
RoVegas: a router-based congestion avoidance mechanism for TCP Vegas

Yi-Cheng Chana,*, Chia-Tai Chanb, Yaw-Chung Chena

aDepartment of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan
bTelecommunication Laboratories, Chunghwa TeIecom Company Ltd, Taipei 106, Taiwan

Received 19 September 2003; revised 12 June 2004; accepted 23 June 2004

Available online 23 July 2004

Abstract

Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss

that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas

suffers several problems that inhere in its congestion avoidance mechanism, these include issues of rerouting, persistent congestion, fairness,

and network asymmetry. In this paper, we propose a router-based congestion avoidance mechanism (RoVegas) for TCP Vegas. By

performing the proposed scheme in routers along the round-trip path, RoVegas can solve the problems of rerouting and persistent congestion,

enhance the fairness among the competitive connections, and improve the throughput when congestion occurs on the backward path.

Through the results of both analysis and simulation, we demonstrate the effectiveness of RoVegas.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With the fast growth of Internet traffic, how to efficiently

utilize network resources is essential to a successful

congestion control. Being a widely used end-to-end transport

protocol on the Internet, transmission control protocol (TCP)

has several implementation versions (i.e. Tahoe, Reno,

Vegas,.) which intend to improve network utilization.

Among these TCP variants, there are two notable

approaches. One is Reno [1] which has been widely deployed

on the Internet; the other is Vegas [2,3] with a claim of

37–71% throughput improvement over Reno was achieved.

TCP Reno uses a window-based flow control mechanism.

Its window-adjustment algorithm consists of three phases;

slow-start, congestion avoidance, and fast retransmit and

recovery. A connection begins with the slow-start phase.

Upon receiving an acknowledgement packet (ACK), the

congestion window size (CWND) is increased by one packet.

Since the CWND in the slow-start phase expands exponen-

tially, the packets sent at this increasing rate would quickly
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lead to network congestion. To avoid this, the congestion

avoidance phase begins when CWND reaches the slow-start

threshold (SSTHRESH). In congestion avoidance phase, the

CWND is added by 1/CWND packet every once receiving an

ACK, this makes window size grow linearly. The process

continues until a packet loss is detected.

To estimate the available bandwidth in the network,

TCP Reno uses packet loss as an indicator for congestion.

When congestion is detected by reception of duplicate

ACKs, the fast retransmit and recovery algorithm is

performed. The source retransmits the lost packet immedi-

ately without waiting for a coarse-grained timer to expire.

In the meantime, the SSTHRESH is set to half of CWND,

which is then set to SSTHRESH plus the number of

duplicate ACKs. The CWND is increased by one packet

every once receiving a duplicate ACK. When the ACK of a

retransmitted packet is received, the CWND is set to

SSTHRESH and the source reenters the congestion

avoidance phase. If congestion is detected by a retransmis-

sion timeout, the SSTHRESH is set to half of CWND and

then the CWND is reset to one and finally the source

restarts from slow-start phase.

The fast retransmit and recovery algorithm of TCP Reno

allows the connection to quickly recover from isolated
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packet losses. However, when multiple packets are dropped

from a window of data, Reno may suffer serious

performance problems. Since Reno retransmits at most

one dropped packet per round-trip time (RTT), and further

the CWND may be decreased more than once due to

multiple packet losses occurred during one RTT interval. In

this situation, TCP Reno operates at a very low rate and

loses a significant amount of throughput. TCP New Reno [4]

is a modification to the fast retransmit and recovery. In TCP

New Reno, a sender can recover from multiple packet losses

without having to time out. TCP with selective acknowl-

edgement (SACK) options [5] also has been proposed to

efficiently recover from multiple packets loss. However, the

additive increase and multiplicative decrease approach

(AIMD) of Reno leads to periodic oscillations in the

congestion window size, round-trip delay, and queue length

of the bottleneck node. Recent works have shown that the

oscillation may induce chaotic behavior into the network

thus adversely affects overall network performance [6,7].

TCP Vegas employs a fundamentally different conges-

tion avoidance mechanism. It uses the difference between

the expected and actual throughputs to estimate the

available bandwidth in the network. The idea is that when

the network is not congested, the actual throughout will be

close to the expected throughput. Otherwise the actual

throughput will be smaller than the expected throughput.

TCP Vegas uses the difference in throughput to gauge the

congestion level in the network and update the CWND

accordingly. As a result, TCP Vegas is able to detect

network congestion in the early stage and successfully

prevents periodic packet loss that usually occurs in Reno.

Many studies have demonstrated that Vegas outperforms

Reno in the aspects of overall network utilization [2,3,8],

stability [9,10], fairness [9,10], and throughput [2,3,6,8].

Although Vegas is superior to Reno in the aforemen-

tioned aspects, it suffers some problems that inhere in its

congestion avoidance scheme, these include issues of

rerouting [9], persistent congestion [9], fairness [10–12],

network asymmetry, [13–15], and incompatibility between

Reno and Vegas [9,16,17]. All these problems may be

obstacles for Vegas to achieve a success.

In this work, we propose a router-based congestion

avoidance mechanism for TCP Vegas (abbreviated as

RoVegas hereafter). Through the proposed mechanism

performed in routers along the round-trip path, RoVegas

may solve the problems of rerouting and persistent

congestion, enhance the fairness among the competitive

connections, and improve the throughput when congestion

occurs on the backward path. Based on the results of

analysis and simulation, we demonstrate the effectiveness of

RoVegas.

The rest of this paper is organized as follows. Section 2

describes Vegas and its problems. Section 3 discusses the

RoVegas. In Section 4, related work is reviewed. Sections 5

and 6 present the analysis and simulation results, respect-

ively. Lastly, we conclude this work in Section 7.
2. TCP Vegas and its problem statements
2.1. TCP Vegas

Compared with Reno, TCP Vegas adopts a more

sophisticated bandwidth estimation scheme that tries to

avoid rather than to react to congestion. Vegas uses the

measured RTT to accurately calculate the amount of data

packets that a source can send. The congestion window is

updated based on the currently executing phase.

During the congestion avoidance phase, TCP Vegas does

not continually increase the congestion window. Instead, it

tries to detect incipient congestion by comparing the actual

throughput to the expected throughput. Vegas estimates a

proper amount of extra data to be kept in the network pipe

and controls the CWND accordingly. It records the RTT and

sets BaseRTT to the minimum of ever measured RTTs. The

amount of extra data is between two thresholds a and b, as

shown in the following:

a% ðExpected KActualÞ!BaseRTT %b; (1)

where Expected throughput is the current CWND divided by

BaseRTT, and Actual throughput represents the current

CWND divided by the newly measured RTT. The congestion

window is kept constant when the amount of extra data is

between a and b. If the amount is greater than b, it is taken

as a sign for incipient congestion, thus the CWND will be

reduced. On the other hand, if the amount is smaller than a,

the connection may be under utilizing the available

bandwidth. Hence, the CWND will be increased.

During the slow-start phase, Vegas is similar to Reno

that allows a connection to quickly ramp up to the

available bandwidth. However, to ensure that the sending

rate will not increase too fast, Vegas doubles the size of

its congestion window only every other RTT. A similar

congestion detection mechanism is applied during the

slow-start to decide when to switch the phase. If the

estimated extra data is greater than g, Vegas leaves

the slow-start phase, reduces its CWND by 1/8 and enters

the congestion avoidance phase.

To retransmit the lost packets quickly and adjust the

congestion window correctly, Vegas extends TCP Reno’s

fast retransmission strategy. Vegas measures the RTT for

every packet sent based on fine-grained clock values. Using

the fine-grained RTT measurements, a timeout period for

each packet is computed. When a duplicate ACK is

received, Vegas will check whether the time-out period of

the oldest unacknowledgement packet is expired. If so, the

packet is retransmitted. When a non-duplicate ACK that is

the first or second ACK after a fast retransmission is

received, Vegas will again check for the expiration of the

timer and may retransmit another packet. Moreover, in case

of multiple packet losses occurred during one RTT that

trigger more than one fast retransmission, the congestion

window will be reduced only for the first retransmission.
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2.2. Problem statements of Vegas

In Vegas, there are several problems inhere in its

congestion avoidance mechanism that may have a serious

impact on the performance. The problems are summarized

as follows.
2.2.1. Rerouting

Since Vegas estimates the BaseRTT to compute the

expected throughput and adjust its window size accordingly.

Thus it is very important to estimate the quantity accurately

for Vegas connections. Rerouting may cause a change of the

fixed delay1 that could result in substantial throughput

degradation. When the route of a connection is changed, if

the new route has a shorter fixed delay, it will not cause any

serious problem for Vegas because most likely some

packets will experience shorter RTT, and BaseRTT will be

updated eventually. On the other hand, if the new route for

the connection has a longer fixed delay, it would be unable

to tell whether the increased RTT is due to network

congestion or route change. The source host may mis-

interpret the increased RTT as a signal of congestion in the

network and decrease its window size. This is just the

opposite of what the source should do.
2.2.2. Persistent Congestion

Persistent congestion is another problem caused by the

incorrect estimation of BaseRTT [9]. Overestimation of

the BaseRTT in Vegas may cause a substantial influence on

the performance. Suppose that a connection starts while

many other active connections also exist, the network is

congested and the packets are accumulated in the bottle-

neck. Then, due to the queuing delay caused by packets of

other connections, the packets from the new connection may

experience a RTT that are considerably larger than the actual

fixed delay along the path. Hence, the window size of the

new connection will be set to a value such that its expected

amount of extra data lies between a and b; in fact, there may

be much more extra data in the bottleneck queue due to the

inaccurate estimation of the fixed delay. This scenario will

repeat for each newly added connection, and it may cause

the bottleneck node to remain in a persistent congestion.

Persistent congestion is likely to happen in TCP Vegas due

to its fine-tuned congestion avoidance mechanism.
2.2.3. Unfairness

Different from TCP Reno, Vegas is not biased against

the connections with longer RTT [9,10]. However, there is

still unfairness comes with the nature of Vegas. According

to the difference between the expected and actual

throughputs, a Vegas source attempts to maintain an
1 The fixed delay is the sum of propagation delay and packet processing

time along the round-trip path. In other words, the fixed delay is the RTT

without queuing delay.
amount of extra data between two thresholds a and b by

adjusting its CWND.

The range between a and b induces uncertainty to the

achievable throughput of connections. Since Vegas may

keep different amount of extra data in the bottleneck even

for the connections with the same round-trip path. Thus, it

prohibits better fairness achievement among the competi-

tive connections.

Furthermore, the inaccurate computation of expected

throughput may also lead to unfairness. Recall that the

computation of expected throughput is based on the

measurement of BaseRTT. If Vegas connections cannot

estimate the BaseRTT accurately, it may affect the fairness

achievement. When a new connection starts sending data

while many other connections are also active, it may cause

overestimation of the fixed delay and result in unfair

distribution of bandwidth among the Vegas connections.
2.2.4. Network asymmetry

Based on the estimated extra data kept on the bottleneck,

Vegas updates its congestion window to avoid congestion as

well as to maintain high throughput. However, a roughly

measured RTT may lead to a coarse adjustment of CWND. If

the network congestion occurs in the direction of ACK

(backward path), it may underestimate the actual throughput

and cause an unnecessary decreasing of the CWND. Ideally,

congestion in the backward path should not affect the

network throughput in the forward path, which, is the data

transfer direction. Obviously, the control mechanism must

distinguish whether congestion occurs in the forward path or

not and adjust the CWND accordingly.

Some prevalent networking technologies, with asymme-

try network characteristics, such as asymmetric digital

subscriber line (ADSL), cable modem, and satellite-based

networks, greatly increase the possibilities of backward path

congestion. In these networks, it is very likely that the

capacity of the forward direction is larger than that of

backward direction. Both Reno and Vegas may suffer severe

performance degradation in the case of backward path

congestion, especially for Vegas [15]. Therefore, how to

amend the deficiency of TCP Vegas in such situation

becomes an important issue.
2.2.5. Incompatibility

TCP Vegas adopts a proactive congestion avoidance

scheme, it reduces its congestion window before an actual

packet loss occurs. TCP Reno, on the other hand, employs

a reactive congestion control mechanism. It keeps

increasing its congestion window until a packet loss is

detected. Researchers [9,16,17] have found that when

Reno and Vegas perform head-to-head, Reno generally

steals bandwidth from Vegas. This incompatibility

between Vegas and Reno depress the adoption of Vegas

on the Internet.
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3. TCP RoVegas

From the above discussion, we can find that the coarse

estimation of fixed delay along the round-trip path,

BaseRTT, results in problems such as issues of rerouting,

persistent congestion, and unfairness. A Vegas source is

unable to distinguish whether congestion occurs in the

forward path or not, this further leads to unnecessary

throughput degradation when the congestion occurs on the

backward path. In this work, we propose a router-based

congestion avoidance mechanism (RoVegas) for TCP

Vegas to deal with these problems. The details of the

proposed mechanism are described as follows.
3.1. Proposed mechanism

TCP Vegas estimates a proper amount of extra data to be

kept in the network pipe and controls the CWND

accordingly. The amount is between two thresholds a and

b as shown in Eq. (1). When backward congestion occurs,

the increased backward queuing time will affect the Actual

throughput and enlarge the difference between the Expected

throughput and Actual throughputs. It results in decreasing

the CWND. Since the network resources in the backward

path should not affect the traffic in the forward path, it is

unnecessary to reduce the CWND when only backward

congestion occurs.

A measured RTT can be divided into four parts; forward

fixed delay (i.e. propagation delay and packet processing

time), forward queuing time, backward fixed delay, and

backward queuing time. To utilize the network bandwidth

efficiently, we redefine the Actual throughput as

Actual0 Z
CWND

RTT KQTb

; (2)

where RTT is the newly measured RTT, QTb is the backward

queuing time, and CWND is the current CWND. Conse-

quently, the Actual 0 is a throughput that can be achieved if

there is no backward queuing delay along the path.

To realize our scheme, we define a new IP option named

accumulate queuing time (AQT) to collect the queuing time

along the path. According to the general format of IP

options described in Ref. [20], the fields of an AQT option

are created as in Fig. 1. The option type and length fields

indicate the type and length of this IP option. The AQT field

expresses the accumulated queuing time that a packet
Fig. 1. Fields of an AQT option.
experienced along the route path. The AQT-Echo field

echoes the accumulated queuing time value of an AQT

option that was sent by the remote TCP.

A probing packet is a normal TCP packet (data or ACK)

with AQT option in its IP header. When a RoVegas source

sends out a probing packet, it sets the AQT field to zero. An

AQT-enabled router (i.e. a router that is capable of AQT

option processing) adds the queuing delay of a received

probing packet to the AQT field. The queuing time is

computed based on the queuing disciplines. The details

regarding how to compute the queuing time of each received

probing packet in various queuing disciplines is beyond the

scope of this paper.

Whenever a RoVegas destination acknowledges a

probing packet, it inserts an AQT option into the ACK.

The AQT field is set to zero, and the AQT-Echo field is set

to the value of the AQT field of the received packet.

Through the AQT-enabled routers along the round-trip

path, a RoVegas source is able to obtain both the forward

queuing time (the value of AQT-Echo field) and backward

queuing time (the value of AQT field) from the received

probing packet. Moreover, for each probing packet

received by a RoVegas source, the BaseRTT can be

derived as follows:

BaseRTT Z RTT K ðAQT CAQT-EchoÞ: (3)

Notice that, the derived BaseRTT of a connection will be

identical for each probing packet received when both the

route and size of the probing packets are fixed. The derived

BaseRTT of RoVegas represents the actual fixed delay

along the round-trip path, if the path of a connection is

rerouted and the fixed delay is changed, the newly derived

BaseRTT may reflect the rerouting information. As a result,

the issue of rerouting can be solved. Furthermore, since

each connection of RoVegas is able to measure the fixed

delay without bias, the problem of persistent congestion

can be avoided and the fairness among the competitive

connections can also be improved.

To avoid the unnecessary reduction of CWND, the

proposed router-based congestion avoidance mechanism is

described as follows:
†
 Derive the Expected throughput that is defined as the

current CWND divided by BaseRTT.
†
 Calculate the Actual 0 as the current CWND divided by

the difference between the newly measured RTT and

backward queuing time.
†
 Let DiffZ(ExpectedKActual 0)!BaseRTT
†
 Let wcur and wnext be the CWNDs for the current RTT and

the next RTT, respectively. The rule for congestion

window adjustment is as follows:

wnext Z

wcur C1; if Diff !a

wcur K1; if Diff Ob

wcur; if a%Diff %b

:

8><
>: (4)
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3.2. Implementation issue

RoVegas relies on probing packets to probe the network

status, therefore, how often a probing packet will be sent for

a connection is an important issue. Since the window

adjustment of RoVegas is performed on per-RTT basis.

Inserting probing packets frequently makes the proposed

mechanism robust against the network congestion, however,

it also imposes more overhead on RoVegas. For the

overhead induced by the probing packets, we consider

the worst case that every packet with the AQT option. If the

data packet size is 1500 bytes, which is the maximum

transmission unit of Ethernet, the overhead ratio of data

packets is 8/1500, which is about 0.53%. In the practical

implementation, the number of the probing packets per-RTT

can be dynamically adjusted depends on the network status.

That is, the more severe the backward congestion is, the

more frequent the AQT option will be inserted into a data

packet. Through this way, the overhead induced by the AQT

option can be reduced to an even smaller amount.

We make every packet to be a probing packet and

demonstrate that the proposed mechanism is effective to

improve the performance of TCP Vegas by the results of

both analysis and simulation shown in Sections 5 and 6.
4. Related work

Congestion control for TCP is an active research area.

Since Brakmo et al. [2,3] proposed TCP Vegas in 1994 with

claiming to achieve higher throughput and one-fifth to one-

half the losses of TCP Reno, there have been quite a lot of

studies focusing on the TCP Vegas.

Ahn et al. [8] performed some live Internet experiments

with TCP Vegas. They reproduced claims in Refs. [2,3] with

varying background traffic and concluded that Vegas indeed

offers improved throughput of at least 3–8% over Reno.

TCP Vegas is also found to retransmit fewer packets and to

have a lower average and a lower variance of RTT than

Reno.

By using the fluid model and simulations, Mo et al. [9]

show that Vegas is not biased against connections with

longer RTT like Reno does. It achieves better fairness of

bandwidth sharing among the competitive connections with

different propagation delays. However, they also pointed

out that TCP Vegas does not receive a fair share of

bandwidth in the presence of a TCP Reno connection.

Two problems of Vegas that could have serious impact

on its performance are also described in Ref. [9]. One is the

rerouting problem. Rerouting may lead to the change of

fixed delay and therefore bring about inaccurate estimation

of BaseRTT. This may erroneously affect the adjustment of

the CWND. The other is the persistent congestion, which is

still caused by the inaccurate estimation of BaseRTT.

Hasegawa et al. [10] focus on the fairness and stability of

the congestion control mechanisms for TCP. They use
an analytical model to derive that TCP Vegas can offer

higher performance and much stable operation than Reno.

However, because of the default values of a and b in the

implementation, connections of Vegas could not share the

total bandwidth in a fair manner. Thus Hasegawa et al.

propose an enhanced Vegas which sets a equal to b to

remove the uncertainty induced by the range between

a and b.

Through the analytical study and simulation, Boutremans

et al. [11] show that in addition to the setting of a and b, the

fairness of TCP Vegas critically requires an accurate

estimation of propagation delay. Nevertheless, they think

there is no obvious way to achieve this.

To prevent the performance degradation of TCP Vegas in

asymmetric networks, Elloumi et al. [13] proposed a

modified algorithm. It divides a RTT into a forward trip

time and a backward trip time in order to remove the effects

of backward path congestion. However, it seems unlikely to

work without clock synchronization.

Another mechanism for solving the issue of Vegas in

asymmetric networks is proposed in Refs. [14,15]. Fu et al.

employ an end-to-end method to measure the actual flow rate

on the forward path at a source of TCP Vegas. Based on the

differences between the expected rate along the round-trip

path and the actual flow rate on the forward path, the source

adjusts the CWND accordingly. However, in a backward

congestion environment the self-clocking behavior of TCP

will be disturbed. Then the TCP traffic with bursty nature

will make the source hard to decide the measure interval

between two consecutive tagged packets. Moreover, the

actual flow rate on the forward path that measured by the

source may be usually greater than the expected rate along

the round-trip path. It may lead to an over-increased CWND,

and causes congestion on the forward path.

To enhance the throughput of Vegas when it performs

with TCP Reno head-to-head, Lai [16] suggests two

approaches, one is using the random early detection (RED)

mechanism in the router, the other is adjusting parameters of

Vegas. Both may improve the performance of Vegas.

Feng et al. [17] show that the default configuration of

Vegas is indeed incompatible with TCP Reno. However,

with a careful analysis of how Reno and Vegas use buffer

space in the routers, Vegas and Reno can be compatible with

one another if Vegas is configured properly. Nevertheless,

no mechanism has been proposed to configure Vegas

automatically.
5. Performance analysis

The performance of TCP Vegas in forward path

congestion environments has been studied and modelled

[18,19]. In this section, we present a steady-state perform-

ance analysis of both Vegas and RoVegas when congestion

occurs in backward path. By investigating the queue length

of the bottleneck buffer through the analytical approach, we



Fig. 2. Network model for analysis.

Fig. 3. Window size and bottleneck queue length of Vegas with kZ0.5.

Fig. 4. Window size and bottleneck queue length of Vegas with kZ2.
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can clarify the essential nature of these two mechanisms.

The network model used in the analysis is depicted in Fig. 2.

Assuming the source S1 is a greedy source. The

destination D1 generates an ACK immediately upon

receiving a data packet sent from S1. Either the forward or

backward link between two routers R1 and R2 is the

bottleneck along the path. The forward link between two

routers has a capacity of uf (data packets per second) and

backward link has a capacity ub (ACKs per second). To

facilitate the analysis as the backward path is congested, a

normalized asymmetric factor k, kZuf/ub, is introduced

[21]. The network is defined as asymmetric if the

asymmetric factor is greater than one.

The service discipline is assumed to be First-In-First-Out

(FIFO). Let t be the BaseRTT (without any queuing delay),

lf and lb be the mean numbers of packets queued in the

forward and backward bottleneck buffer, respectively. Since

the window size of Vegas converges to a fixed value in

steady state, the mean number of packets queued in

bottleneck buffer should also be converged to a fixed level

[10].

5.1. Analysis on Vegas

The congestion avoidance mechanism of Vegas shown in

Eq. (1) can be rewritten as below:

RTT

RTT KBaseRTT
a%CWND%

RTT

RTT KBaseRTT
b: (5)

The BaseRTT and RTT can be expressed as follows:

BaseRTT Z t; (6)

RTT Z t C
lf

uf

C
lb

ub

: (7)

After substitution of Eqs. (6) and (7), Eq. (5) can be

rewritten as:

tufub C lfub C lbuf

lfub C lbuf

a%CWND%
tufub C lfub C lbuf

lfub C lbuf

b:

(8)

To elaborate on the following analysis, we now observe the

TCP Vegas behavior as shown in Figs. 3 and 4. A single

Vegas connection runs on a network in which the round-trip

propagation delay is 40 ms, bottleneck queue size is 10

packets, and forward bottleneck capacity is 200 packets/s.

Figs. 3 and 4 show the evolutions of window size and
bottleneck queue length with different normalized asym-

metric factor k. When the Vegas connection runs on

the symmetric network (kZ0.5), its stable window size

(13 packets) is larger than that of it runs on the asymmetric

network (kZ2). The forward queue length is stable at three

packets and no packet is queued in the backward bottleneck.

On the contrary, as the Vegas connection runs on the

asymmetric network, the packets is queued in the backward

bottleneck.
5.1.1. Symmetric network (k%1).

If the bottleneck is in the forward path, packets will be

accumulated in the forward bottleneck queue and no packets

will be queued in the backward path, that is lbZ0, thus Eq. (8)

can be simplified as:

tuf C lf

lf
a%CWND%

tuf C lf

lf
b: (9)

Since S1 is the only traffic source in the network thus it may

occupy all the bandwidth of the bottleneck. Based on the fluid

approximation, the CWND of S1 can be obtained through the

bandwidth-delay product of the bottleneck as follows:

CWND Z uf ! t C
lf
uf

� �
: (10)
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By substituting Eq. (10) into Eq. (9), we have

a% lf %b: (11)

The throughput T of S1 can also be derived from Eqs. (7) and

(10) as:

T Z
CWND

RTT
Z uf : (12)

From Eqs. (11) and (12), we observe that when the bottleneck

appears in the forward path, the mean number of packets

queued in forward bottleneck buffer is kept stable between a

and b, and the link bandwidth is always fully utilized in steady

state. This observation matches the design goal of Vegas.
5.1.2. Asymmetric network (kO1).

If the bottleneck exists in the backward path then the

queue of the backward bottleneck node will be built up and

no packets will be queued in the forward path, that is lfZ0,

therefore Eq. (8) can be rewritten as:

tub C lb

lb
a%CWND%

tub C lb
lb

b: (13)

Similar to the Eq. (10), the window size of S1 can also be

obtained by the bandwidth-delay product of the bottleneck

link:

CWND Z ub ! t C
lb
ub

� �
: (14)

By substituting Eq. (14) into Eq. (13), we have

a% lb%b: (15)

In the meantime, the throughput T of S1 can be derived from

Eqs. (7) and (14) as:

T Z
CWND

RTT
Z ub Z

uf

k
: (16)

From Eq. (15) we can find that, Vegas is unable to

distinguish whether congestion occurs in the forward path or

not. It keeps a quantity of extra data steady between a and b

on the backward path. This may lead to poor utilization of

forward path. As shown in Eq. (16), the throughput of S1 is

limited by the capacity of backward path. Notably, an ACK

in the backward path implies that a data packet has arrived

at its destination. Therefore, the throughput of S1 is uf/k

(data packets per second).
Fig. 5. Window size and bottleneck queue length of RoVegas with kZ2.
5.2. Analysis on RoVegas

The congestion avoidance mechanism of RoVegas can

be briefly expressed as follows:

a

BaseRTT
%

CWND

BaseRTT
K

CWND

RTT K lb
ub

%
b

BaseRTT
: (17)
By Eq. (17), we have the CWND of RoVegas as:

RTT

RTT KBaseRTT K lb
ub

a%CWND

%
RTT

RTT KBaseRTT K lb
ub

b: (18)

From Eqs. (6) and (7), Eq. (18) can be rewritten as:

tuf C lf

lf
a%CWND%

tuf C lf
lf

b: (19)

Since the result of Eq. (19) is identical to that of Eq. (9). If

the bottleneck is in the forward path (i.e. lbZ0), the

behavior of RoVegas will be same as Vegas. However, the

result of Eq. (19) reveals that the throughput of RoVegas in

the case of backward congestion is not simply limited by the

bandwidth of backward path as that of Vegas.

As shown in Fig. 5, when a RoVegas connection runs on

the asymmetric network (kZ2), its stable window size

(33 packets) is larger than that of a Vegas connection runs

on the same network as depicted in Fig. 4. RoVegas keeps a

stable queue length (two packets) in the forward bottleneck

and its backward bottleneck queue is always full.

Both Fig. 5 and Eq. (17) demonstrate that RoVegas

always attempts to maintain a proper amount of extra data in

the forward path regardless of where the congestion occurs.

However, TCP is a ‘self-clocking’ protocol, that is, it uses

ACKs as a ‘clock’ to strobe new packets into the network

[22]. Hence, as the backward path is congested, the rate of

data flow in the forward direction will be throttled in a

manner by the rate of ACK flow.

There exists a further restriction in Vegas that may limit

the growth of the congestion window. The congestion

window will not be increased if the source is unable to keep

up with, that is, the difference between the CWND and the

amount of outstanding data is larger than two maximum-

sized packets [23]. Be a variant of TCP Vegas, RoVegas

also complies with this restriction.

In an asymmetric network, for example kZ8, assuming

that in steady state the forward path can be fully utilized by



Fig. 6. A single bottleneck network topology for investigating throughputs

of Vegas and RoVegas when the congestion occurs on backward path.
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S1, it means that 7/8 of ACKs will be dropped in the

backward path. With TCP, the ACKs are cumulative [24],

that is, later ACKs carry all the information contained in

earlier ACKs. In this case, a survived ACK may represent

that eight data packets have arrived at the destination. Once

a survived ACK is received by the source, the difference

between the CWND and the amount of outstanding data is

eight packets. It will restrict the growth of the congestion

window. Actually, the forward path may not be fully

utilized by RoVegas with kZ8.

For an asymmetric network, if the dropping ratio of

ACKs reaches 2/3, the congestion window of RoVegas will

not be increased. Since for each ACK received by the

RoVegas source, the difference between the CWND and the

amount of outstanding data will be three packets. In such

situation, RoVegas enters the steady state and the growth of

congestion window stops. For each ACK received, the

RoVegas source may send three packets back-to-back.

Let F be the throughput ratio of RoVegas to Vegas (i.e.

FZ(throughput of RoVegas/throughput of Vegas)). In

asymmetric networks, we have the throughput relationship

of Vegas and RoVegas as follows:

1!F%3; ckO1: (20)

Note that, the throughput of RoVegas, contains the overhead

induced by the AQT option. So the actual throughput ratio

of RoVegas to Vegas should be slightly smaller than F. Eq.

(20) will be further verified by the following performance

evaluation.
Fig. 7. Throughput of Vegas in asymmetric networks.
6. Performance evaluation

In this section, we compare the performance of TCP

RoVegas with TCP Vegas by using the network simulator

ns-2 [25]. We show the performance results in backward

congestion environments, the bias experiments, the fairness

investigations among the competitive connections, and the

study of gradual deployment.

The FIFO service discipline is assumed. Every packet of

RoVegas is a probing packet. Whenever a throughput of

RoVegas is computed, the overhead induced by the AQT

option will be subtracted from the throughput. Several VBR

sources are used to generate backward traffic. These VBR

sources are exponentially distributed ON–OFF sources.

During ON periods, the VBR source sends data at 3.2 Mb/s.

Unless stated otherwise, the size of each FIFO queue used in

routers is 50 packets, the size of data packet is 1 KB, and the

sizes of ACKs are 40 and 48 bytes for Vegas and RoVegas,

respectively. To ease the comparison, we assume that the

sources always have data to send.

6.1. Throughput improvement

Improving the throughput of connection when the

congestion occurs in the backward path is one of the design
goals of RoVegas. In this subsection, we investigate the

throughputs of Vegas and RoVegas in two types of

backward congestion. One is the congestion caused by

network asymmetry, the other is the congestion caused by

additional backward traffic.

The first network topology for the simulations is shown

in Fig. 6. Sources, destinations, and routers are expressed as

Si, Di, and Ri, respectively. A source and a destination with

the same subscript value represent a traffic pair. The

bandwidth and propagation delay are 10 Mb/s and 1 ms for

each full-duplex access link, 1.6 Mb/s and 20 ms for the

connection link from R1 to R2, and Cb and 20 ms for the

connection link from R2 to R1, respectively. The Cb is set

based on the normalized asymmetric factor k. For example,

if kZ4 and the size of data packet and ACK are 1 KB and

40 bytes, respectively, then the Cb is set to 16 Kb/s.
6.1.1. Asymmetric networks

To evaluate the throughputs of Vegas and RoVegas in

asymmetric networks, different values of k are used. A source

S1 of either Vegas or RoVegas sends data packet to its

destination D1. The size of each FIFO queue used in routers is

10 packets. Figs. 7 and 8 exhibit the throughput performance

of Vegas and RoVegas in asymmetric networks, respectively.

By observing the results shown in Fig. 7, with the

increasing value of k from 2 to 32, the throughput of Vegas

degrades accordingly. As our analysis depicted in Eq. (16),

the throughput of Vegas in this scenario should be uf/k (data

packets per second). Obviously, the simulation results

conform to our previous analysis.

Comparing the results of Fig. 8 with that of Fig. 7, we can

find that the throughput of RoVegas is much greater



Fig. 10. Average throughput versus different backward traffic loads for

Vegas and RoVegas in the single bottleneck network topology.Fig. 8. Throughput of RoVegas in asymmetric networks.
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than that of Vegas. With kZ2, RoVegas maintains a

high throughput at 1587.2 Kb/s in which the backward

congestion seems not existing. The throughput ratios

of RoVegas to Vegas in steady state are about 2 and 3 for

kZ2,4 and kZ8,16,32, respectively. Notably, all the

simulation results shown in Figs. 7 and 8 are consistent

with our previous analysis.
6.1.2. Symmetric network with backward traffic

Asymmetric networks should not be the only reason

causing backward congestion. Actually, even in a sym-

metric network the backward congestion may still occur.

We use a VBR source with 1.44 Mb/s averaged sending rate

to examine the throughputs of Vegas and RoVegas

separately in the single bottleneck network as shown in

Fig. 6. The capacity of the backward bottleneck, Cb, is set to

1.6 Mb/s. A source of either Vegas or RoVegas is attached

to S1, and a VBR source is attached to S2. The S1 starts

sending data at 0 s, while S2 starts at 50 s. Fig. 9 depicts the

throughput comparison between Vegas and RoVegas.

As shown in Fig. 9, when the traffic source is Vegas only

(0–50 s), it achieves high throughput and stabilizes at

1.6 Mb/s. However, the performance of Vegas degrades

dramatically as the VBR source starts sending data. Although

the overhead induced by AQT option slightly lower
Fig. 9. Throughput comparison between Vegas and RoVegas with the

backward traffic load is 0.9 in the single bottleneck network topology.
the throughput of RoVegas (0.8%) during the preceding

50 s, nevertheless, RoVegas maintains a much higher

throughput than that of Vegas while the backward congestion

occurs. With the inference of the backward VBR traffic, the

average throughput of Vegas is 521 Kb/s and RoVegas is

1092 Kb/s. Since we use the same traffic pattern of the VBR

source while the throughput of Vegas or RoVegas is

examined. Thus there appear some synchronized fluctuations

of throughput between Vegas and RoVegas.

To evaluate the average throughputs of Vegas and

RoVegas with different backward traffic loads, we set the

VBR traffic loads to vary from 0 to 1. The traffic sources are

the same as the above descriptions but the sources of either

Vegas or RoVegas and VBR start at 0 s. The simulation

period is 200 s for each sample point. From the simulation

results shown in Fig. 10, we can find that when the backward

traffic load is not zero, RoVegas always achieves a higher

average throughout than Vegas. For example, as the back-

ward traffic load is 1 RoVegas achieves a 4.1 times higher

average throughput in comparison with that of Vegas.

In the parking lot configuration as shown in Fig. 11 we

use three VBR sources each with 1.28 Mb/s averaged

sending rate to examine the throughputs of Vegas and

RoVegas. The bandwidth and propagation delay of each

full-duplex access link and connection link are 10 Mb/s,

1 ms and 1.6 Mb/s, 10 ms, respectively. The source of either

Vegas or RoVegas are attached to S1, and three VBRs are

attached to S2–S4, respectively., The TCP source from either

Vegas or RoVegas starts sending data at 0 s, and then three

VBR sources from S2 to S4 successively enter the network

every 100 s.
Fig. 11. A parking lot network topology for investigating throughputs of

Vegas and RoVegas when the congestion occurs on the backward path.



Fig. 14. Network topology for studying the bias and fairness issues of Vegas

and RoVegas.

Fig. 12. Throughput comparison between Vegas and RoVegas with the

backward traffic load is 0.8 in the parking lot network topology.
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From the simulation results presented in Fig. 12 we can

observe that when the traffic source is TCP only (0–100 s)

both Vegas and RoVegas could fully utilize the bandwidth

(due to the overhead induced by AQT option, the throughput

of RoVegas is slightly lower than Vegas). However, as the

VBR sources successively enter the network, Vegas suffers

a serious throughput reduction. Under the same environ-

ment, RoVegas features a much better throughput perform-

ance compared with that of Vegas. The average throughput

ratio of RoVegas to Vegas during 100–200, 200–300, and

300–400 s are 2.00, 2.77, and 3.46, respectively.

The average throughputs of Vegas and RoVegas with

different backward traffic loads in the parking lot network

are also examined. The traffic sources of either Vegas or

RoVegas and three VBRs start at 0 s. The VBR traffic loads,

vary from 0 to 1 accordingly. From the simulation results

shown in Fig. 13, we can find that as the backward traffic

load is not zero, RoVegas always achieves a higher average

throughput than Vegas, especially, when the backward

traffic load is heavy. For example, as the backward traffic

load is 1, the average throughput ratio of RoVegas to Vegas

is 14.09.

Obviously, we have demonstrated that RoVegas signifi-

cantly improves the connection throughput when the

backward path is congested.
Fig. 13. Average throughput versus different backward traffic loads for

Vegas and RoVegas in the parking lot network topology.
6.2. Persistent congestion

As a connection starts when there exists many other

connections, the new connection may experience RTTs that

are considerably larger than the actual fixed delay along the

path. Thus the BaseRTT of this new connection will be

larger than it should be. Therefore the new connection will

put a larger amount of extra data than its expected amount

on the network. This bias may possibly drive the system to a

persistent congestion.

In this subsection, we study the bias of Vegas through

simulation. The simulation network topology is shown as in

Fig. 14 in which the bandwidth and propagation delay for

each full-duplex link are depicted.

Eight connections of Vegas from S1 to S8 successively

enter the network every 20 s. The a and b of Vegas are set to

1 and 3, respectively. Thus, the amount of extra data for

each connection should be kept between 1 and 3 packets.

From the results shown in Fig. 15, we can observe that when

the fourth connection of Vegas joins the network, the queue

length of the bottleneck increases to 15 packets. This

amount of extra data is larger than the expected maximum

amount (12 packets). Even worse as the eighth connection

goes into the network, the queue length of the bottleneck is

40 packets. That is, averagely each connection of Vegas

contributes five packets to the bottleneck. This situation will

become worse and worse when more connections enter the

network.

In contrast to the Vegas connections, each RoVegas

connection keeps a proper amount of extra data in
Fig. 15. Queue length of the forward. bottleneck for Vegas and RoVegas.



Fig. 16. Network topology for exploring the fairness issue of Vegas and

RoVegas, in which the traffic pairs are featured by different propagation

delay.
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the bottleneck. When the eighth connection of RoVegas

joins the network, the queue length of the bottleneck is 18

packets. Since each connection of RoVegas is able to derive

the fixed delay along the round-trip path, the bias of Vegas

no longer exists in RoVegas.

6.3. Fairness enhancement

Fairness is another important issue of Vegas. Although

Vegas is not biased against the connections with longer RTT

like Reno does, there is still unfairness occurred in Vegas. In

this subsection, we investigate the fairness metric of Vegas

and RoVegas. Two network topologies used in the

simulations are depicted in Figs. 14 and 16.

The first network topology for the simulation is shown in

Fig. 14, in which all traffic pairs features the same

propagation delay. Five connections of either Vegas or

RoVegas from S1 to S5 successively join the network every
Fig. 17. Fairness investigation of Vegas and RoVegas in which connections with
30 s. In order to remove the uncertainty induced by the

range between a and b, we set a equal to b in two simulation

scenarios. Fig. 17 shows the results of simulations.

From the simulation results of Vegas presented in

Fig. 17(a) and (b) we can see that no matter the values of

a and b equal or not, connections are unable to share the

bandwidth fairly. According to our previous discussion,

there are two criteria for achieving the fairness among the

competitive connections of Vegas. One is that the measured

BaseRTT must be precise enough. The other is that the

uncertainty induced by the range between a and b must be

removed. Connections in Fig. 17(a) do not meet both

criteria. Connections in Fig. 17(b) do not conform to the first

criterion. Therefore, both connections in these two figures

are unable to fairly share the bandwidth of the bottleneck.

Observing the results of RoVegas shown in Fig. 17(c)

and (d). Since connections in Fig. 17(c) do not meet the

second criterion of fairness, the throughputs of these

connections are not identical. Finally, connections in

Fig. 17(d) meet both criteria, hence, all the connections

share the bandwidth fairly.

The second network topology for exploring the fairness

issue of Vegas and RoVegas is depicted in Fig. 16, in which

traffic pairs are featured by different propagation delays.

The bandwidth and propagation delay of each full-duplex

access link and connection link are 10 Mb/s, 1 ms and

1.6 Mb/s, 10 ms, respectively.
the same propagation delay and successively enter the network every 30 s.



Fig. 18. Fairness investigation of Vegas and RoVegas in which connections with different propagation delay and enter the network at the same time.
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Five connections of either Vegas or Rovegas from S1 to

S5 start at the same time. Same as the previous simulations,

we set a equal to b in two simulation scenarios to remove

the uncertainty induced by the range between a and b.

Fig. 18 represents the results of simulations.

Since the Vegas connections in Fig. 18(a) do not meet

both criteria of fairness and those in Fig. 18(b) do not

conform to the first criterion. Therefore, the Vegas

connections could not share the bandwidth fairly with

each other no matter the values of a and b are equal or

not. The RoVegas connections in Fig. 18(c) do not obey

the second criterion, thus the bandwidth sharing of

bottleneck is unfair. However, the RoVegas connections

in Fig. 18(d) comply with both criteria, and hence the

fairness among the competitive connections is indeed

achieved.
Fig. 19. Throughput comparison between Vegas and RoVegas for only R2

is AQT-enabled in the parking lot network.
6.4. Gradual deployment

It cannot be expected that all routers on the Internet

are AQT-enabled while the AQT option is a newly

defined IP option. To consider the gradual deployment

issue, for each ACK received by a RoVegas source, the

BaseRTT should be measured as the following

pseudocodes:
if (the ACK is a probing packet)
BaseRTTtempZRTT–(AQTCAQT-Echo)

/* where RTT is the newly measured round-trip time */

if (BaseRTTtemp!BaseRTT)
BaseRTTZBaseRTTtemp
else /* the ACK is not a probing packet) */
if (RTT!BaseRTT)

BaseRTTZRTT
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If all bottleneck routers along the round-trip path are not

AQT-enabled, RoVegas may behave like Vegas. Since

RoVegas cannot obtain the backward queuing time (QTb) to

reduce the impacts of backward congestion, and may not

estimate a precise BaseRTT to enhance the fairness and

solve the persistent congestion. However, we try to explore

whether a single AQT-enabled router on the end-to-end path

may achieve the benefits from the RoVegas mechanism.

A parking lot network as shown in Fig. 11 is used to

examine the throughputs of Vegas and RoVegas separately,

here only R2 is AQT-enabled. Three VBR sources each with

1.28 Mb/s averaged sending to generate backward traffic. A

source of either Vegas or RoVegas from S1, and three VBRs

from S2 to S4 start sending data at 0 s. Despite only one

AQT-enabled router R2 located on the routing path, we can

find that RoVegas still maintains a higher throughput than

that of Vegas, as depicted in Fig. 19. The simulation results

imply that the proposed mechanism is amenable to gradual

deployment for reducing the impacts of backward conges-

tion. This feature may encourage the gradual adoption of

RoVegas on the Internet.
7. Conclusion

In this research, we propose a router-based congestion

avoidance mechanism, RoVegas, for TCP Vegas. Compar-

ing with other previous studies, RoVegas provides a more

effective way to solve the problems of rerouting and

persistent congestion, to enhance the fairness among the

competitive connections, and to improve the throughput

when congestion occurs on the backward path. Through

both analysis and simulation, the effectiveness of RoVegas

has been shown. Nevertheless, there is still an issue that

needs more attentions. It is enhancing the throughput of

Vegas when it performs with Reno head-to-head. Therefore,

how to enable compatibility between Reno and Vegas

would be our future work.
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