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Abstract

Sequential pattern mining has become a challenging task in data mining due to its

complexity. Essentially, the mining algorithms discover all the frequent patterns meeting

the user specified minimum support threshold. However, it is very unlikely that the user

could obtain the satisfactory patterns in just one query. Usually the user must try

various support thresholds to mine the database for the final desirable set of patterns.

Consequently, the time-consuming mining process has to be repeated several times.

However, current approaches are inadequate for such interactive mining due to the long

processing time required for each query. In order to reduce the response time for each

query during the interactive process, we propose a knowledge base assisted mining

algorithm for interactive sequence discovery. The proposed approach utilizes the

knowledge acquired from each mining process, accumulates the counting information to

facilitate efficient counting of patterns, and speeds up the whole interactive mining

process. Furthermore, the knowledge base makes possible the direct generation of new

candidate sets and the concurrent support counting of variable sized candidates. Even

for some queries, due to the pattern information already kept in the knowledge base,

database access is not required at all. The conducted experiments show that our ap-

proach outperforms GSP, a state-of-the-art sequential pattern mining algorithm, by

several order of magnitudes for interactive sequence discovery.
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1. Introduction

An important issue in data mining is the discovery of sequential patterns,

which finds out temporal associations among items in the sequence database
[2,4,6,8,9,15,17,18]. A classic application of the problem is the market basket

analysis whose database contains purchase records, where each record is an

ordered sequence of itemsets (sets of items) bought by a customer. The mining

is to discover the itemsets in future purchase after certain itemsets were bought.

For example, a discovery might find out a sequential pattern ‘‘(1, 3, 4)) (2, 5)

[support¼ 30%]’’, which means that 30% of customers who purchase items 1, 3

and 4 at the same time would buy items 2 and 5 at some later time.

The technique can be applied to various domains such as discovering the
relationships between the symptoms and certain diseases in medical applica-

tions.

In order to find the interesting patterns, a user specifies a minimum support

threshold (abbreviated minsup) for the mining. The result of the mining lists all

patterns, named sequential patterns or frequent sequences, whose supports are

greater than or equal to the minsup. The support of a pattern is the percentage

of sequences (in the database) containing the pattern. In general, we would

generate potential sequential patterns (called candidates), count the occurrence
of each candidate, and then determine the sequential patterns among these

candidates.

The mining process is very difficult and time-consuming due to several

factors. First, the formation of a pattern is not limited to single items but

itemsets. Second, neither the number of itemsets in a pattern nor the number

of items in an itemset is known a priori. Third, patterns could be formed by

any permutation, of any combination of possible items in the database. Most

approaches focused on minimizing the search space of candidates [2,16], or
on minimizing the required disk I/O due to the multiple database scanning

[15,18]. Each time a user specifies a minsup, all these approaches discover the

resultant patterns by executing their mining algorithms with respect to this

minsup.

However, a user may specify a minsup value that results in too many or too

few patterns. When the specified minsup is too large, either no patterns or only

few patterns might satisfy the threshold. On the contrary, the user might have

difficulty in distinguishing the interesting patterns from a large number of
patterns due to a very small minsup. Usually, the user must try various minsups

until the result is satisfactory. Nevertheless, most approaches for mining

sequential patterns are not designed to deal with repeated mining under such

circumstance. For such interactive sequence discovery, these approaches con-

sider no prior results so that the mining process must start over again for every

newly specified minsup. However, keeping knowledge obtained from the time-

consuming process is beneficial to further queries [7]. For example, the result of



M.-Y. Lin, S.-Y. Lee / Information Sciences 165 (2004) 187–205 189
mining with minsup ¼ 0:1 could be used to extract the sequential patterns for

minsup ¼ 0:3 without re-examining the sequence database.

Therefore, we propose a novel approach, named knowledge base assisted

incremental sequential pattern mining (KISP), to improve the efficiency of
sequential pattern discovery with changing supports. Instead of re-mining from

scratch for each discovery, KISP utilizes the knowledge obtained from prior

minings, and generates a knowledge base for further queries about sequential

patterns of various minsups. When the sequential patterns cannot be directly

derived from the knowledge base, KISP incorporates the knowledge base into a

fast sequence discovery. The candidates existing in the knowledge base are

spared in the support counting process. In addition, the knowledge base could

be used to support OLAP since the knowledge, sufficient for users’ interests, of
current database is accumulated by KISP. The conducted experiments on

synthetic data also show that the proposed algorithm effectively improves the

performance of interactive sequence discovery.

The rest of the paper is organized as follows. We formulate the problem of

interactive sequential pattern mining in Section 2 and review some related

algorithms in Section 3. Section 4 presents the proposed approach for the

interactive discovery problem. The experimental evaluation is described in

Section 5. Section 6 concludes our study.
2. The problem of interactive sequence discovery

Let W ¼ fa1; a2; . . . ; azg be a set of literals, called items. A set of items is

referred to as an itemset. An itemset I with m items is denoted by

I ¼ ðb1; b2; . . . ; bmÞ, such that I � W. A sequence x, denoted by ha1a2 . . . ani, is
an ordered set of n elements where each element aj is an itemset. The size of the

sequence x, denoted by jxj, is the total number of items in all the elements in x.
Sequence x is a k-sequence if jxj ¼ k. For example, Æ(1)(3)(5)æ, Æ(2)(3,4)æ, and
Æ(1)(2)(1)æ are all 3-sequences. A sequence x ¼ ha1a2 . . . ani is a subsequence of

another sequence - ¼ hb1b2 . . . bwi if there exist 16 i1 < i2 < � � � < in 6w such
that a1 � bi1 ; a2 � bi2 ; . . . ; and an � bin . Sequence - contains sequence x if x is

a subsequence of -. For instance, Æ(2)(5)æ is a subsequence of Æ(4)(2)(1)(3,5)æ
since (2)˝ (2) and (5)˝ (3,5).

Each customer record in the database DB is referred to as a data sequence,

which is a sequence of purchased itemsets ordered by transaction time. The

support of sequence x, denoted by x:sup, is the number of data sequences

containing x divided by the total number of data sequences in database DB.
The minsup is the user specified minimum support threshold. A sequence x is a
frequent sequence if x:supPminsup. The sequence x is also called a sequential

pattern. Given the minsup and the database DB, the problem of sequential
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pattern mining is to discover the set of all sequential patterns, denoted by

S½minsup
.
The interactive sequence discovery process is described as follows. Given the

database DB, the user queries with several minsup values interactively, and
finds out the desired set of sequential patterns with respect to the final minsup.

The objective of interactive discovery is to respond to each query quickly and

to reduce the overall mining time for the whole process accordingly.
3. Related work

3.1. Algorithms for sequential pattern mining

The problem of sequential pattern mining is first described and solved in [2]

with the AprioriAll algorithm. In subsequent work, the same authors proposed

the GSP algorithm [16] that outperforms AprioriAll. TheGSP algorithm makes

multiple passes over the database and finds frequent k-sequences at kth data-

base scanning. Initially, each item is a candidate 1-sequence for the first pass.
Frequent 1-sequences are determined after checking all the data sequences in

the database. In succeeding passes, frequent (k � 1)-sequences are self-joined to

generate candidate k-sequences, and then any candidate k-sequence having a

non-frequent sub-sequence is deleted. Again, the supports of candidate k-se-
quences are counted by examining all data sequences, and then those candi-

dates having minimum supports become frequent sequences. This process

terminates when there is no candidate sequence any more. Owing to the gen-

erate-and-test nature, the number of candidates often dominates the overall
mining time. However, the total number of candidates increases exponentially

as the minsup decreases, even with effective pruning techniques. The Prefix

Sequential Pattern (PSP) algorithm [9] is similar to GSP, except that the

placement of candidates, in a hash-tree [2,3] in GSP, is improved by a prefix

tree arrangement.

The Sequential PAttern Discovery using Equivalence classes (SPADE)

algorithm finds out sequential patterns using vertical database layout and join-

operations [18]. Vertical database layout transforms data sequences into item-
oriented lists. For example, the transformation of a sequence Æ(1,3)(5)æ with
sequence id ¼ C310 would generate an entry (C310, 1) in the list of item �1 ’,

an entry (C310, 1) in the list of item �3’, and an entry (C310, 2) in the list of

item �5 ’. The lists are joined to form a sequence lattice, in which SPADE

searches and discovers the patterns [18].

Recently, the Frequent pattern-projected Sequential Pattern Mining (Free-

Span) algorithm was proposed to mine sequential patterns by a database

projection technique [4]. FreeSpan first finds the frequent items after scanning
the database once. The sequence database is then projected, according to the
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frequent items, into several smaller databases. Finally, all sequential patterns

are found by recursively growing subsequence fragments in each projected

database. Based on the similar projection technique, Prefix-projected

Sequential pattern mining (PrefixSpan) algorithm [14] efficiently mines the
complete set of patterns employing a divide-and-conquer strategy with the

PatternGrowth methodology.

However, all these algorithms re-execute the mining procedure every time a

new minsup is specified during the interactive process. Therefore, the response

time would be longer for subsequent queries with smaller minsup values with all

these algorithms.
3.2. Algorithms for interactive pattern discovery

The problem of interactive association discovery, also called online associ-

ation generation, was addressed in [1]. The method in [1] preprocesses the data
in the transactional database, and stores frequent itemsets in an adjacency

lattice. Each vertex in the adjacency lattice is labeled with the support of the

corresponding itemset. A directed edge in the lattice links from a �parent’
itemset to one of its �child’ itemsets. An itemset Y is a �child’ of itemset X if Y
can be obtained from X by dropping a single item from X . Online repeated

queries about association rules are answered by graph theoretic searching on

the lattice.

Similarly, a knowledge cache storing the discovered frequent itemsets and
the non-frequent itemsets is used for interactive discovery of association rules

[11]. It is indicated that their benefit replacement algorithm using B+-tree to

store cache buckets is the best caching algorithm [11].

Although on-line association discovery is close to our problem, the aim of

these approaches [1,5,11,12] is to interactively find frequent itemsets rather

than frequent sequences. One related work of interactive sequence mining is

described below.

The SPADE algorithm [18] was extended into the ISM (Incremental Se-
quence Mining) algorithm for incremental sequence mining and interactive

sequence mining [13]. All queries are performed on a pre-processed in-memory

data structure, the Increment Sequence Lattice (ISL). Therefore, a �small en-

ough’ minsup must be selected in advance to mine all patterns by executing

SPADE and save the results in the ISL. Nevertheless, if a query involves a

support smaller than the pre-selected minsup, another (more) lengthy mining

process must be performed to generate another new ISL sufficient for the new

query. Moreover, the ISM might encounter memory problem if the number of
the potentially frequent patterns is too large [13].

Without any assumption on the possible values of minsup, our algorithm

aims to reduce the response time for interactive queries.
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4. The proposed algorithm for interactive discovery of sequential patterns

The proposed KISP algorithm is described in Section 4.1. The algorithm

speeds up the mining process by eliminating the counting efforts required for
those candidates already existing in the knowledge base. Two optimizations are

proposed for further improvements. In Section 4.2, the generation of the

remaining �new’ candidates is optimized by direct computation. Enabled by

candidate reduction and assisted by the information in the knowledge base, the

optimization by current support counting is depicted in Section 4.3. The

manipulation of the knowledge base is presented in Section 4.4. Section 4.5

discusses the mining efficiency and space utilization with a large knowledge

base.
4.1. The knowledge base assisted incremental sequential pattern (KISP) mining

algorithm

Fig. 1 outlines the proposed Basic KISP algorithm for interactive discovery
of sequential patterns. We adopt the GSP algorithm as the basis for con-

structing the knowledge base assisted mining algorithm. KISP uses similar
Algorithm KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;

KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// Let x.sup be the support of a candidate x , Xk[minsup] be the set of candidate k-sequence in DB with
// respect to minsup, and KB.sup be the smallest minsup used in the construction of KB
1) if KB = φ then KB = {x and x.sup, ∀ x ∈ X1} ;
2) S[minsup] = {x| x∈ KB ∧ x.sup ≥ minsup} ; // obtain valid sequential patterns from knowledge base
3) if minsup < KB.sup then // mine new patterns and accumulate new knowledge
4) k = 2 ;
5) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
6) Xk'= Xk [minsup] - {x| x ∈ KB} ; // eliminate those candidate k-sequences in KB
7) while Xk' ≠ φ do // there exists candidate k-sequences, obtains their supports
8) for each data sequence ds in database DB do
9) for each candidate x ∈ Xk' do
10) increase the support of x if x is contained in ds ;
11) endfor
12) endfor
13) KB = KB ∪ {x and x.sup, ∀ x ∈ Xk'} ; // collect new candidates and their supports
14) S[minsup] = S[minsup] ∪ {x | x.sup ≥ minsup ∧ x ∈ Xk'} ; // collect new patterns from Xk'
15) k = k+1 ;
16) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
17) Xk'= Xk [minsup] - {x| x ∈ KB} ; // the reduced set eliminates candidate k-sequences in KB
18) endwhile
19) KB.sup = minsup ; // update the smallest minsup of KB
20)endif

Fig. 1. Proposed Algorithm Basic KISP.
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procedures of candidate generation and support counting as used in GSP.

Nevertheless, KISP speeds up support counting by reducing considerable

amounts of candidates and makes a significant performance improvement for

interactive discovery.
During the interactive process, the knowledge base (denoted by KB) is empty

only in the very first mining. Once KISP is executed, the information about the

supports of counted candidates would be inserted into KB. The KB.sup is the

minsup used when KB is constructed or expanded.

KISP works similar to GSP for the very first mining. Initially every item in

the database is a candidate 1-sequence. The fundamental KB is built, only

once, by a simple scan over the database to count the supports of candidate 1-

sequences (line 1). After that, the supports of all candidate 1-sequences are
included in KB and S½minsup
 contains the frequent 1-sequences (line 2). At the

end of this mining, KB would collect the supports of all the candidates in each

pass (line 13), and KB.sup is the designated minsup (line 19).

Note that in KB we also keep the supports of all candidates regardless of

their values for two reasons. First, several currently non-frequent candidates

might turn out to be frequent when a smaller minsup is specified in subsequent

queries. We can immediately obtain these patterns from KB without any

database access. Second, to find out the true patterns, the mining process
generally counts a large number of candidates although they are eventually

rejected. We can get rid of the �useless counting’ for the �commonly non-fre-

quent’ candidates if their supports were kept. For example, those candidates

ever counted with the support value of zero would not be inserted into the

candidate hash-tree afterward. Consequently, a faster counting is enabled due

to the smaller hash-tree of the reduced set of candidates.

For subsequent queries, KB is not empty and contains the supports of all the

generated candidates while mining with KB.sup as the support threshold. If the
user-specified minsup is greater than KB.sup, we simply search in KB for pat-

terns whose supports satisfy the new minsup, and return all patterns in

S½minsup
 (line 2). In this case, the employment of KB eliminates the need of re-

mining completely in comparison with GSP. Tremendous gains in performance

can be resulted from direct retrieval of valid patterns without re-counting the

huge database. In fact, KISP would output all the valid patterns in constant

time independent of the database size when KB.sup is less than the user spec-

ified minsup. On the contrary, other re-mining based algorithms such as GSP
need to re-scan the database.

In case the minsup is less than KB.sup, we have to mine the database for new

patterns that are not in KB. The fundamental difference between KISP and

GSP is that KISP spares the counting of the candidates already existing in KB

(line 6 and line 17). Take the number of candidates in pass 2 for example.

Assume that in query Qi, there are 100 frequent 1-sequences so that

(100 * 100) + (100 * 99)/2 ¼ 14 950 candidate 2-sequences are generated and
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counted in pass 2. Assume that the number of frequent 1-sequences is 110 for

query Qiþ1. In pass 2 of Qiþ1, GSP must count in total (110 * 110) + (110 * 109)/

2 ¼ 18 095 candidates, while KISP counts only (18 095) 14 950) ¼ 3145 can-

didates. In each pass of a query, we first generate the candidates and then
remove those existing in KB. Next, we expand KB with the support of every

new candidate for reuse in future mining processes (line 13). The sequential

patterns are collected (line 14). Finally, KB.sup is replaced by the new minsup

since the counting base is changed (line 19). The �new pattern’ mining part (line

3 through line 20), which is also the part of new information acquisition step,

of the procedure is activated again only when minsup < KB:sup occurs in

subsequent queries.

In fact, the optimized KISP directly generates the new candidates requiring
counting with the assistance of KB, as presented in Section 4.2. In the following

context, KISP stands for the optimized KISP.

4.2. New-candidate generation by direct computation

The first optimization in KISP is the direct generation of new candidates. As

described in Section 4.1, KISP removes the candidates existing in KB before

counting. The remaining candidates are referred to as new-candidates. Instead
of generating all candidates and then removing the counted ones, we use

Theorem 1 to generate the new-candidates in pass k (denoted by X 0
k) directly. In

Theorem 1, Sk½minsup
 denotes the set of frequent k-sequences, Xk½minsup
 de-
notes the set of candidate k-sequences with respect to minsup, and ‘‘�’’ rep-

resents the join operation. We use Nk½minsup
 to designate the new frequent k-
sequences (due to minsup) by contrast to the frequent k-sequences in KB.

Hence, Sk½minsup
 ¼ Sk½KB:sup
 [ Nk½minsup
.

Theorem 1. X 0
k ¼ ðSk�1½KB:sup
 �Nk�1½minsup
Þ [ ðNk�1½minsup
 �Nk�1½minsup
Þ.

That is, X 0
k is the union of the two sets; one obtained from joining the frequent

(k� 1)-sequences in KB with the new frequent (k� 1)-sequences, the other ob-
tained from self-joining the new frequent (k� 1)-sequences.

Proof. By definition, Xk½minsup
 ¼ Sk�1½minsup
 � Sk�1½minsup
.

(1) Xk½minsup
 ¼ ðSk�1½KB:sup
 [ Nk�1½minsup
Þ � ðSk�1½KB:sup
 [ Nk�1½minsup
Þ.
(2) Xk½minsup
 ¼ ðSk�1½KB:sup
 � Sk�1½KB:sup
Þ [ ðSk�1½KB:sup
 �Nk�1½minsup
Þ[

ðNk�1½minsup
 � Sk�1½KB:sup
Þ [ ðNk�1½minsup
 � Nk�1½minsup
Þ.
(3) Xk½minsup
 ¼ Xk½KB:sup
 [ ðSk�1½KB:sup
 � Nk�1½minsup
Þ [ ðNk�1½minsup
 �

Nk�1½minsup
Þ due to Xk½KB:sup
 ¼ Sk�1½KB:sup
 � Sk�1½KB:sup
 and that

Nk�1½minsup
 � Sk�1½KB:sup
 is the same set as Sk�1½KB:sup
 � Nk�1½minsup
.
(4) Since X 0

k ¼ Xk½minsup
 � Xk½KB:sup
, X 0
k ¼ ðSk�1½KB:sup
 � Nk�1½minsup
Þ [

ðNk�1½minsup
 � Nk�1½minsup
Þ. �
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4.3. Concurrent support counting

The second optimization in KISP is the technique of concurrent support

counting, which achieves database-pass reduction while preserving the com-
pleteness of pattern discovery. In KISP, the reduced candidate set X 0

k is more

likely to occupy just a small part of the memory at pass k. We maximize

memory utilization to reduce the number of database passes by inserting as

many candidates as possible into the same hash-tree. We continuously generate

the candidates of longer size until the memory space is nearly full. With the

information about Sk�1½KB:sup
 and the Nk�1½minsup
, KISP can estimate the

number of new-candidates, which indicates the space required. Therefore, we

can place variable-sized candidates in the same hash-tree and concurrently
count the supports against the data sequences in the same database pass. This

technique reduces the total number of database scanning. The estimation

procedure is described in the following.

Considering the number of candidates generated in each pass, the number of

candidates in X 0
2 is greater than that in other X 0

k because none in the candidate

superset of size two can be pruned. Every frequent 1-sequence must join with

other frequent 1-sequence since the subsequence of any frequent 1-sequence is

an empty sequence. For candidates of X 0
k where k > 2, some frequent (k � 1)-

sequences are not joined if their subsequences do not match. Assume the

number of patterns in S1½KB:sup
 is p and the number of patterns in N1½minsup

is q. The number of new-candidates in pass 2 is ½3ðp þ qÞ2 � ðp þ qÞ
=2�
ð3p2 � pÞ=2 ¼ 3pqþ ð3q2 � qÞ=2. This formula can be applied to roughly esti-

mate the maximum number of candidates in other passes. Whenever there is

room for the next set of candidates (of longer size), KISP continuously gen-

erates and inserts the candidates into the same hash-tree. Thus, KISP can

generate as many candidates as possible in the same pass.
Note that a similar technique named pass bundling is described for associ-

ation mining in [10]. However, pass bundling statically sets a limit to determine

whether the generation should be continued or not, while KISP dynamically

estimates and computes the available memory for maximum utilization. The

next section will describe the structure and the manipulation of the knowledge

base, which is the key to facilitate the above stated improvements.

4.4. Manipulation of the knowledge base

We store the knowledge base in disk so that KISP is independent of the

main memory size. Fig. 2 shows the structure of the knowledge base (KB). KB

provides fast access to the pattern information, carries quick estimation of

required candidate storage, and expands incrementally.

A knowledge base is composed of a minimal KB.sup, and one or more KB

heads. The minimal KB.sup is the smallest KB.sup among all the KB.sups in the
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Fig. 2. Structure of the knowledge base.

196 M.-Y. Lin, S.-Y. Lee / Information Sciences 165 (2004) 187–205
KB heads. We create a KB head to store the newly acquired information only

when the user-specified minsup is less than the minimal KB.sup. A KB head
comprises (1) a KB.sup indicating the counting base while adding this head (2)

the number of pattern-support heads (ps_heads) indicating the total number of

pattern-support heads in this KB head (3) the pattern-support heads summa-

rizing the pattern-support tables, and (4) the position of next KB head linking

the next KB head so that the knowledge base can �grow’ incrementally.

We group all the same sized patterns in the same table so that the pattern

information of desired size can be directly found through the position of

pattern-support in the corresponding ps_head. The ps_head also contains a
summary of the size of the patterns, the total number of counted candidates (of

that size), and the total number of non-zero patterns for estimating the number

of new-candidates. During the interactive process, KISP can obtain effectively

the full pattern information of certain size by accessing the pattern-support

table (of that size) in every KB head. The position of pattern-support, in the

ps_head within a KB head, indicates the location of the pattern-support table.

Note that we keep only the patterns with non-zero support value to mini-

mize the total size of each pattern-support table. The supports of patterns (of
the same size) are stored in support-descending order in the structure. The

descending ordered patterns eases the searching of valid patterns on answering

an online query. An option to eliminate support sorting is writing the supports

in the order of hash-tree traversal. Even when the pattern supports are directly

stored without sorting, searching within the knowledge base is still more effi-

cient than re-mining.
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4.5. Mining efficiency and space utilization with a large knowledge base

Given a very low KB.sup value, one might concern that the space used by

KB could be so large that KISP might not sustain the high level of perfor-
mance. Although KB may increase as a result of accumulating more pattern

information, KISP still could efficiently answer the interactive query request

with new minsup. We analyze the overall performance affected when KB is

getting very large below.

KISP retrieves two kinds of data from KB, the KB heads and the stored

patterns with associated supports (i.e. pattern-support tables). Relatively small

space is required by a KB head for recording merely pattern summaries.

Accessing these linked KB heads is so easy and there is no influence. The
performance could be affected only by the reading of the pattern-support ta-

bles. However, the reading is confined to qualified patterns only, instead of

every pattern, in the tables. KISP may sustain the good performance by

skipping a large number of unqualified patterns in KB, even if the KB is large.

The pattern-support tables are utilized to assist KISP in either directly

answering a query (when KB:sup6minsup) or generating the �new candidates’

by Theorem 1 in Section 4.2 (when KB:sup > minsup). In both circumstances,

not every pattern needs to be scanned. Given a support-descending ordered
table, when the first pattern whose support is smaller than minsup is encoun-

tered, we stop reading the rest of the patterns in that table. Such an operation is

also used in retrieving Sk�1½KB:sup
 for new-candidate generation. Thus, by

sparing the reading of many unqualified patterns, KISP may effectively retrieve

the desired patterns and outperform the re-mining based approaches. In fact,

KISP would output all the valid patterns in constant time independent of the

database size when KB:sup6minsup. Note that when patterns are stored in the

hash-tree traversal order initially, we may re-arrange the tables in support-
descending order, periodically or after several KB heads are generated.

Therefore, the overall performance affected due to a large KB is quite limited.

We now examine the space utilization of KB, which comprises KB heads

and the pattern-support tables. When the requested new query with

KB:sup > minsup invokes new pattern generation in the interactive mining, one

and only one KB head will be added to KB. Otherwise, KB stays intact because

KISP simply responds by retrieving patterns from KB. The total number of KB

heads hence is the total number of �new-pattern’ generation triggered. As de-
scribed in Section 4.4, a KB head contains KB:sup, the position of next KB

head, the number of ps_heads, and the ps_heads. A major portion of KB is the

ps_heads, i.e. the pattern-support tables. The others need only negligible space.

The size of a pattern-support table is proportional to the number of stored

patterns where a pattern takes typically 19 to 22 bytes according to our

experiments (details in Table 6, Section 5.1). The size of KB, as a consequence,

might be larger than that of the original database. Appropriate compression on
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the pattern-support tables, being collections of the same sized patterns, could

be employed to reduce the storage consumption for better storage utilization.

Nevertheless, how compression would affect the performance needs further

investigations.
5. Experimental results

In order to assess the performance of the KISP algorithm, we conducted

comprehensive experiments. All experiments were performed with an 866 MHz

Pentium-III PC having 1024 MB memory, running the Windows NT. In these

experiments, the databases are synthetic datasets generated by the well-known

method in [2]. We refer the readers to [2] for the details of the procedure. Table

1 shows the parameters and Table 2 lists the datasets used in the experiments.
5.1. Comparisons of KISP and GSP

Extensive experiments were performed to compare the execution time of

KISP and GSP. The effect of using knowledge base without concurrent support

counting optimization is studied first. The interactive discovery comprises five
consecutive queries, with minsup values varying from 2.5% down to 0.5%.
Table 1

Parameters used in the experiments

Parameter Description

jDBj Number of customers in database DB
jCj Average size (number of transactions) per customer

jT j Average size (number of items) per transaction

jSj Average size of potentially sequential patterns

jIj Average size of potentially frequent itemsets

Table 2

Datasets used in the experiments

Name jDBj jCj jT j jSj jIj Size (MB)

Origin 100 K 10 2.5 4 1.25 18.8

Slen 100 K 20 2.5 4 1.25 28.4

Tlen 100 K 10 5 4 1.25 28.0

SPLen 100 K 10 2.5 8 1.25 20.0

LPLen 100 K 10 2.5 4 2.5 18.5

Note: jDBj is increased to 1000 K in the scale-up experiments.
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Fig. 3 compares the relative performance of KISP and GSP on the Origin

dataset with respect to various minsups. The total number of candidates and the

total number of database scanning required for each query in GSP are also

shown in the bottom of Fig. 3. The total execution time with KISP and GSP

are 6652 and 8028 s, respectively. As to individual mining, KISP is faster than

GSP for the last two queries with smaller minsup since considerable amount of

candidates were eliminated. Fig. 3 also depicts the ratios of the number of

candidates in GSP to those in KISP. Since the mining time reduced from the

size-1 patterns in KB is very little in comparison with the pattern-outputting

time increased, the overhead of KISP accounted for this phenomenon in the

first three queries with larger minsup. In the first three queries, KISP runs

slower than GSP due to the extra time spent for writing pattern information to
KB being relatively larger than the time saved for the reduction in candidates.

For instance, the mining stopped after pass two for the second query. Not

much time was saved by the assistance of KB since the size-1 patterns occupied

77% of the reduced candidates.

A series of queries were applied on the datasets SPLen and LPLen to

evaluate the impact of different sequence space for sampling. Similar results

were obtained as shown in Fig. 4. The total execution time ratios of KISP to

GSP are 89% and 93% for the datasets SPLen and LPLen, respectively. Due to
the rush increase of qualified frequent 1-sequences which incurred the mass

production of new candidates in the third query, the performance drops for

minsup ¼ 1% in Fig. 4. The reduction of total execution time is not apparent
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because KB manifests much effect on candidate reduction only for the last two

queries.

Next, the distributions of customer sequences were changed. The Slen

dataset increases the average sequence size of customers (from 10 to 20), and

the Tlen dataset increases the average transaction size of customers (from 2.5 to
5). In general, both changes would allow the databases to have more (and

longer) sequential patterns with respect to the above minsup values. As indi-

cated in Fig. 5, KISP runs faster than GSP for each individual mining except

for the very first mining. KISP benefits from the accumulated information so

that the individual discovery could be accelerated. Take minsup ¼ 0:75% for

example, the execution time ratio of GSP to KISP is 2.9 times for dataset Tlen.

The time saved by KISP resulted from the reduced number of candidates. In

contrast, GSP generated three times the number of candidates. Additionally,
the total execution time ratios of KISP to GSP are 54% for datasetSlen, and

48% for dataset Tlen. To illustrate the accumulating power of KB, the number

of candidates in each pass generated by GSP and by KISP for the Slen dataset

are enumerated in Table 3.

KISP exhibits excellent mining capability for query intensive applications,

as demonstrated in Fig. 6. The average execution time (also the time required

for posterior queries) decreases as the number of queries increased. That is,

users might have shorter response time in each query by decreasing minsup

value gradually to reach the desirable minsup value, which generates the desired

patterns. Similar results were obtained for the same series of queries applying

on datasets Slen and Tlen.
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Table 3

Number of candidates for the Slen dataset

Number of candidates Pass number

1 2 3 4 5 6 7 8

minsup

value

2% GSP 10 000 259 376 1 Terminated

KISP 0 180 829 1 Terminated

1% GSP 10 000 2 534 350 463 105 8 Terminated

KISP 0 2 274 974 462 105 8 Terminated

0.5% GSP 10 000 7 673 835 7986 2800 1339 430 63 3

KISP 0 3 122 860 5941 2387 1259 424 63 3
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All the preceding experiments were performed without optimization by

concurrent support counting so that the number of database passes is the same

in GSP and in KISP. Table 4 illustrates the number of database scanning re-

duced by concurrent support counting, and the reduced execution time for all

the datasets with respect to minsup ¼ 0:5% and KB:sup ¼ 0:75%. The first pass

for support counting of candidate 1-sequences is not required for all minings in

KISP in comparison with GSP. In general, the number of size-2 candidates is

so many that the concurrent optimization is effective from the second pass of
database scanning (which counts candidates of size-3 and above). However,

most scans were combined in pass two so that the total number of passes and

the total execution time were reduced.

When users need to find the appropriate set of patterns by reducing the

number of sequential patterns found in a query, the next specified minsup
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Table 4

Effects of concurrent support counting

minsup ¼ 0:5% Origin Slen Tlen SPLen LPLen

Reduced execution time (s) 29 94 157 8 5

Reduced number of passes 5 6 8 5 3
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would be greater than the counting base of KB (KB.sup). In the next experi-

ment, all KB.sups of the KBs were 0.5%, and 100 minsups ranging from 0.5% to

2.5% were randomly selected. As shown in Table 5, the mining results are all

available in very short time for all datasets. For most queries, the execution

time of KISP is several orders of magnitude faster than GSP, which always re-

mines from scratch.

However, one drawback of KISP is that the size of KB might be larger than

the size of the original database, due to the space increased for storing sup-
ports. The size of KB is proportional to the number of patterns existing in KB.

Table 6 shows that, in worst case, KB might need as much as five times the

space of the sequence database for low KB.sup.
Table 5

Execution time of KISP when KB:sup6minsup

Execution

time (s)

Origin Slen Tlen SPLen LPLen

Minimum 0 4 10 0 0

Maximum 22 29 13 14 16

Average 4.3 11.8 10.8 5.1 4.4



Table 6

Space used by KB with respect to KB.sup (dataset Slen)

KB.sup 2% 1% 0.5%

Worst case size of KB (MByte) 5.6 51.7 140.9

Number of patterns stored 269 377 2 544 926 7 696 456

Average cost of a pattern (Byte) 21.9 21.3 19.2
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5.2. Scale-up experiments

To assess the scalability of the proposed algorithm, several experiments were

conducted. Since the basic construct of KISP is similar to that of GSP, similar

scalable results could be expected. In the scale-up experiments, the total

number of customers was increased from 100 to 1000 K and other parameters

were the same as the Origin dataset. Again, KISP were faster than GSP for all

the datasets. The execution time was normalized with respect to the time for
100,000 customers here. Fig. 7 shows that the execution time ratio of KISP

increases linearly as the database size increases, which demonstrates good

scalability of KISP.
6. Conclusions

In this paper, we propose an efficient knowledge base assisted mining

algorithm for interactive discovery of sequential patterns. For online queries,

manual tuning on mining parameters such as the minimum support is inev-

itable since no one can predict the best parameter and the corresponding

outcome. A result driven discovery requires many times of repeated mining
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in an interactive process. A fast mining algorithm that always re-mines

from scratch is not good enough for interactive query in practice. Knowl-

edge obtained from each mining should be utilized to accelerate the entire

process.
The proposed KISP algorithm constructs a knowledge base for minimizing

the total response time for online queries. Neither database access nor counting

is required if the query result is a subset of patterns in the knowledge base. In

case some resultant patterns are new to the knowledge base, we speed up the

mining process by the assistance of the knowledge base. The proposed ap-

proach directly generates only the new candidates which are not counted be-

fore, concurrently counts variable sized candidates in the same database

scanning, and incrementally expand the knowledge base by every counting
effort for future queries. The knowledge base keeps the patterns grouped by the

size to provide fast access to pattern information. The experiments performed

shows that the proposed approach is faster than GSP by several orders of

magnitude, with good linear scalability.
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