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The characteristics of charge trapping during constant voltage stress in ann-type metal–oxide–
semiconductor capacitor with HfO2/SiO2 gate stack and TiN gate electrode were studied. We found
that the dominant charge trapping mechanism in the high-k gate stack is hole trapping rather than
electron trapping. This behavior can be well described by the distributed capture cross-section
model. In particular, the flatband voltage shiftsDVfbd is mainly caused by the trap filling instead of
the trap creation[Zafaret al., J. Appl. Phys.93, 9298(2003)]. The dominant hole trapping can be
ascribed to a higher probability for hole tunneling from the substrate, compared to electron
tunneling from the gate, due to a shorter tunneling path over the barrier for holes due to the work
function of the TiN gate electrode. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1808228]

As devices are scaled aggressively into nanometer re-
gime, SiO2 gate dielectric is approaching its physical and
electrical limits. The primary issue is the intolerably huge
leakage current caused by the direct tunneling of carriers
through the ultrathin oxide. To substantially suppress the
leakage current, high-k materials are recently employed by
exploiting the increased physical thickness at the same
equivalent oxide thickness(EOT). Among them, HfO2 has
been demonstrated to be highly attractive because of its rela-
tively high dielectric constants,25d, sufficiently large band
gap s,5.9 eVd, suitable tunneling barrier height for both
electrons and holess.1 eVd, and thermal compatibility with
contemporary device processes.

Even though HfO2 films have been shown to be scalable
to below 1 nm,1 there still exist several issues that need to be
tackled before they can eventually replace SiO2 dielectric in
production. One of the most important issues for HfO2 is the
charge trapping, which leads to threshold voltage
instability.2–6 In this work, we investigate the characteristics
of charge trapping in the HfO2/SiO2 gate stack with TiN
gate electrode. Contrary to most previous reports,2–6 it is
found that hole trapping, rather than electron trapping, pre-
vails in the HfO2/SiO2 gate stack during constant voltage
stressing(CVS). By employing the distributed capture cross-
section model,2,3 the behavior of hole trapping can be well
predicted over several decades of stress time; that is, charge
trapping is caused by the hole filling of as-fabricated traps
with distributed capture cross section.

The capacitors were fabricated onp-type (100) silicon
wafers with local oxidation of silicon isolation. After HF-last
dipping, a 1.1-nm-thick ultrathin oxide layer was grown at
800 °C by rapid thermal annealing(RTA) in O2. Subse-
quently, an approximately 5 nm HfO2 film was deposited by

atomic vapor deposition(AVD™) in an AIXTRON Tricent®

system at a substrate temperature of 500 °C, followed by N2
RTA at 500 °C for 30 s. A 5000 Å TiN electrode was sput-
tered and patterned to form gate electrodes. Then, wafers
were sputtered with aluminum on the back side, and received
a forming gas anneal at 400 °C for 30 min. The EOT and
initial flatband voltage of the stack before stressing are esti-
mated to be 24 Å and 0.005 V from the high-frequency
s100 kHzd capacitance–voltagesC–Vd curves using UCLA
CVC method without considering quantum effect.7

Figure 1(a) shows theC–V curves of a metal–oxide–
semiconductor(MOS) capacitor measured after different

a)Electronic mail: chchien@ndlgov.tw

FIG. 1. (a) Capacitance–voltage curves and(b) conductance–voltage curves
measured at 100 kHz with stress time as a parameter. The stress voltagesVgd
was −3.5 V. The curve labeledt=0 s corresponds to the data before
stressing.
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CVS times. The stress voltage was −3.5 V. One observes
that theC–V curve gradually shifts toward negative voltage
with stress time. This tendency indicates that hole trapping is
the predominant process in the gate stack during stressing.
However, the negative flatband voltage shiftsDVfbd may
arise from the emergence of positive bulk trapped charges
and/or interface charges. To clarify the mechanism respon-
sible for the hole trapping, the conductance of the capacitor
is plotted against measuring voltage over several decades of
stress time, as shown in Fig. 1(b). It is found that the con-
ductance peak value and shape only change slightly with
stress time. This suggests that charge trapping at the interface
states does not play any significant role inDVfb for the
HfO2/SiO2 gate stack during CVS.8 Thus, we conclude that
the DVfb is mainly caused by hole trappings in the bulk of
HfO2 layer. This result seems to contradict with most previ-
ous works, in which electron trappings in the high-k stacks
were shown to be the dominant mechanism responsible for
the threshold and flatband voltage shifts.3–6

To gain further insight into the trapping mechanism, we
employ the so-called distributed capture cross-section model
or stretched exponential model2,3 to describe the trapping
behavior. The stretched exponential equation is given by
uDVfbu= uDVmaxus1−exps−Ninjs0dbd, whereuDVmaxu, s0, b are
fitting parameters which are related to the total trap density.
Here, s0 represents the characteristic capture cross section,
uDVmaxu denotes the maximum shift inuDVfbu that occurs after
prolonged stressing, andNinj denotes the injected charge den-
sity. Figure 2 shows the dependence ofDVfb on Ninj. It can be
clearly seen that the fitting curves(i.e., solid curves) match
very well with experimental data(i.e., symbols) over several
decades ofNinj. In addition, uDVfbu saturates at largerNinj
when the magnitude of the stress voltage is higher than
u−3.5 Vu. These features imply filling existing hole traps in
the high-k gate stacks. Theb value is around 0.184 for all

stressing conditions indicating that hole traps in the high-k
gate stacks possess larger distributed capture cross section
than that of electron traps(cf., b,0.32);1 while s0 is nearly
independent of voltage and its value is about 1.5
310−14 cm2. Moreover, it is worthy to note thatuDVfbu in-
creases again as theNinj is larger than 231020 cm−2 s atVg
=−4.2 V. This phenomenon is thought to be due to addi-
tional traps creation.

Not disregarding the success of the distributed capture
cross-section model in describing theDVfb during CVS, it is
still necessary to explain why the hole trapping is more
likely to occur in our high-k gate stacks. We believe this can
be explained by the resultant band diagram of the gate stack
underVg=−4.2 V stress, as illustrated in Fig. 3. The param-
eters, including physical thicknesses, band offsets and the
voltage drops across the individual insulators were deter-
mined based on our TEM analyses(not shown) and the work
function of TiN s,4.8 eVd presented in previous
researches.9,10 It can be seen that the probability of hole tun-
neling from the substrate is much higher than that of electron
tunneling from the gate because of the shorter tunnel dis-
tance. Therefore, the leakage current is dominated by hole
injection. To reinforce this argument, the characteristics of
the gate current densitysJgd as a function ofNinj under vari-
ous CVS conditions(Fig. 4) show that the leakage current
decreases withNinj for all stress voltages. This is consistent
with hole dominance in the gate stack because only the
trapped holes can cause leakage increase if the electron cur-
rent is dominant component.

In conclusion, hole trappings are firmly observed in the
HfO2/SiO2 gate stack with TiN metal gate electrode. The
dVfb caused by the trapped holes can be well described by
adopting distributed capture cross-section model over several
decades of stress time during CVS. This phenomenon is at-
tributed to the resultant asymmetric band structure, which
favors hole tunneling from the substrate and, in turn, makes
the gate stack more susceptible to the hole trapping.

This work was supported in part by the National Science
Council of the Republic of China through Contract No.
93A0501.
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