

Available online at www.sciencedirect.com

Information Processing Letters 92 (2004) 15-21

Information Processing Letters

www.elsevier.com/locate/ipl

The super laceability of the hypercubes

Chung-Haw Chang^a, Cheng-Kuan Lin^a, Hua-Min Huang^a, Lih-Hsing Hsu^{b,*}

^a Department of Mathematics, National Central University, Chung-Li, Taiwan 32054, ROC ^b Department of Information Engineering, Ta Hwa Institute of Technology, Hsinchu, Taiwan 30740, ROC

Received 8 October 2003; received in revised form 19 May 2004

Available online 27 July 2004

Communicated by F.Y.L. Chin

Abstract

A *k*-container C(u, v) of a graph *G* is a set of *k* disjoint paths joining *u* to *v*. A *k*-container C(u, v) is a *k**-container if every vertex of *G* is incident with a path in C(u, v). A bipartite graph *G* is *k**-laceable if there exists a *k**-container between any two vertices *u*, *v* from different partite set of *G*. A bipartite graph *G* with connectivity *k* is super laceable if it is *i**-laceable for all $i \leq k$. A bipartite graph *G* with connectivity *k* is *f*-edge fault-tolerant super laceable if G - F is *i**-laceable for any $1 \leq i \leq k - f$ and for any edge subset *F* with |F| = f < k - 1. In this paper, we prove that the hypercube graph Q_r is super laceable. Moreover, Q_r is *f*-edge fault-tolerant super laceable for any $f \leq r - 2$. © 2004 Elsevier B.V. All rights reserved.

Keywords: Hypercube; Hamiltonian; Hamiltonian laceable; Connectivity; Fault tolerance

1. Introduction

In this paper, a network is represented as a loopless undirected graph. For the graph definition and notation we basically follow [2]. G = (V, E) is a graph if V is a finite set and E is a subset of $\{(a, b) | (a, b) \}$ an unordered pair of V}. We say that V is the vertex set and E is the edge set. Two vertices a and b are adjacent if $(a, b) \in E$. Let E' be a subset of E. We use G - E' to denote the graph with vertex set V and edge set E - E'. A path is a sequence of adjacent vertices, written as $\langle v_0, v_1, v_2, \dots, v_k \rangle$, in which all the vertices

The *connectivity* of *G*, $\kappa(G)$, is the minimum number of vertices whose removal leaves the remaining graph disconnected or trivial. Let *G* = (*V*, *E*) be a graph with connectivity $\kappa(G) = \kappa$. It follows from

^{*} Corresponding author. Department of Computer and Information Science, National Chiao Tung University, Hsinchu, 300, Taiwan ROC. Tel.: +886-3-5712121ext.56616; Fax: +886-3-5721490.

E-mail address: lhhsu@cc.nctu.edu.tw (L.-H. Hsu).

 v_0, v_1, \ldots, v_k are distinct except possibly $v_0 = v_k$. We also write the path $P = \langle v_0, v_1, \ldots, v_k \rangle$ as $\langle v_0, P, v_k \rangle$. We use P^{-1} to denote the path $\langle v_k, v_{k-1}, \ldots, v_1, v_0 \rangle$. A path is a *Hamiltonian path* if its vertices are distinct and span *V*. A graph *G* is *Hamiltonian connected* if there exists a Hamiltonian path joining any two vertices of *G*. A *cycle* is a path with at least three vertices such that the first vertex is the same as the last vertex. A *Hamiltonian cycle* of *G* is a cycle that traverses every vertex of *G* exactly once. A graph is *Hamiltonian* if it has a Hamiltonian cycle.

^{0020-0190/\$ –} see front matter $\,$ © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2004.06.006

Menger's theorem [5] that there are *l* internal nodedisjoint paths joining any two vertices *u* and *v* for $l \leq \kappa$. A *k*-container C(u, v) of a graph *G* is a set of *k* internal node-disjoint paths joining *u* to *v*. We use V(C(u, v)) to denote the set of vertices incident with some path in C(u, v). Connectivity and container are impotent concepts to measure the fault tolerance of a networks [3].

In this paper, we discuss another type of container. A *k*-container C(u, v) is a *k**-*container* if V(C(u, v)) = V(G). A graph *G* is *k**-*connected* if there exists a *k**-container between any two distinct vertices *u*, *v*. In particular, *G* is 1*-connected if and only if it is Hamiltonian connected. Moreover, *G* is 2*connected if it is Hamiltonian. Since any 1*-connected graph with more than 3 vertices is Hamiltonian, it is 2*-connected. The study of *k**-connected graph is motivated by the globally 3*-connected graphs proposed by Albert, Aldred and Holton [1]. We define a graph *G* to be *super connected* if *G* is *i**-connected for any *i* with $1 \le i \le \kappa(G)$.

A graph *G* is *bipartite* if its vertex set can be partitioned into two subsets V_1 and V_2 such that every edge joins a vertex of V_1 and a vertex of V_2 . A k^* *laceable* graph is a bipartite graph such that there exists a k^* -container between any two vertices from different partite sets. Obviously, any k^* -laceable graph with $k \ge 1$ has bipartition of equal size. A 1*-laceable graph is also known as *Hamiltonian laceable graph*. Since any 1*-laceable graph with more than 3 vertices is Hamiltonian, it is 2*-laceable. A bipartite graph *G* is *super laceable* if *G* is *i**-laceable for any *i* with $1 \le i \le \kappa(G)$.

In this paper, we prove that the hypercube Q_r is super laceable for all r. We further discuss the corresponding fault-tolerant property. Assume that $r \ge 2$. Let $F \subseteq E(Q_r)$ with $|F| = f \le (r - 2)$. Obviously, $\kappa(Q_r - F) \ge r - f$. We prove that $Q_r - F$ is i^* -laceable for any i with $1 \le i \le r - f$.

Let *G* be super laceable graph with connectivity *k* and let *F* be any edge subset of *G* with |F| = f. We say that *G* is *f*-edge fault-tolerant super laceable if G - F is *i**-laceable for any *i* with $1 \le i \le r - f$ and for any edge subset *F* with |F| = f. The edge fault-tolerant super laceability of *G* is defined as the largest *f* such that *G* is *f* edge fault-tolerant super laceable. Let *F* be any edge set incident with some vertex *x* in *G* such that |F| = r - 1. Obviously, $deg_{G-F}(x) = 1$ and

there is no Hamiltonian path joining any two vertices uand v with $x \notin \{u, v\}$. Hence G - F is not Hamiltonian laceable. Thus the edge fault-tolerant super laceability is at most r - 2. We shall prove that the edge faulttolerant super laceability of Q_r is r - 2 if $r \ge 2$.

In the following, we give the definition of the hypercubes Q_r and some basic properties of Q_r . In Section 3, we prove that Q_r is r^* -laceable. In Section 4, we prove that the edge fault-tolerant super laceability of Q_r is r - 2 if $r \ge 2$. In particular, Q_r is super laceable for any r.

2. Preliminaries

Let $\mathbf{u} = u_1 u_2 \dots u_{r-1} u_r$ be an *r*-bit binary strings. For $1 \leq i \leq r$, we use \mathbf{u}^i to denote the *i*th neighbor of **u**, i.e., the binary string $v_1v_2...v_{r-1}v_r$ such that $v_i = 1 - u_i$ and $v_k = u_k$ if $k \neq i$. The Hamming weight of **u**, denoted by $w(\mathbf{u})$, is the number of *i* such that $u_i = 1$. The *r*-dimensional hypercube, denoted by Q_r , consists of all r-bit binary strings as its vertices. Two vertices **u** and **v** are adjacent if and only if $\mathbf{v} = \mathbf{u}^i$ for some *i*. Obviously, Q_r is an *r*regular graphs with 2^r vertices. Moreover, Q_r is a bipartite graph with bipartition $\{\mathbf{u} \mid w(\mathbf{u}) \text{ is odd}\}$ and $\{\mathbf{u} \mid w(\mathbf{u}) \text{ is even}\}$. We will use black vertices to denote those vertices of odd weight and white vertices to denote those vertices of even weight. We set Q_r^i be the subgraph of Q_r induced by $\{\mathbf{u} \in V(Q_r) \mid u_r = i\}$ for i = 0, 1. Obviously, Q_r^i is isomorphic to Q_{r-1} for i = 0, 1. It is well known that Q_r is vertex transitive. Furthermore, the permutation on the coordinate of Q_r and the componentwise complement operations are graph isomorphisms. Let $\mathbf{e} = 00 \dots 000 \in V(Q_r)$ and $q = 11 \dots 111$ be the antipodal point of **e**.

The topological properties of Q_r has been studied extensively in recent years. Readers can refer [4] for a survey on the properties of hypercubes. The following theorem is proven by Tsai et al. [6].

Theorem 1 [6]. Let *F* be any edge subset of Q_r with $|F| \leq r-2$. Then $Q_r - F$ is 1*-laceable.

3. Q_r is r^* -laceable

Theorem 2. Q_r is r^* -laceable for $r \ge 1$.

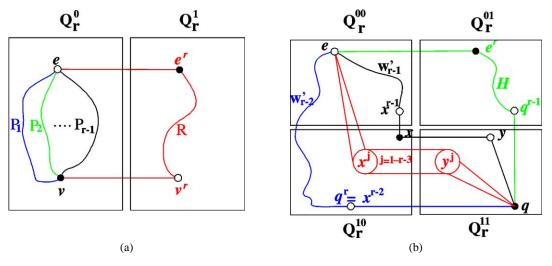


Fig. 1. Illustration for Theorem 2.

Proof. Obviously, this theorem is true for r = 1 and r = 2. Assume $r \ge 3$. Since Q_r is vertex transitive, we only need to find an r^* -container joining **e** to any black vertex **v** of Q_r .

Case 1: $\mathbf{v} \neq \mathbf{q}$. Without loss of generality, we assume that $\mathbf{v} \in Q_r^0$. By induction, there exists an $(r-1)^*$ -container $\{P_1, P_2, \ldots, P_{r-1}\}$ of Q_r^0 joining \mathbf{e} to \mathbf{v} . By Theorem 1, there exists a Hamiltonian path R of Q_r^1 joining the black vertex \mathbf{e}^r to the white vertex \mathbf{v}^r . We set P_r as $\langle \mathbf{e}, \mathbf{e}^r, R, \mathbf{v}^r, \mathbf{v} \rangle$. Obviously, $\{P_1, P_2, \ldots, P_{r-1}, P_r\}$ is an r^* -container of Q_r joining \mathbf{e} to \mathbf{v} . See Fig. 1(a) for illustration.

Case 2: $\mathbf{v} = \mathbf{q}$. Since $w(\mathbf{v})$ is odd, r is odd and $r \ge 3$. Let Q_r^{ij} be the subgraph of Q_r induced by $\{\mathbf{u} \in V(Q_r) \mid u_{r-1} = i \text{ and } u_r = j\} \text{ for } 0 \leq i, j \leq 1.$ Obviously, Q_r^{ij} is isomorphic to Q_{r-2} for $0 \le i, j \le 1$. Let $\mathbf{y} = \mathbf{q}^{r-2} \in Q_r^{11}$ be the (r-2)th neighbor of \mathbf{q} . Let $\mathbf{x} = \mathbf{y}^r$ be the *r*th neighbor of \mathbf{y} . Obviously, \mathbf{x}^k is adjacent to \mathbf{y}^k for all $1 \leq k \leq r-3$ and $\mathbf{q}^r =$ \mathbf{x}^{r-2} . By induction, there exists an $(r-1)^*$ -container $\{W_1, W_2, \dots, W_{r-1}\}$ of $Q_r^{00} \cup Q_r^{10} = Q_r^0$ joining **e** to the black vertex **x** where $W_k = \langle \mathbf{e}, W'_k, \mathbf{x}^k, \mathbf{x} \rangle$ for $1 \leq k \leq r - 1$. There exists an $(r - 2)^*$ -container $\{R_1, R_2, \ldots, R_{r-2}\}$ of Q_r^{11} joining the white vertex **y** to q. Since y and q are adjacent, one of these paths is the $\langle \mathbf{y}, \mathbf{q} \rangle$. Without loss of generality, we assume that $R_k = \langle \mathbf{y}, \mathbf{y}^k, R'_k, \mathbf{q} \rangle$ for $1 \leq k \leq r - 3$. We set $P_k = \langle \mathbf{e}, W'_k, \mathbf{x}^k, \mathbf{y}^k, R'_k, \mathbf{q} \rangle$ for $1 \leq k \leq r-3$, $P_{r-2} =$ $\langle \mathbf{e}, W'_{r-2}, \mathbf{q}^r, \mathbf{q} \rangle$, and $P_{r-1} = \langle \mathbf{e}, W'_{r-1}, x^{r-1}, \mathbf{x}, \mathbf{y}, \mathbf{q} \rangle$. By Theorem 1, there exists a Hamiltonian path H

of Q_r^{01} joining the black vertex \mathbf{e}^r to the white vertex \mathbf{q}^{r-1} . Let $P_r = \langle \mathbf{e}, \mathbf{e}^r, H, \mathbf{q}^{r-1}, \mathbf{q} \rangle$. Obviously, $\{P_1, P_2, \ldots, P_r\}$ form an r^* -container of Q_r joining \mathbf{e} to \mathbf{q} . See Fig. 1(b) for illustration. \Box

4. The edge fault-tolerant super laceability of Q_r

Lemma 1. Assume that $r \ge 2$. Let **u** and **x** be any two distinct white vertices, **v** and **y** be any two distinct black vertices in Q_r , there exist two disjoint paths P_1 and P_2 such that

- (1) P_1 joins **u** to **v**.
- (2) P_2 joins **x** to **y**, and
- (3) $P_1 \cup P_2$ spans Q_r .

Proof. We prove this lemma by induction on r. Obviously, the lemma is true for r = 2. Assume that $r \ge 3$. Without loss of generality, we assume that $\mathbf{u} \in V(Q_r^0)$ and $\mathbf{y} \in V(Q_r^1)$.

Case 1: $\mathbf{x} \in V(Q_r^1)$ and $\mathbf{v} \in V(Q_r^0)$. By Theorem 1, we can set P_1 as the Hamiltonian path of Q_r^0 joining \mathbf{u} to \mathbf{v} . Again, we can set P_2 as the Hamiltonian path of Q_r^1 joining \mathbf{x} to \mathbf{y} .

Case 2: $\mathbf{x} \in V(Q_r^0)$ and $\mathbf{v} \in V(Q_r^1)$. By induction, there exist two disjoint paths R_1 and R_2 of Q_r^0 such that

(1) R_1 joins **u** to some black vertex **a**,

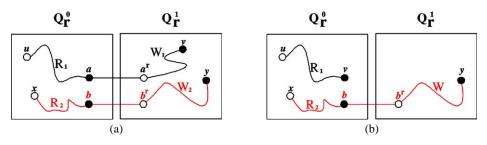


Fig. 2. Illustration for Lemma 1.

- (2) R_2 joins **x** to some black vertex **b** distinct from **a**, and
- (3) $R_1 \cup R_2$ spans Q_r^0 .

Again, there exist two disjoint paths W_1 and W_2 of Q_r^1 such that

- (1) W_1 joins the white vertex \mathbf{a}^r to \mathbf{v} ,
- (2) W_2 joins the white vertex \mathbf{b}^r to \mathbf{y} , and
- (3) $W_1 \cup W_2$ spans Q_r^1 .

We can set P_1 as $\langle \mathbf{u}, R_1, \mathbf{a}, \mathbf{a}^r, W_1, \mathbf{v} \rangle$ and P_2 as $\langle \mathbf{x}, R_2, \mathbf{b}, \mathbf{b}^r, W_2, \mathbf{y} \rangle$. See Fig. 2(a) for illustration.

Case 3: $\mathbf{x}, \mathbf{v} \in V(Q_r^0)$ or $V(Q_r^1)$. Without loss of generality, we assume that $\mathbf{x}, \mathbf{v} \in V(Q_r^0)$. By induction, there exist two disjoint paths R_1 and R_2 of Q_r^0 such that

- (1) R_1 joins **u** to **v**,
- (2) R_2 joins **x** to some black vertex **b**, and
- (3) $R_1 \cup R_2$ spans Q_r^0 .

By Theorem 1, there exists a Hamiltonian path W joining the white vertex \mathbf{b}^r to \mathbf{y} . We set P_1 as R_1 and set P_2 as $\langle \mathbf{x}, R_2, \mathbf{b}, \mathbf{b}^r, W, \mathbf{y} \rangle$. See Fig. 2(b) for illustration.

Obviously, P_1 and P_2 are the desired paths. \Box

Theorem 3. Let *F* be any edge subset of Q_r with $|F| = f \leq r - 2$ and $r \geq 2$. Then $Q_r - F$ is $(r - f)^*$ -laceable.

Proof. It is easy checked by brute force that this theorem is true for r = 2, 3. Suppose f = r - 2. By Theorem 1, $Q_r - F$ is 1*-laceable. Since any 1*-laceable graph *G* with $|V(G)| \ge 3$ is 2*-laceable, $Q_r - F$ is also 2*-laceable. Suppose f = 0. By Theorem 2, Q_r is r^* -laceable. Hence we only need

to prove the theorem for $1 \le f \le r-3$. Since Q_r is vertex transitive, we only need to find an $(r - f)^*$ -container of $Q_r - F$ between the white vertex **e** and any black vertex **v**. We prove our claims according to the locations of v and the faulty edges as follows.

Case 1: $\mathbf{v} \neq \mathbf{q}$. Without loss of generality, we assume that $\mathbf{v} \in Q_r^0$. Let F^i denote the set of edges of F in Q_r^i for $0 \le i \le 1$. Since $f \le r - 3 =$ (r-1) - 2, by induction there exists an $(r - f)^*$ container $C = \{P_1, P_2, ..., P_{r-f}\}$ of $Q_r^0 - F^0$ joining e to v. An edge (a, b) is an *adjacent pair* in C if $(\mathbf{a}, \mathbf{b}) \in P_k$ for some k. An adjacent pair (\mathbf{a}, \mathbf{b}) is *healthy* if $(\mathbf{a}, \mathbf{a}^r)$ and $(\mathbf{b}, \mathbf{b}^r) \notin F$. A faulty edge from Q_r^0 to Q_r^1 can destroy at most 2-healthy pairs. Since there are at least 2^{r-1} adjacent pairs in C and $2^{r-1} > 2(r-3) \ge 2|F|$ for $r \ge 4$, there exists at least one healthy pair (\mathbf{a}, \mathbf{b}) in C. Without loss of generality, we may assume that $(\mathbf{a}, \mathbf{b}) \in P_{r-f}$ and write $P_{r-f} = \langle \mathbf{e}, R_1, \mathbf{a}, \mathbf{b}, R_2, \mathbf{v} \rangle$. By Theorem 1, there exists a Hamiltonian path W of $Q_r^1 - F^1$ joining \mathbf{a}^r to \mathbf{b}^r . We set $P'_{r-f} = \langle \mathbf{e}, R_1, \mathbf{a}, \mathbf{a}^r, W, \mathbf{b}^r, \mathbf{b}, R_2, \mathbf{v} \rangle$. Obviously, $\{P_1, P_2, \dots, P_{r-f-1}, P'_{r-f}\}$ is an $(r-f)^*$ container of $Q_r - F$ joining **e** to **v**. See Fig. 3(a) for illustration.

Case 2: $\mathbf{v} = \mathbf{q}$. Since \mathbf{v} is a black vertex, we may assume *r* is an odd with $r \ge 5$. An edge (\mathbf{x}, \mathbf{y}) is an *i*-dimensional edge if $\mathbf{y} = \mathbf{x}^i$. Let F_i denote the subsets in *F* of dimension *i*. Without loss of generality, we assume that $|F_1| \ge |F_2| \ge \cdots \ge |F_r|$. Since $|F| = f \le r-3$, $|F_r| = |F_{r-1}| = 0$. Let F^{ij} be the subsets of *F* in Q_r^{ij} . Since Q_r^{10} and Q_r^{01} are symmetric with respect to Q_r and $F^{00} \cup F^{10} \cup F^{01} \cup F^{11} = F$, we may assume that $|F^{10}| \le \lfloor f/2 \rfloor$.

Let $\mathbf{u} = u_1 u_2 \dots u_{r-1} u_r \in V(Q_r)$. We use $\mathbf{u}[i, j]$ to denote $u_1 u_2 \dots u_{r-3} u_{r-2} i j$. In other words, $\mathbf{u}[i, j]$ is the *mirror image* of $\mathbf{u}[i', j']$ if $i \neq i'$ or $j \neq j'$.

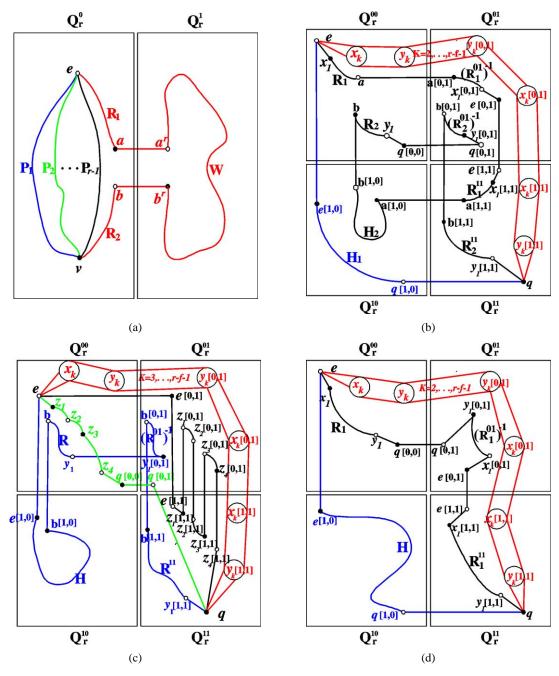


Fig. 3. Illustration for Theorem 3.

Case 2.1: $|F^{10}| = 0$. Pick any element $(\mathbf{a}', \mathbf{b}')$ in Fand set $\widetilde{F} = F - (\mathbf{a}', \mathbf{b}')$. Let \widetilde{F}^{ij} be the subsets of \widetilde{F} in Q_r^{ij} . Obviously, $|\widetilde{F}^{00}| \leq f - 1$. Since dim $(Q_r^{00}) =$ r - 2 and $(r - 2) - (f - 1) = r - f - 1 \geq 2$, by

induction there exists an $(r - f - 1)^*$ -container $C = \{W_1, W_2, \ldots, W_{r-f-1}\}$ of $Q_{r-2}^{00} - \widetilde{F}^{00}$ joining **e** to $\mathbf{q}[0, 0]$. Suppose the edge $(\mathbf{a}', \mathbf{b}')$ or its mirror image is in *C*. We set $\mathbf{a} = \mathbf{a}'[0, 0], \mathbf{b} = \mathbf{b}'[0, 0]$ and assume

 $(\mathbf{a}, \mathbf{b}) \in E(W_1)$. Suppose the edge $(\mathbf{a}', \mathbf{b}')$ or its mirror image is not in *C*. We pick any edge in $E(W_1)$ and name it (\mathbf{a}, \mathbf{b}) .

Suppose $\mathbf{a} \neq \mathbf{e}[0,0]$ and $\mathbf{b} \neq \mathbf{q}[0,0]$. We can write $W_1 = \langle \mathbf{e}, \mathbf{x}_1, R_1, \mathbf{a}, \mathbf{b}, R_2, \mathbf{y}_1, \mathbf{q}[0,0] \rangle$, $W_k = \langle \mathbf{e}, \mathbf{x}_k, Z_k, \mathbf{y}_k, \mathbf{q}[0,0] \rangle$ for $2 \leq k \leq r - f - 1$. Let W_k^{01} and W_k^{11} be the mirror images of W_1 in Q_r^{01} and Q_r^{11} , respectively. Obviously, $C^{01}(\mathbf{e}[0,1], \mathbf{q}[0,1]) =$ $\{W_1^{01}, W_2^{01}, \dots, W_{r-f-1}^{01}\}$ and $C^{11}(\mathbf{e}[1,1], \mathbf{q}[1,1]) =$ $\{W_1^{11}, W_2^{11}, \dots, W_{r-f-1}^{11}\}$ are $(r - f - 1)^*$ -containers of $Q_{r-2}^{01} - \widetilde{F}^{01}$ and $Q_{r-2}^{11} - \widetilde{F}^{11}$, respectively. By Lemma 1, there exist two disjoint paths H_1 and H_2 of Q_r^{10} such that

- (1) H_1 joins the black vertex $\mathbf{e}[1,0]$ to the white vertex $\mathbf{q}[1,0]$,
- (2) H_2 joins **a**[1, 0] to **b**[1, 0], and
- (3) $H_1 \cup H_2$ spans Q_r^{10} .

We set $\{P_1, P_2, ..., P_{r-f}\}$ as

$$P_{1} = \langle \mathbf{e}, \mathbf{x}_{1}, R_{1}, \mathbf{a}, \mathbf{a}[0, 1], (R_{1}^{01})^{-1}, \mathbf{x}_{1}[0, 1], \mathbf{e}[0, 1], \\ \mathbf{e}[1, 1], \mathbf{x}_{1}[1, 1], R_{1}^{11}, \mathbf{a}[1, 1], \mathbf{a}[1, 0], H_{2}, \\ \mathbf{b}[1, 0], \mathbf{b}, R_{2}, \mathbf{y}_{1}, \mathbf{q}[0, 0], \mathbf{q}[0, 1], \mathbf{y}_{1}[0, 1], \\ (R_{2}^{01})^{-1}, \mathbf{b}[0, 1], \mathbf{b}[1, 1], R_{2}^{11}, \mathbf{y}_{1}[1, 1], \mathbf{q} \rangle; \\ P_{k} = \langle \mathbf{e}, \mathbf{x}_{k}, Z_{k}, \mathbf{y}_{k}, \mathbf{y}_{k}[0, 1], (Z_{k}[0, 1])^{-1}, \\ \mathbf{x}_{k}[0, 1], \mathbf{x}_{k}[1, 1], Z_{k}[1, 1], \mathbf{y}_{k}[1, 1], \mathbf{q} \rangle$$

for
$$2 \leq k \leq r - f - 1$$
; and

 $P_{r-f} = \langle \mathbf{e}, \mathbf{e}[1, 0], H_1, \mathbf{q}[1, 0], \mathbf{q} \rangle.$

Obviously, $\{P_1, P_2, \ldots, P_{r-f}\}$ is an $(r-f)^*$ -container of $Q_r - F$ joining **e** to **q**. See Fig. 3(b) for illustration.

Remark 1. Suppose $\mathbf{a} = \mathbf{e}$. Since $r \ge 5$, W_i contains at least 4 vertices for $1 \le i \le r - f - 1$. We write $W_1 = \langle \mathbf{e}, \mathbf{b}, R, \mathbf{y}_1, \mathbf{q}[0, 0] \rangle$, $W_2 = \langle \mathbf{e}, \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{2t-1}, \mathbf{z}_{2t}, \mathbf{q}[0, 0] \rangle$ for some $t \ge 1$, and $W_k = \langle \mathbf{e}, \mathbf{x}_k, Z_k, \mathbf{y}_k, \mathbf{q}[0, 0] \rangle$ for $3 \le k \le r - f - 1$. By Theorem 1, there exists a Hamiltonian path H of Q_r^{10} joining the black vertex $\mathbf{e}[1, 0]$ to the white vertex $\mathbf{b}[1, 0]$. We revise the previously paths P_1 , P_2 and P_{r-f} as follows:

$$P_1 = \langle \mathbf{e}, \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{2t-1}, \mathbf{z}_{2t}, \mathbf{q}[0, 0], \mathbf{q}[0, 1], \mathbf{q} \rangle;$$

$$P_{2} = \langle \mathbf{e}, \mathbf{e}[0, 1], \mathbf{e}[1, 1], \mathbf{z}_{1}[1, 1], \mathbf{z}_{1}[0, 1], \mathbf{z}_{2}[0, 1], \\ \mathbf{z}_{2}[1, 1], \mathbf{z}_{3}[1, 1], \mathbf{z}_{3}[0, 1], \mathbf{z}_{4}[0, 1], \dots, \\ \mathbf{z}_{2t-1}[1, 1], \mathbf{z}_{2t-1}[0, 1], \mathbf{z}_{2t}[0, 1], \\ \mathbf{z}_{2t}[1, 1], \mathbf{q} \rangle; \text{ and}$$

$$P_{r-f} = \langle \mathbf{e}, \mathbf{e}[1,0], H, \mathbf{b}[1,0], \mathbf{b}, R, \mathbf{y}_1, \mathbf{y}_1[0,1], \\ (R^{01})^{-1}, \mathbf{b}[0,1], \mathbf{b}[1,1], R^{11}, \mathbf{y}_1[1,1], \mathbf{q} \rangle.$$

Obviously, $\{P_1, P_2, ..., P_{r-f}\}$ is an $(r-f)^*$ -container of $Q_r - F$ joining **e** to **q**. See Fig. 3(c) for illustration t = 2.

Remark 2. Suppose $\mathbf{b} = \mathbf{q}[0, 0]$. Since $\mathbf{q}[0, 0]$ is symmetric with respect to \mathbf{e} , we use the similar reason to find an $(r - f)^*$ -container of $Q_r - F$ joining \mathbf{e} to \mathbf{q} .

Case 2.2: $|F^{10}| \neq 0$. Obviously, $|F^{00}| \leq f - 1$. By induction, there exists an $(r - f - 1)^*$ -container $C = \{W_1, W_2, \dots, W_{r-f-1}\}$ of $Q_r^{00} - F^{00}$ joining **e** to $\mathbf{q}[0, 0]$ and we can write $W_k = \langle \mathbf{e}, \mathbf{x}_k, R_k, \mathbf{y}_k, \mathbf{q}[0, 0] \rangle$ for $1 \leq k \leq r - f - 1$. By Theorem 1, there exists a Hamiltonian path H of $Q_r^{10} - F^{10}$ joining the black vertex $\mathbf{e}[1, 0]$ to the white vertex $\mathbf{q}[1, 0]$. We revise the previously defined paths P_1 and P_{r-f} as follows:

$$P_{1} = \langle \mathbf{e}, \mathbf{x}_{1}, \mathbf{R}_{1}, \mathbf{y}_{1}, \mathbf{q}[0, 0], \mathbf{q}[0, 1], \mathbf{y}_{1}[0, 1], \\ \left(R_{1}^{01}\right)^{-1}, \mathbf{x}_{1}[0, 1], \mathbf{e}[0, 1], \mathbf{e}[1, 1], \mathbf{x}_{1}[1, 1], R_{1}^{11}, \\ \mathbf{y}_{1}[1, 1], \mathbf{q} \rangle; \quad \text{and} \\ P_{r-f} = \langle \mathbf{e}, \mathbf{e}[1, 0], H, \mathbf{q}[1, 0], \mathbf{q} \rangle.$$

Obviously, $\{P_1, P_2, \ldots, P_{r-f}\}$ is an $(r-f)^*$ -container of $Q_r - F$ joining **e** to **q**. See Fig. 3(d) for illustration. \Box

Theorem 4. Q_r is super laceable for any positive integer r. Moreover, Q_r is f-edge fault-tolerant super laceable for any $f \leq r - 2$.

Proof. By Theorem 1, Q_r is 1*-laceable. By Theorem 2, Q_r is r^* -laceable. Assume that $r \ge 3$ and $2 \le i \le r - 1$. We arbitrarily choose an faulty edge set *F* with |F| = r - i. By Theorem 3, $Q_r - F$ is i^* -laceable. Thus Q_r is i^* -laceable.

Therefore, Q_r is super laceable for any positive integer r. For similar reason, Q_r is f-edge fault-tolerant super laceable for any $f \leq r - 2$. \Box

References

- [1] M. Albert, R.E.L. Aldred, D. Holton, On 3*-connected graphs, Australasian J. Combin. 24 (2001) 193–208.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
- [3] D.F. Hsu, On container width and length in graphs, groups and networks, IEICE Trans. Fundamental E77-A (1994) 668–680.
- [4] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
- [5] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 95–115.
- [6] C.H. Tsai, J.M. Tan, T. Liang, L.H. Hsu, Fault-tolerant Hamiltonian laceability of hypercubes, Inform. Process. Lett. 83 (2002) 301–306.