpolation on the space line or on the time line is employed to integrate with characteristics method
(CS method) for unsteady �ow computation in open channel. Two hypothetical examples, including
gradually and rapidly varied �ows, are used to examine the applicability of the CS method as compared
with the LI method, the HP method, and the analytical solutions. The simulated results show that the
CS method is comparable to the HP method and more accurate than the LI method. Without tackling
the additional equations for spatial or temporal derivatives, the CS method is easier to implement and
more e�cient than the HP method. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The method of characteristics has been well known to yield many advantages on the aspects
of theoretical and physical interpretation for �ow pattern. This method was �rst used by Lai
[1] and Amein [2] in the numerical modelling of unsteady �ow for open channel. Later, the
use of characteristics method for the unsteady �ow simulation have been studied extensively
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by many researchers, such as Vardy [3], Wiggert and Sundquist [4], Wylie [5], and
Goldberg and Wylie [6]. The method of characteristics could be classi�ed into two categories.
One is the characteristics-grid scheme, and the other is the speci�ed-time-interval scheme. The
characteristics-grid scheme has the potential to give accurate solution, but its grid system is
awkward for practical applications. The speci�ed-time-interval scheme then has been popu-
lar scheme for hydraulic engineering problems. With the use of the speci�ed-time-interval
scheme, characteristic trajectory usually do not pass through the grid points. The interpolation
technique could be used to obtain corresponding values at the foot of the trajectory. Thus, in
the framework of the speci�ed-time-interval scheme, the form of interpolation will severely
a�ect the accuracy of the characteristics method.
The linear interpolation was commonly used to couple characteristics method in open chan-

nel �ow computation [7–10]. This method will be named as LI method in this paper. The
LI method is easy to implement, but it leads to an inevitable smoothing of the solution. In
order to e�ciently reduce the numerical errors induced by the linear interpolation, the Hermite
cubic interpolation was employed to compute unsteady �ow in open channel [11]. The key
to the Hermite cubic interpolation is based on the construction of cubic interpolating poly-
nomials between the dependent variables and its derivatives for adjacent points. Holly and
Preissmann [12] �rst combined the characteristics method with the Hermite cubic interpola-
tion for hydraulic engineering problem. This method is usually called as HP method. The HP
method with some improvements, such as the use of the characteristics reachback concept
and the time line interpolation technique [13–16], had been applied to the dispersion prob-
lems. In comparison with the LI method, the HP method achieves its high accuracy at the
expense of lengthy computation time for tackling auxiliary equations for spatial or temporal
derivatives.
The cubic-spline interpolation, like the Hermite cubic interpolation, is another kind of piece-

wise cubic approximation. It is well known that the interpolation error associated with cubic
splines is signi�cantly smaller than that for Hermite cubic interpolation [17]. The cubic-
spline interpolation was �rst used by Schohl and Holly [18] in one-dimensional advective
solute transport and then applied to two-dimensional mass transport problems by Karpik and
Crockett [19] and Stefanovic and Stefan [20]. The cubic-spline interpolation originally de-
veloped on the space line had also been extended to the time line [21], which allows the
characteristics to intersect on the temporal axis. In this paper, the cubic-spline interpolation
on the space line or on the time line is employed to integrate with characteristics method for
unsteady open channel �ow computation. This method will be named as CS method. It must
be noticed that the HP method constructs cubic interpolating polynomials between the depen-
dent variables and its �rst derivatives with respect to the time or the space for adjacent points.
These �rst derivatives then need to be transported along the characteristics lines, which in-
duces the additional partial di�erential equation to be solved. However, in the CS method, the
nodal slopes are computed from the condition that a piecewise cubic interpolation should be
twice continuously di�erentiable so that the interpolation function has a continuous curvature.
Hence, the major di�erence between the CS method and the HP method is that the CS method
need not deal with additional equations for spatial or temporal derivatives, whereas the HP
method need do that. One could expect that the CS method will be easier and more e�cient
than the HP method. In the following sections, the mathematical and numerical formulations
for the characteristics method with various interpolation techniques in modelling unsteady open
channel �ow are �rst introduced. Studies of comparisons with the LI method, the HP method,
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the CS method, and the analytical solutions are then conducted on the basis of two hypo-
thetical examples. The properties of the CS method are also demonstrated by investigation of
some key parameters, such as the reachback number, the Courant number, and the weighting
factor.

2. GOVERNING EQUATIONS

The well-known governing equations for one-dimensional unsteady open channel �ow without
lateral in�ow or out�ow in a uniform rectangular cross-section can be written as

@h
@t
+
@(uh)
@x

= 0 (1)

@u
@t
+ u

@u
@x
+ g

@h
@x
= g(S0 − Sf ) (2)

where u is �ow velocity; h is water depth; S0 and Sf , respectively, denote the bed slope and
friction slope; g represents the gravitational acceleration; x and t are the space and the time
co-ordinates.
By introducing celerity of gravity wave, i.e. c=

√
gh, Equations (1) and (2) could be

transformed into characteristic equations [22] as follows:

D(u+ 2c)
Dt

= g(S0 − Sf ) (3)

along

(
dx
dt

)
+
= u+ c (4)

and

D(u− 2c)
Dt

= g(S0 − Sf ) (5)

along

(
dx
dt

)
−
= u− c (6)

where D=Dt=(@=@t) + (dx=dt)±(@=@t) denotes the total derivatives. Equations (4) and (6)
represent two characteristics curves, i.e. C+ and C−, shown in Figure 1.
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Figure 1. Grid system of characteristics method with cubic-spline interpolation.

3. NUMERICAL FRAMEWORK OF CHARACTERISTICS METHOD

3.1. Discretized equation

By integrating Equations (3)–(6) along the characteristics curves from l to p and from r to
p shown in Figure 1, one can obtain

(up + 2cp)− (ul + 2cl) =
∫ tp

tl

g(S0 − Sf ) dt (7)

xp − xl =
∫ tp

tl

(u+ c) dt (8)

(up − 2cp)− (ur − 2cr) =
∫ tp

tr
g(S0 − Sf ) dt (9)

xp − xr =
∫ tp

tr
(u− c) dt (10)

where the subscript represents the nodal point.
The time integration terms shown in right-hand sides of Equations (7)–(10) could be

approximated as

∫ tp

tl

� dt =�pl(tp − tl) (11)

∫ tp

tr
� dt =�pr(tp − tr) (12)
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where � can be u, c, S0, or Sf . The double subscript denotes a linear combination of two
nodal values on the characteristics trajectory, that is, �pl=!�p + (1 − !)�l, �pr =!�p +
(1−!)�r in which ! is weighting factor and ranges between zero and unity. The weighting
factor of 0.5, i.e. !=0:5, is the so-called trapezoidal-rule approximation. The rectangular-rule
approximations with explicit and fully implicit forms are used when the weighting factor are
zero and unity, respectively.
The nodal points r and l usually do not coincide with the grid point. Some forms of

interpolations could be applied to approximate �l and �r . Due to its simplicity and e�ciency,
the linear interpolation, based on the construction of linear function of dependent variable
between two grid points, is commonly applied to open channel �ow computation. The use
of the linear interpolation to approximate �l and �r is displayed in Appendix A. In the
following, a brief review of the Hermite cubic interpolation for unsteady �ow computation
in open channel is given �rst and then the methodology of the cubic-spline interpolation is
described.

3.2. Brief review of Hermite cubic interpolation

The key idea of the Hermite cubic interpolation is to construct a cubic polynomial function
between two grid points with the use of the dependent variable and its �rst derivative. When
the characteristic curves (i.e. C+ and C−) intersect on the space line, applying the Hermite
cubic interpolation could yield �l and �r as follows:

�l = a1�n−m̂i−n̂l−1 + a2�
n−m̂
i−n̂l + a3�

n−m̂
xi−n̂l−1 + a4�

n−m̂
xi−n̂l (13)

�r = a1�n−m̂i−n̂r−1 + a2�
n−m̂
i−n̂r + a3�

n−m̂
xi−n̂r−1 + a4�

n−m̂
xi−n̂r (14)

with

n̂l = INT
(u+ c)plm̂�t

�x
(15)

n̂r =




INT
(u− c)prm̂�t

�x
(u− c)pr¿0

INT
{[
(u− c)prm̂�t

�x

]
− 1

}
(u− c)pr¡0

(16)

where � can be u or c. m̂ denotes reachback number shown in Figure 1. �x and �t are
the uniform grid size and the time step, respectively. INT represents the integral portion.
For example, INT�(u− c)prm̂�t=�x� is integral portion of (u− c)prm̂�t=�x. The coe�cients
a1 − a4 given by Equations (13) and (14) are shown in Appendix B.
Two additional equations are required to evaluate the spatial derivatives for �ow velocity

and celerity, i.e. ux and cx, appearing in Equations (13) and (14). By taking the spatial
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derivatives of Equations (3) and (5), one can obtain

D(ux + 2cx)
Dt

= g
@(S0 − Sf )

@x
− (ux + cx)(ux + 2cx) (17)

D(ux − 2cx)
Dt

= g
@(S0 − Sf )

@x
− (ux − cx)(ux − 2cx) (18)

Equations (17) and (18) could be solved to yield ux and cx with following the concept similar
to that in Equations (7)–(10) and applying the Hermite cubic interpolation to approximate
�xl and �xr as follows:

�xl = b1�n−m̂i−n̂l−1 + b2�
n−m̂
i−n̂l + b3�

n−m̂
xi−n̂l−1 + b4�

n−m̂
xi−n̂l (19)

�xr = b1�n−m̂i−n̂r−1 + b2�
n−m̂
i−n̂r + b3�

n−m̂
xi−n̂r−1 + b4�

n−m̂
xi−n̂r (20)

where � can be u or c. The coe�cients b1−b4 shown in Equations (19) and (20) are displayed
in Appendix B.
If the ratio of �t to �x is too large, the characteristic curves will intersect on the time line

at boundaries rather than on the space line in the interior domain shown in Figure 2. Like the
use of the Hermite cubic interpolation on the space line mentioned above, the Hermite cubic
interpolation could also be employed to the time line to approximate �l and �r as follows:

�l = a1�n−m̂l−11 + a2�n−m̂l1 + a3�n−m̂l−1t1 + a4�n−m̂rt1 (21)

�tl = b1�n−m̂l−11 + b2�n−m̂l1 + b3�n−m̂l−1t1 + b4�n−m̂lt1 (22)

�r = a1�n−m̂r−1j + a2�n−m̂rj + a3�n−m̂r−1tj + a4�n−m̂rtj (23)

�tr = b1�n−m̂r−1j + b2�n−m̂rj + b3�n−m̂r−1tj + b4�n−m̂rtj (24)

with

m̂l = INT
(i − 1)�x
(u+ c)pl�t

(25)

m̂r =




INT
(i − 1)�x
(u+ c)pr�t

(u− c)pr¿0

INT
(i − NX)�x
(u− c)pr�t (u− c)pr¡0

(26)

where 1 and NX denote two endpoints of grid system (i.e. the upstream boundary and the
downstream boundary) shown in Figure 1. j=1 for (u − c)pr¿0; j=NX for (u − c)pr¡0.
The forms of the coe�cients a1−a4 and b1−b4 in Equations (21)–(24) are exactly the same
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Figure 2. Grid system of characteristics method with cubic-spline interpolation at boundary.

as those in Equations (13), (14), (19) and (20). The details of the minor di�erences are given
in Appendix B.
Like the space line interpolation, two more dependent variables ut and ct shown in Equations

(21)–(24) could be evaluated by taking the temporal derivatives of Equations (3) and (5) as
follows:

D(ut + 2ct)
Dt

= g
@(S0 − Sf )

@t
− (ut + ct)(ux + 2cx) (27)

D(ut − 2ct)
Dt

= g
@(S0 − Sf )

@t
− (ut − ct)(ux − 2cx) (28)

and employing the concept similar to that in Equations (7)–(10). However, in order to solve
Equations (27) and (28), the spatial derivatives for velocity and celerity given by the last
terms in right-hand sides of Equations (27) and (28) must be transformed into the temporal
derivatives in advance. From Equations (1) and (2), the relations between the spatial deriva-
tives and the temporal derivatives for �ow velocity and celerity can respectively be expressed
as follows:

ux =
u(ut)− gu(S0 − Sf )− 2c(ct)

c2 − u2 (29)

cx =
2u(ct)− cg(S0 − Sf )− c(ut)

2(c2 − u2) (30)
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3.3. Methodology of cubic-spline interpolation

The cubic-spline interpolation is to construct a piecewise cubic polynomial function of depen-
dent variable between two grid points with the satisfaction of the fact that the interpolating
function must pass through each given data locations (or nodes) and be continuous in its �rst
and second derivatives at interior nodes. The cubic-spline interpolation, like the use of the
Hermite cubic interpolation as mentioned above, could be applied not only to the space line
but also to the time line.
When the two characteristics curves (i.e. C+ and C−) intersect on the space line at time

level n − m̂ shown in Figure 1, one may develop a cubic-spline interpolation function for
evaluating �l and �r (� could be u or c) corresponding to all the known value of � at
time level n − m̂, that is, �n−m̂i , i=1; 2; : : : ;NX. In the cubic-spline interpolation, the second
derivative of � is a continuous piecewise linear function between two grid points [23, 24] as
follows:

�n−m̂(x)′′= Sn−m̂i
xi+1 − x
�x

+ Sn−m̂i+1
x − xi
�x

x ∈ [xi; xi+1] (31)

where i=1; 2; : : : ;NX − 1. �n−m̂(x)′′ denotes the function of second derivative of � at time
level n − m̂. Sn−m̂i and Sn−m̂i+1 represent the second derivative of � with respect to space at
time level n − m̂ and grid points i and i + 1, respectively. Integrating Equation (31) twice
and substituting the nodal values at grid points i and i+1 yields the expression for the cubic
function �n−m̂(x) on [xi; xi+1] as follows:

�n−m̂(x) = Sn−m̂i
(xi+1 − x)3
6�x

+ Sn−m̂i+1
(x − xi)3
6�x

+
(
�n−m̂i − Sn−m̂i

�x2

6

)
xi+1 − x
�x

+
(
�n−m̂i+1 − Sn−m̂i+1

�x2

6

)
x − xi
�x

(32)

The second derivative with respect to space at grid points shown in Equation (32) can be
obtained by applying the continuity of the �rst derivative with respect to space at interior
nodes as follows:

Sn−m̂i−1 + 4S
n−m̂
i + Sn−m̂i+1 =

6
�x2

(�n−m̂i+1 − 2�n−m̂i + �n−m̂i−1 ) i=2; : : : ;NX − 1 (33)

The system of Equation (33) is underdetermined as it contains only NX − 2 equations for
�nding NX unknowns. To close this system two additional constraints (i.e. two endpoint
constraints) for Sn−m̂1 and Sn−m̂NX are required. The frequently used natural cubic-spline interpo-
lation simply takes Sn−m̂1 = Sn−m̂NX =0, i.e. neglect of the second derivative at endpoints [18–20],
which makes the end cubics approach linearity at their extremities. Equation (33) associated
with two additional endpoint constraints constructs a tridiagonal system of equations that can
be easily and e�ciently solved by the well-known Thomas algorithm [25].
According to the natural cubic-spline interpolation given by Equation (32) and rearranging

Equation (32), �l and �r can be expressed as

�l = An−m̂i−n̂l−1[(1−!l)�x]3 + Bn−m̂i−n̂l−1[(1−!l)�x]2 + Cn−m̂i−n̂l−1[(1−!l)�x] +Dn−m̂i−n̂l−1
(34)
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�r = An−m̂i−n̂r−1[(1−!r)�x]3 + Bn−m̂i−n̂r−1[(1−!r)�x]2 + Cn−m̂i−n̂r−1[(1−!r)�x] +Dn−m̂i−n̂r−1
(35)

with

!l =
(u+ c)plm̂�t

�x
− n̂l (36)

!r =




(u− c)prm̂�t
�x

− n̂r (u− c)pr¿0

n̂r − (u− c)prm̂�t
�x

+ 1 (u− c)pr¡0
(37)

where n̂l and n̂r are given by Equations (15) and (16). The coe�cients (i.e. An−m̂j , Bn−m̂j ,
Cn−m̂j , and Dn−m̂j ) shown in Equations (34) and (35) can be represented as

An−m̂j =
Sn−m̂j+1 − Sn−m̂j

6�x
(38)

Bn−m̂j =
Sn−m̂j

2
(39)

Cn−m̂j =
�n−m̂j+1 − �n−m̂j

�x
− 2�xSn−m̂j +�xSn−m̂j+1

6
(40)

Dn−m̂j = �n−m̂j (41)

where j=1; 2; : : : ;NX − 1.
If the characteristics curves intersect on the time line at boundaries, i.e. the ratio of �t to

�x is too large, the cubic-spline interpolation can be also applied to the time line. �l and �r
can be approximated as

�l = En−m̂l−11 [(1− �l)�t]3 + Fn−m̂l−11 [(1− �l)�t]2 +Gn−m̂l−11 [(1− �l)�t] +Hn−m̂l−1
1

(42)

�r =




En−m̂r−11 [(1− �r)�t]3 + Fn−m̂r−11 [(1− �r)�t]2
+Gn−m̂r−11 [(1− �r)�t] +Hn−m̂r−1

1 (u− c)pr¿0
En−m̂r−1NX [(1− �r)�t]3 + Fn−m̂r−1NX [(1− �r)�t]2
+Gn−m̂r−1NX [(1− �r)�t] +Hn−m̂r−1

NX (u− c)pr¡0

(43)

with

�l =
(i − 1)�x
(u+ c)pl�t

− m̂l (44)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:663–683



672 T.-L. TSAI, S.-W. CHIANG AND J.-C. YANG

�r =




(i − 1)�x
(u− c)pr�t − m̂r (u− c)pr¿0

(i − NX)�x
(u− c)pr − m̂r (u− c)pr¡0

(45)

The coe�cients (Ekj , F
k
j , G

k
j , and H

k
j in which j equals 1 or NX and k is n − m̂l − 1 or

n− m̂r − 1) given by Equations (42) and (43), similar to those of the space line cubic-spline
interpolation, are displayed in Appendix C.
Two boundary conditions and one initial condition are needed to close governing equations

for the one-dimensional unsteady open channel �ow shown in Equations (1) and (2). When the
�ow is subcritical, both the upstream boundary and downstream boundary need one condition,
respectively. If the �ow is supercritical, two boundary conditions must be speci�ed at upstream
boundary. The four unknowns up, cp, xr , and xl given by Equations (7)–(10) can be solved by
the two boundary conditions and initial condition with the use of the interpolation technique,
such as the linear interpolation shown in Appendix A as well as the Hermite cubic interpolation
and the cubic-spline interpolation mentioned above, to approximate nodal values at foot of
the characteristic trajectories on the space line or on the time line.
In comparison with the use of the Hermite cubic interpolation and the cubic-spline inter-

polation for unsteady open channel �ow computation mentioned above, one can clearly ob-
serve that the Hermite cubic interpolation needs not only to deal with the additional partial
di�erential equations, shown in Equations (17) and (18) for space line interpolation as well as
Equations (27) and (28) for time line interpolation, but also to transform the spatial derivatives
of �ow velocity and celerity into the temporal derivatives as shown in Equations (29) and
(30). Hence, one could expect that the cubic-spline interpolation will be more e�cient than the
Hermite cubic interpolation. Furthermore, the cubic-spline interpolation will be easy to imple-
ment and have less complexity of coding in comparison with the Hermite cubic interpolation.

4. DEMONSTRATIONS AND EVALUATIONS

Two hypothetical examples, including gradually and rapidly varied �ows, are employed to
investigate the applicability of the CS method for open channel �ow computation as compared
with the LI method, the HP method, and the analytical solutions.

4.1. Gradually varied �ow computation

A subcritical �ow is assumed to take place in a rectangular prismatic channel with uniform
bed slope of 0.0005 and Manning coe�cient of 0.03. The channel has initial uniform �ow with
per unit width discharge of q0 = 1:0 m2 s−1. The upstream boundary has an in�ow discharge
hydrograph of q= q0 + qw[1− cos(2�t=T )], in which qw=0:5 m2 s−1 is used and T is period
of time. The downstream boundary remains a uniform �ow. The simulated result by the well-
known Preissmann four-point scheme [26] with �ne grid space is carried out to take as the
basis for this comparison study. Some key parameters namely the reachback number, the
Courant number, and the weighting factor are then used to demonstrate the properties of the
CS method for unsteady �ow computation in open channel. The channel length of 36 km and
T =24 h are used in this simulation.
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Figure 3. The change of water depth with respect to time computed from
various schemes: (a) x=12 km; and (b) x=24 km.

Comparison study: With time step of 30 s, grid space of 1000 m, weighting factor of 0.5,
and one reachback number, the simulated results in terms of the change of water depth with
respect to time at the section 12 and 24 km downstream from the upstream boundary by
the LI method, the HP method, and the CS method are shown in Figure 3. In Figure 3,
the di�erence among those results computed from various methods used herein is existed
but hardly to demonstrate clearly. Therefore, the relative-di�erence results are shown in
Figure 4. The relative di�erence of water depth is de�ned as the ratio of the water depth
di�erence between the Preissmann four-point scheme and the method used herein to the water
depth by the Preissmann four-point scheme. Now one can clearly observe from Figure 4 that
the HP method and the CS method have close simulated results. The LI method provides
large relative di�erences of water depth than the CS method and the HP method. Thus, one
could conclude that the HP method and the CS method are more accurate than the LI method.
E�ect of reachback number: In using the characteristics method for open channel �ow

computation, one may be concerned with the e�ect of the reachback number on the accuracy
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Figure 4. Relative di�erence of water depth with respect to time computed
from various schemes: (a) x=12 km; and (b) x=24 km.

of computed results. The relative di�erence of water depth for di�erent reachback numbers by
the CS method, the LI method, and the HP method are displayed in Figures 5 and 6. From
Figures 5 and 6, one can observe that both the HP method and CS method have relative
di�erences of water depth, of order of 10−5. The LI method yields relative di�erences of
water depth with a range of order of 10−3–10−2. Obviously, the LI method has large relative
di�erences of water depth than the CS method and the HP method. One can again �nd that
the CS method and the HP method have the close simulated results that are more accurate
than those by the LI method. In this case, one can know that the CS method and the HP
method seem to be insensitive to the reachback number, whereas the LI method is severely
a�ected by the reachback number.
The relative CPU time for di�erent reachback numbers by the CS method, the LI method,

and the HP method are displayed in Table I. One can �nd from Table I that the di�erent
reachback numbers seem not to a�ect the computing time. The CS method is nearly two times
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Figure 5. Relative di�erences of water depth computed from characteristics method with various
interpolations for di�erent reachback numbers (x=12 km).
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Figure 6. Relative di�erences of water depth computed from characteristics method with various
interpolations for di�erent reachback numbers (x=24 km).
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Table I. Relative CPU time of various methods with di�erent
reachback numbers.

Reachback number LI method HP method CS method

1 1.00 2.23 1.92
2 1.07 2.29 1.95
3 1.01 2.30 1.95
4 1.05 2.32 1.95

the computing time of the LI method, but it consumes approximation 20% less time than the
HP method. In addition, the authors also �nd that the CS method and the LI method are easy
to implement and have less complexity of coding as compared with the HP method.
One could conclude from mentioned above that in comparison with the LI method the uses

of the CS method and the HP method give more accurate simulated results. Furthermore, the
HP method and the CS method are compatible. Due to the needless of tackling the additional
equations for spatial and temporal derivatives, the CS method is easy to implement and more
e�cient than the HP method.
E�ect of Courant number: In using the CS method for open channel �ow computation,

one of the major concern is how the Courant number in�uences the accuracy of simulated
results. Several test runs with various time intervals have been conducted to investigate the
e�ect of the Courant number on the accuracy of the computational results. The simulated
results are shown in Figure 7. From Figure 7, one can observe that the relative di�erences
of water depth keep in the range of order of 10−5. Hence, one may conclude that the use of
characteristics method with the cubic-spline interpolation for open channel �ow computation
is not sensitive to the Courant number. As far as the practical application is concerned, the
insensitivity to the Courant number is quite an important property due to the di�culty for
estimating the Courant number in the complex geometric pattern of natural river channel.
E�ect of weighting factor: Due to the integration of characteristic equations along the char-

acteristic curves, the time integration terms shown in right-hand side of Equations
(7)–(10) must be evaluated. The weighting factor with respect to nodal values on the charac-
teristic trajectory shown in Equations (11) and (12) is used to approximate the time integration
term. Hence, the evaluation on how the weighting factor in�uences the accuracy of simulated
results may be needed. Figure 8 shows the simulated results by the CS method with various
weighting factors from zero to unity. From Figure 8, one can observe that the trapezoidal-rule
approximation, i.e. the weighting factor of 0.5, yields the least relative di�erence of water
depth. The weighting factor of zero and unity, i.e. rectangular-rule approximation, induce
large numerical errors. This leads to conclude that the trapezoidal rule is the better choice for
approximating the time integration in using the CS method for open channel �ow computation.

4.2. Rapidly varied �ow computation

Consider a horizontal and frictionless channel, which is 1000 m in length. A dam is located
at 500m. The initial upstream and downstream water depths are 10 and 2m, respectively. At
time t=0, the dam is collapsed instantaneously.
The used computational time step is 0:25 s, and grid space is 5 m. Figure 9 shows the

simulated results by the LI method, the CS method, and the HP method with one reachback
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Figure 7. Relative di�erences of water depth computed from the CS method
with di�erent time intervals: (a) x=12 km; and (b) x=24 km.

number as well as the analytical solution [27] at time t=30 s after the dam failure. From
Figure 9, one can observe that the LI method produces large numerical di�usion. The CS
method and the HP method give convincing simulated results in spite of a little numerical
oscillation near the points where the derivatives of water depth are not continuous.
Table II shows the root mean square (RMS) error of water depth from various methods with

di�erent reachback numbers. One can �nd from Table II that the CS method is comparable to
the HP method and more accurate than the LI method. The accuracy of the CS method, the
HP method, and the LI method increases signi�cantly with the use of the reachback technique.
However, in the previous example of gradually varied �ow where the �ow pattern is quite
smooth, the simulated results by the CS method and the HP method, shown in Figures 5 and
6, have been lightly improved with the increase of the reachback number. In other words,
the LI method, the CS method, and the HP method are strongly related to the reachback
number for the rapidly varied �ow case, whereas the latter two methods lightly depend on
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Figure 8. Relative di�erence of water depth computed from the CS method
with di�erent weighting factors: (a) 12 km; and (b) 24 km.

the reachback number for the gradually varied �ow case. The characteristics method with
the reachback technique can indeed improve the accuracy of simulated results, especially for
rapidly varied �ow computation, but it may be not easy to set up initial conditions and decide
reachback number for complicated open channel �ows.

5. CONCLUSION

Characteristics method with the cubic-spline interpolation on the space line or on the time line
(CS method) is proposed herein to compute unsteady �ow in open channel. The gradually and
rapidly varied �ows are used to investigate the applicability of the CS method as compared
with the analytical solutions as well as the LI method and the HP method, i.e. characteristics
method with the linear interpolation and the Hermite cubic interpolation, respectively. The CS
method and the HP method produce very close simulated results that are more accurate than
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Figure 9. The simulated results of dam-break wave from various methods.
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Table II. RMS error of dam-break wave simulation from various methods
with di�erent reachback numbers.

Reachback number LI method HP method CS method

1 0.1698 0.0369 0.0390
2 0.0707 0.0104 0.0113
3 0.0354 0.0083 0.0092
4 0.0252 0.0076 0.0081

those by the LI method. The CS method, needing not to deal with the additional equations
for spatial and temporal derivatives, is easier to implement and more e�cient than the HP
method. As far as accuracy, e�ciency, and simplicity are concerned, the CS method, as
compared with the LI method and the HP method, should be the better choice for unsteady
�ow computation in open channel. The accuracy of the CS method can be improved with the
increase of the reachback number, especially for the rapidly varied �ow case. The Courant
number is insensitive to the CS method, which is quite an important property for practical
applications in natural river channel. The CS method proposed herein, with the use of tensor
product concept [28], can be applied to two-dimensional open channel �ow computation in
the further work.

APPENDIX A: CHARACTERISTICS METHOD WITH THE LINEAR
INTERPOLATION

The use of the linear interpolation on the space line or on the time line to approximate �l
and �r could be expressed as follows:
Space line interpolation

�l =!l�n−m̂i−n̂l−1 + (1−!l)�n−m̂i−n̂l (A1)

�r =!r�n−m̂i−n̂r−1 + (1−!r)�n−m̂i−n̂r (A2)

where � could be u or c. !l is shown in Equation (36) and !r is given by Equation (37).
Time line interpolation

�l = �l�n−m̂l−11 + (1− �l)�n−m̂l1 (A3)

�r =



�r�n−m̂r−11 + (1− �r)�n−m̂r1 (u− c)pr¿0
�r�n−m̂r−1NX + (1− �r)�n−m̂rNX (u− c)pr¡0

(A4)

where �l is shown in Equation (44) and �r is given by Equation (45).
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APPENDIX B: COEFFICIENTS OF THE HERMITE CUBIC INTERPOLATION

a1 = �2(3− 2�) (B1)

a2 = 1− a1 (B2)

a3 = �2(1− �)�x (B3)

a4 = −�(1− �)2�x (B4)

b1 = 6�(�− 1)=�x (B5)

b2 = −b1 (B6)

b3 = �(3�− 2) (B7)

b4 = (�− 1)(3�− 1) (B8)

In the space line interpolation, � equals !l and !r for characteristic curve C+ and C−. !l
and !r are shown in Equations (36) and (37), respectively. In the time line interpolation, �
equals �l and �r for characteristic curve C+ and C−. �l and �r are given by Equations (44)
and (45), respectively. In addition, �x need to be replaced with �t.

APPENDIX C: COEFFICIENTS OF THE TIME LINE CUBIC-SPINE INTERPOLATION

Ekj =
Rk+1j − Rkj
6�t

(C1)

Fkj =
Rkj
2

(C2)

Gkj =
�k+1j − �kj
�t

− 2�tRkj +�tR
k+1
j

6
(C3)

Hk
j = �

k
j (C4)

where j=1 or NX. k=1; 2; : : : ;NT−1 in which 1 denotes initial time level and NT represents
total time level shown in Figure 2. Rkj , second derivatives for � with respect to temporal
co-ordinate at grid point j and time level k, could be expressed as following relation:

Rk−1j + 2Rkj + R
k+1
j =

6
�t2

(�k−1j − 2�kj + �k+1j ) k=2; 3; : : : ;NT− 1 (C5)

According to the natural cubic-spline interpolation, two additional constraints on second
derivative with respect to time at initial time level and total time level, i.e. R1j and R

NT
j ,
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could be represented as
R1j = 0 (C6)

RNTj = 0 (C7)
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