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Abstract

A k-container C(u, v) of a graphG is a set ofc disjoint paths joining: to v. A k-containerC (u, v) is ak*-container if every
vertex of G is incident with a path irC(u, v). A bipartite graphG is k*-laceable if there exists &*-container between any
two verticesu, v from different partite set of;. A bipartite graphG with connectivityk is super laceable if it is i*-laceable
for all i < k. A bipartite graphG with connectivityk is f-edge fault-tolerant super laceable if G — F is i*-laceable for any
1<i <k— f and for any edge subsétwith |F| = f < k — 1. In this paper, we prove that the hypercube gréphis super
laceable. MoreoveQ, is f-edge fault-tolerant super laceable for ghy r — 2.
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1. Introduction written as{vg, v1, v2, ..., vr), in which all the vertices
vo, V1, . . ., U are distinct except possibly = v;. We
In this paper, a network is represented as a loopless@lS0 write the pattP = (vo, vy, ..., vk) @s(vo, P, vk).
undirected graph. For theaph definition and notation ~ We useP ! to denote the pattvg, vi—1, ..., v1, vo).
we basically follow [2].G = (V, E) is a graph ifV A path is aHamiltonian path if its vertices are distinct
is a finite set andE is a subset of(a, b) | (a,b) is and spanV. A graph G is Hamiltonian connected
an unordered pair of’}. We say thatV is the vertex if there exists a Hamiltonian path joining any two
set and E is the edge set. Two verticesa andb are vertices of G. A cycle is a path with at least three
adjacent if (a, b) € E. Let E’ be a subset of . We use vertices such that the first vertex is the same as the
G — E' to denote the graph with vertex détand edge last vertex. AHamiltonian cycle of G is a cycle that
setE — E'. A pathis a sequence of adjacent vertices, traverses every vertex @ exactly once. A graph is
Hamiltonian if it has a Hamiltonian cycle.
Theconnectivity of G, « (G), is the minimum num-
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Menger’s theorem [5] that there afeénternal node-
digoint paths joining any two vertices: and v for
[ < k. A k-container C(u, v) of a graphG is a set of
k internal node-disjoint paths joining to v. We use
V(C(u, v)) to denote the set of vertices incident with
some path irC(u, v). Connectivity and container are
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there is no Hamiltonian path joining any two vertieces
andv with x ¢ {u, v}. HenceG — F is not Hamiltonian
laceable. Thus the edge fault-tolerant super laceability
is at mostr — 2. We shall prove that the edge fault-
tolerant super laceability af, isr — 2 if r > 2.

In the following, we give the definition of the

impotent concepts to measure the fault tolerance of a hypercubesQ, and some basic properties @, .

networks [3].

In this paper, we discuss another type of con-
tainer. A k-container C(u,v) is a k*-container if
V(C(u,v)) = V(G). A graph G is k*-connected if
there exists &*-container between any two distinct
verticesu, v. In particular,G is 1*-connected if and
only ifitis Hamiltonian connected. Moreoves, is 2*-
connected if it is Hamiltonian. Since any-tonnected
graph with more than 3 vertices is Hamiltonian, it is
2*-connected. The study éf-connected graph is mo-
tivated by the globally 3-connected graphs proposed
by Albert, Aldred and Holton [1]. We define a graph
G to besuper connected if G is i*-connected for any
i with 1 <i <«(G).

A graph G is bipartite if its vertex set can be
partitioned into two subsetig; and V> such that every
edge joins a vertex o¥; and a vertex ofo. A k*-
laceable graph is a bipartite graph such that there
exists ak*-container between any two vertices from
different partite sets. Obviously, ak§j-laceable graph
with £ > 1 has bipartition of equal size. A*daceable
graph is also known aldamiltonian laceable graph.
Since any 1-laceable graph with more than 3 vertices
is Hamiltonian, it is 2-laceable. A bipartite grapty
is super laceable if G is i*-laceable for any with
1<i <« (G).

In this paper, we prove that the hyperculgg
is super laceable for alt. We further discuss the
corresponding fault-tolerant property. Assume that
r>2. Let F C E(Q,) with |F| = f < (r — 2).
Obviouslyk(Q, — F) >r — f.We provethapQ, — F
is i*-laceable forany with 1 <i <r — f.

Let G be super laceable graph with connectivity
and letF be any edge subset of with |F| = f. We
say thatG is f-edge fault-tolerant super laceable if
G — Fisi*-laceable for any with 1 <i <r — f and
for any edge subsedf with |F| = f. The edge fault-
tolerant super laceability of G is defined as the largest
f such thatG is f edge fault-tolerant super laceable.
Let F be any edge set incident with some vertér G
such that F| =r — 1. Obviouslydeg;_r(x) =1 and

In Section 3, we prove thaD, is r*-laceable. In
Section 4, we prove that the edge fault-tolerant super
laceability of O, isr — 2 if r > 2. In particular,Q, is
super laceable for any,

2. Preliminaries

Letu=uquz...u,_1u, be anr-bit binary strings.
For 1<i < r, we useu’ to denote theth neighbor
of u, i.e., the binary string1vz...v,—1v, such that
vi =1—u; andvy = uy if k #i. The Hamming
weight of u, denoted byw(u), is the number of
i such thatu; = 1. The r-dimensional hypercube,
denoted byQ,, consists of all--bit binary strings as
its vertices. Two vertices andv are adjacent if and
only if v=u’ for somei. Obviously, Q, is anr-
regular graphs with 2 vertices. MoreoverQ, is a
bipartite graph with bipartitiofu | w(u) is odd and
{u] w(u) is eveny. We will use black vertices to denote
those vertices of odd weight and white vertices to
denote those vertices of even weight. We gétbe
the subgraph oD, induced by{u e V(Q,) | u, =i}
fori =0, 1. Obviously,Q! is isomorphic toQ,_1 for
i =0, 1. Itis well known thatQ, is vertex transitive.
Furthermore, the permutation on the coordinat@ef
and the componentwise complement operations are
graph isomorphisms. Let= 00...000€ V(Q,) and
g =11...111 be the antipodal point &f

The topological properties af, has been studied
extensively in recent years. Readers can refer [4] for a
survey on the properties of hypercubes. The following
theorem is proven by Tsai et al. [6].

Theorem 1 [6]. Let F be any edge subset of O, with
|F| <r—2.Then Q, — F is 1*-laceable.
3. Q,isr*-laceable

Theorem 2. Q, isr*-laceablefor r > 1.
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Fig. 1. lllustration for Theorem 2.

Proof. Obviously, this theorem is true for= 1 and

r =2.Assume > 3. SinceQ, is vertex transitive, we
only need to find an*-container joiningeto any black
vertexv of Q,.

Case 1: v # q. Without loss of generality, we
assume thav € Q9. By induction, there exists an
(r — 1)*-container{Py, Py, ..., P,_1} of QY joining
e to v. By Theorem 1, there exists a Hamiltonian
path R of Q} joining the black vertexe” to the white
vertexV'. We setP, as (e €, R,V", V). Obviously,
{P1, P>, ..., P,._1, P} is anr*-container ofQ, join-
ing eto v. See Fig. 1(a) for illustration.

Case 2: v = Q. Sincew(v) is odd,r is odd and
r > 3. Let QY be the subgraph oD, induced by
{ueVvV(Q,) |ur—1=1i andu, = j} for 0<i,j < 1.
Obviously,Q} isisomorphictoQ,_»for0<i, j < 1.
Lety =g 2 € Q! be the(r — 2)th neighbor ofq.
Let x = y" be therth neighbor ofy. Obviously, x
is adjacent toy* for all 1 <k <r —3 andq =
x"~2. By induction, there exists aftr — 1)*-container
(W1, Wa, ..., Wy_1} of Q20U 010 = Q9 joining e
to the black vertexx where Wy = (e, W,Q,x",x) for
1<k <r — 1. There exists arr — 2)*-container
{R1, Rz, ..., R,_2) of Q1 joining the white vertexy
to g. Sincey andq are adjacent, one of these paths
is the (y, q). Without loss of generality, we assume
that R, = (y,y*, R,,q) for 1 <k <r — 3. We set
Pe=(e W, XKy R, q)forl<k<r—3,Po=
eW ,.q,0), andP,_1 = (e W _,,x" "1 x,y,q).
By Theorem 1, there exists a Hamiltonian pdih

of Q% joining the black vertexe' to the white
vertexq’ L. Let P, = (e, €, H,q 1, q). Obviously,
{P1, P>, ..., P} form anr*-container ofQ, joining e
to q. See Fig. 1(b) for illustration. O

4. The edgefault-tolerant super laceability of Q,

Lemma 1. Assume that » > 2. Let u and x be any
two distinct white vertices, v and y be any two distinct
black verticesin Q,, there exist two digjoint paths P1
and P, such that

(1) P1joinsutov.
(2) P2joinsxtoy, and
(3) PLU Py spans Q.

Proof. We prove this lemma by induction on.
Obviously, the lemma is true for= 2. Assume that
r > 3. Without loss of generality, we assume that
ue V(@Y% andy e V(Qh).

Casel:x € V(Q}) andv e V(QP). By Theorem 1,
we can seP; as the Hamiltonian path a®? joiningu
tov. Again, we can seP, as the Hamiltonian path of
Q! joiningx toy.

Case 2: x € V(Q%) andv e V(Q}). By induction,
there exist two disjoint path®; and Rz of Q9 such
that

(1) R1joinsu to some black vertea,
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Fig. 2. lllustration for Lemma 1.

(2) Rz joinsx to some black vertek distinct froma,
and
(3) R1U Rz spansQ?.

Again, there exist two disjoint path®; andW> of er
such that

(1) W1 joins the white verte®” tov,
(2) W> joins the white verted” toy, and
(3) W1U W, spansQ?.

We can setP; as (u, Ri,a, @, Wy,v) and P, as
(X, R2,b,b", Ws, y). See Fig. 2(a) for illustration.

Case 3: x,v € V(Q9 or V(Q}). Without loss of
generality, we assume thatv e V(QQ). By induc-
tion, there exist two disjoint pathB; and Ry of QQ
such that

(1) Ry joinsutov,
(2) Rz joinsx to some black vertel, and
(3) R1U Rz spansQ?.

By Theorem 1, there exists a Hamiltonian pdth
joining the white vertexb” to y. We setP; as R
and setP, as (X, R2,b,b", W,y). See Fig. 2(b) for
illustration.

Obviously, P; and P, are the desired paths.O

Theorem 3. Let F be any edge subset of Q, with
|Fl=f<r—2andr>2.Then Q, — Fis(r — f)*-
laceable.

Proof. It is easy checked by brute force that this
theorem is true for = 2, 3. Supposef =r — 2. By
Theorem 1,0, — F is 1*-laceable. Since any*1
laceable graphG with |V (G)| > 3 is Z*-laceable,
Q, — F is also Z-laceable. Suppos¢g = 0. By
Theorem 2,0, is r*-laceable. Hence we only need

to prove the theorem for & f <r — 3. SinceQ, is
vertex transitive, we only need to find &n — f)*-
container ofQ, — F between the white vertes and
any black vertex. We prove our claims according to
the locations ob and the faulty edges as follows.

Case 1: v # g. Without loss of generality, we as-
sume thatv € Q0. Let F' denote the set of edges
of Fin Qi for 0<i <1 Sincef<r—-3=
(r — 1) — 2, by induction there exists afxr — f)*-
containerC = {Py, Py, ..., P,_s} of Q% — FO join-
ing e to v. An edge(a, b) is anadjacent pair in C
if (a,b) € P, for somek. An adjacent pair(a, b)
is healthy if (a,a”) and (b,b") ¢ F. A faulty edge
from Q0 to Q! can destroy at most 2-healthy pairs.
Since there are at least2 adjacent pairs irC and
21> 2(r — 3) > 2|F| for r > 4, there exists at least
one healthy paira, b) in C. Without loss of gener-
ality, we may assume thag, b) € P._; and write
P._y = (e Ri,ab, Ry, v). By Theorem 1, there ex-
ists a Hamiltonian pathv of @ — F1 joining & to
b”. We setPr’_f = (e, Ry,a, @, W,b", b, Ry, v). Ob-
viously, {P1, P, ..., Pr—f_1, Pr’_f} is an (r — f)*-
container ofQ, — F joining e to v. See Fig. 3(a) for
illustration.

Case 2: v =@. Sincev is a black vertex, we may
assumer is an odd withr > 5. An edge(x, y) is ani-
dimensional edge ify = x'. Let F; denote the subsets
in F of dimensioni. Without loss of generality, we
assume thatFi| > |Fz| > --- > |F,|. Since|lF| = f <
r—3,|F;| =|F,—1|=0.LetF" bethe subsets &f in

. SinceQ? and Q%! are symmetric with respect to
0, andFOuU F10y FO1y F11 = F, we may assume
that| | < [ f/2].

Letu=wuiuz...u,—1u, € V(Q,). We useuli, j]
to denoteuqusz...u,—3u,—2ij. In other wordsuli, j]
is themirror image of uli’, j']1if i £i’ orj #j'.
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Fig. 3. lllustration for Theorem 3.

Case2.1:|F19 = 0. Pick any element@, b') in F
and setF = F — (@, b'). Let F/ be the subsets of
in @) . Obviously,| F%9 < f — 1. Since diniQ%) =
r—2and(r—2)— (f =L =r—f—1>2, by

induction there exists ar — f — 1)*-containerC =
(Wi, Wa, ..., W,—y_1} of 0%, — F% joining e to
g[0, 0]. Suppose the edg@’, b’) or its mirror image
is in C. We seta= a'[0, 0], b = b’[0, 0] and assume
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(a,b) € E(W1). Suppose the edde’, b’) or its mirror
image is not inC. We pick any edge in£ (W) and
name it(a, b).

Supposea # €[0,0] and b # q[0,0]. We can
write W1 = (e, X1, R1,a, b, R2,y1,q[0, 0]), Wi = (e,
Xk, Zk, Yk, Q[0,0]) for 2< k <r — f — 1. Let Wt
and W}t be the mirror images o#; in Q% and
O, respectively. ObviouslyC%Y(e[0, 11, q[0, 1]) =
(wot wit .., wot 71} and c1(e[1,1],q(1, 1) =
(wit, wit, ..., er_lf_l} are(r — f — 1)*-containers
of 0%, — FO' and @, — F%, respectively. By
Lemma 1, there exist two disjoint path$ and H»
of Q19 such that

(1) Hi1 joins the black vertexg[1, 0] to the white
vertexq[1, O],

(2) H»joinsa[1, 0] tob[1, 0], and

(3) H1U H, spansQ0.

We set{P1, P2, ..., P,_y}as

Py =(e x1, R1,a a0, 1], (R?l)_l, x1[0, 11, €[0, 1],
€1, 1], x1[1, 11, RI%, a[1, 1], a[1, O], Ha,
b[1,0], b, R2,y1,9l0, 0], q[0, 1], y1[O, 1],
(R3Y) ™, b[0, 11, b[L, 11, R3L, y[1, 11, q);

P = (& %k, Zk, Yi, Ye[O, 11, (Z4[0, 11) 7,
%[0, 11, x¢[1, 11, Ze[1, 11, ye[1, 11, q)
for2<k<r—-f-1, and

P,— s =(e €[1,0], H1,q[1,0], q)

Obviously{P1, P, ..., P-_}isan(r — f)*-contain-
er of O, — F joining e to gq. See Fig. 3(b) for
illustration.

Remark 1. Supposea = e. Sincer > 5, W; contains
atleast4 verticesfor& i <r— f—1. We writeW1 =
(e,b,R,y1,9(0,0Q]), W2 = (e,21,2,...,2% 1,22,
q[0,0]) for somer > 1, and Wy = (e, Xk, Zk, Y,
ql[0,0]) for 3<k <r — f — 1. By Theorem 1, there
exists a Hamiltonian path of Q10 joining the black
vertexe[1, 0] to the white verted[1, 0]. We revise the
previously pathsPy, P, and P._ ¢ as follows:

Pl = <e7 219 229 ceey ZZt—l, 2219 q[O, 0]9 q[O, l]y q);

P, = (e €0, 1], €[1, 1], 1[1, 11, 1[0, 1, 5[0, 11,
22[1, 11, z3[1, 11, z3[0, 1], 4[0, 11, . . .,
7211, 1], 22, 1[0, 1], zx[0, 1],
z[1.1].q);

P_y=(e €1,0], H,b[1,0],b, R,y1,y1[0, 1],

(R°Y) ™ b0, 11, b[1, 1], R, y4[1, 11, q).

and

Obviously{ P, P, ..., P._r}isan(r — f)*-contain-
er of O, — F joining e to . See Fig. 3(c) for
illustrationr = 2.

Remark 2. Supposeb = ([0, 0]. Since q[0, 0] is
symmetric with respect te, we use the similar reason
to find an(r — f)*-container ofQ, — F joiningetoq.

Case 2.2: |F19 £ 0. Obviously, |F% < f — 1.
By induction, there exists ar — f — 1)*-container
C ={W1, Wa, ..., W,_s_1} of 09— F®joiningeto
q[0, 0] and we can writéWV, = (e, Xx, Rk, Y&, 9[0, 0])
for 1<k <r— f — 1. By Theorem 1, there exists a
Hamiltonian pathH of Q° — F0 joining the black
vertexe[1, 0] to the white vertexy[1, 0]. We revise the
previously defined pathB; andP,_ ; as follows:

P1 = (e x1, R1,y1,9[0, 0], q[0, 1], y1[0, 1],
(Rgl)_l, x1[0, 11, €[0, 11, €[4, 1], x4[1, 1], R,
y1[1,1].q); and

P,_; = (e €[1,0], H,q[1,0].q)

Obviously{ Py, P>, ..., P._r}is an(r — f)*-contain-
er of 9, — F joining e to q. See Fig. 3(d) for
illustration. O

Theorem 4. Q, is super laceable for any positive
integer r. Moreover, Q, is f-edge fault-tolerant super
laceablefor any f <r — 2.

Proof. By Theorem 1,0, is 1*-laceable. By The-
orem 2, Q, is r*-laceable. Assume that> 3 and
2<i <r—1. We arbitrarily choose an faulty edge
setF with |F|=r —i. By Theorem 3Q, — F isi*-
laceable. Thug), isi*-laceable.

Therefore,Q, is super laceable for any positive
integer r. For similar reasonQ, is f-edge fault-
tolerant super laceable foragfy<r —2. O
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