Face selectivity in the reactions of 2,4-disubstituted adamantanes and their modification by inclusion in $\boldsymbol{\beta}$-cyclodextrin solutions

Jean-Ho Chu, ${ }^{\text {a }}$ Wan-Sheung Li, ${ }^{\mathrm{b}}$ Ito Chao ${ }^{\mathrm{b}, *}$ and Wen-Sheng Chung ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC
${ }^{\mathrm{b}}$ Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC

Received 27 April 2004; revised 9 July 2004; accepted 21 July 2004

Abstract

Sodium borohydride reduction reactions on 4-X-adamantan-2-ones (where $\mathrm{X}=$ ethyleneketal 11, ethylenethioketal 12, and methylene 15) were studied, which gave Z-alcohols 16 and 17 (from en-face attack) as the predominant products for ketones $\mathbf{1 1}$ and 12, but gave $1: 1$ mixture of Z - and $E-\mathbf{1 8}$ alcohols for ketone $\mathbf{1 5}$. The en/zu face selectivity of $\mathbf{1 5}$ in sodium borohydride reduction was enhanced to $32 /$ 68 in β-CD solution. Both 1,3-dipolar addition and dichlorocarbene addition reactions on 4-ethyleneketal-2-methyleneadamantane 13 underwent again predominant $e n$-face attack to give products in an E / Z ratio of $>99: 1$ and $92: 8$, respectively. The exceptional high $z u$-face selectivity on the dichlorocarbene addition reaction of 15 may be explained by a temporal complexation between the carbene and the C_{4}-oxo group. In the epoxidation reaction of $\mathbf{1 3}$ and $\mathbf{1 5}$ the $z u$-face attack products were favored despite their steric congestions suggesting that hydrogen bonding interaction between the peroxide reagent and the C_{4}-oxo or 4-ethyleneketal is involved. © 2004 Elsevier Ltd. All rights reserved.

Abstract

1. Introduction

Many experimental probes have been devised to identify the various steric and electronic factors that influence π-facial selectivity in nucleophilic, electrophilic, and cycloaddition reactions, among them, sterically unbiased systems offer intrinsic advantage in isolating and evaluating electronic effects. ${ }^{1-4}$ Relatively fewer studies have been reported on the reactions of 4 -substituted adamantan-2-ones $\mathbf{1}$ - and 2-X comparing to the very popular and more thoroughly studied 5 -substituted adamantan-2-ones $\mathbf{3}-\mathbf{X}$. One barrier for using 4 -substituted-adamantan-2-ones $\mathbf{1}$ - and $\mathbf{2 - X}$ is the multistep syntheses involved in the preparation of these probes. Furthermore, an axial (but not equatorial) 4-substituent is expected to have a strong steric influence on the chemical reactivity of a nearby trigonal center; rendered it difficult in studying pure electronic effects. Despite the difficulties involved, there are some scattered reports ${ }^{5,6}$ on the face selectivity of 4 -substituted adamantanes.

[^0]

1-X

2-X

3-X

The steric effect of an axial substituent makes itself felt with even the smallest fluoro substituent: sodium borohydride attacks 1-F exclusively at the en face to give the pure diaxial alcohol 4-F. Similar data were found for the reduction of 1-Br. ${ }^{5,6}$ An equatorial fluoro substituent in 2-F, however, give the diequatorial alcohol 5-F and isomer 6-F in a ratio of 67:33 which resembles the face selectivity in 3-F. ${ }^{1 a}$ In the sodium borohydride reduction of 7, adamantan-2-one with two equatorial β-bromosubstituents, a higher face selectivity was found $(\mathbf{8}: 9=86: 14)$ and the results were reconciled with Cieplak's model (see Chart 1). ${ }^{\text {1a,5 }}$

Adamantane derivatives have received considerable attention because of their diverse biological activity; ${ }^{7}$ especially when substituted with spiro-cyclopropane or spiro-pyrrolidine groups, they are known to have antiviral activity. ${ }^{7 \mathrm{c}} \mathrm{We}$ report here facile syntheses of some 2,4-disubstituted adamantanes 11-15 and face selectivity studies on these probes that yielded various spiro acetals, cyclopropanes, oxiranes, and isoxazolines. Despite the difficulties in

Chart 1.
dissecting electronic effects from these sterically biased probes, we found evidences to support 'neighboring group participation' in some of the reactions, furthermore, an unexpected syn-face enhancement in sodium borohydride reduction reactions of a $\mathbf{1 5} \cdot \beta$-CD complex is observed.

2. Results and discussion

Adamantane-2,4-dione $\mathbf{1 0}$ was first synthesized by Wynberg 8 in 1968 and latter by McKervey ${ }^{9}$ and Duddeck ${ }^{10}$ all through multiple-step syntheses. In 1985 Gilbert reported ${ }^{1 \mathrm{a}}$ a direct oxidation of adamantan-2-one $3-\mathrm{H}$ by CrO_{3} in acetic anhydride gave $\mathbf{1 0}$ in 20% yield. We followed the procedures by Gilbert and obtained a good

Scheme 1.
yield (typical yields are in $37-50 \%$ range) of $\mathbf{1 0} .^{11 \mathrm{~b}}$ Compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ were prepared through the protection of carbonyl group by ethylene glycol and 1,2-ethanedithiol, respectively. Compounds $\mathbf{1 3}$ and $\mathbf{1 4}$ were prepared in high yields by the Wittig reaction of $\mathbf{1 1}$ and 12, respectively. The acid catalyzed deprotection of $\mathbf{1 3}$ gave $\mathbf{1 5}$ in 85% yield. The synthetic pathways are outlined in Scheme 1.

Sodium borohydride (or LAH) reduction of 4-ketaladaman-tan-2-one $\mathbf{1 1}$ or 4-thioketal-adamantan-2-one 12, through en-face attack by hydride, gave Z-alcohols (Z-16 or Z-17) as the only products. On the other hand, the reduction of 4-methyleneadamantan-2-one $\mathbf{1 5}$ gave Z - and $E-\mathbf{1 8}$ alcohols as a $1: 1$ mixture (Scheme 2 and Table 1). The reduction of $\mathbf{1 1}$ that led to $Z-\mathbf{1 6}$ as the only product has been reported in literature. ${ }^{12 a}$ Similarly, the major reduction product of thioketal-12 is expected to be $Z-\mathbf{1 7}$ due to severe steric hindrance caused by the 4-thioketal group. The configuration of the reduction products Z - and $E-\mathbf{1 8}$ can be easily judged from their ${ }^{1} \mathrm{H}$ NMR spectra where the 4-methyleneprotons show two doublets (AB pattern) in Z-18 but a singlet in $E-18$ due to the magnetic anisotropy effect exerted by the 2-hydroxy group. Furthermore, the structure of Z-18 can be independently synthesized from the acid-catalyzed deprotection of $\mathbf{Z - 1 6}$ to $\mathbf{Z - 1 9}$ followed by a Wittig reaction ${ }^{12 \mathrm{~b}}$ to give $Z-18$ exclusively (see Scheme 3). Thus, 4-methylene group seems to play no effect on the reduction

Table 1. Sodium borohydride and lithium aluminum hydride reduction reactions of 4 -substituted-adamantan-2-ones 11, 12, and $\mathbf{1 5}$

Compound	Reaction conditions	Z / E ratios $^{\text {b }}$	Isolated yield, $\%$
$\mathbf{1 1}$	$\mathrm{NaBH}_{4} / \mathrm{MeOH}$	$\mathbf{1 6}(>99: 1) 98$	98
$\mathbf{1 1}$	$\mathrm{LiAlH}_{4} / \mathrm{THF}$	$\mathbf{1 6}(>99: 1)$	$70^{\text {c }}$
$\mathbf{1 2}$	$\mathrm{NaBH}_{4} / \mathrm{MeOH}$	$\mathbf{1 7}(>99: 1)$	98
$\mathbf{1 2}$	$\mathrm{LiAlH}_{4} / \mathrm{THF}$	$\mathbf{1 7}(>99: 1)$	71
$\mathbf{1 5}$	$\mathrm{NaBH}_{4} / \mathrm{MeOH}$	$\mathbf{1 8}(51: 49)$	98
$\mathbf{1 5}$	$\mathrm{LiAlH}_{4} / \mathrm{THF}$	$\mathbf{1 8}(49: 51)$	73

${ }^{\text {a }}$ Reaction was carried out at $25^{\circ} \mathrm{C}$ for 1 h .
${ }^{\text {b }}$ Note that en attack of hydride leads to Z-alcohol. Product ratios were analyzed by GC and the error bars were estimated to be $\pm 2 \%$.
${ }^{c}$ Data is consistent with that reported in Ref. 12a.

Scheme 2.

Scheme 3.
of 4-methylene-adamantan-2-one 15. Similar results have been reported by Duddeck ${ }^{10 \mathrm{c}}$ where tert-butyllithium addition of $\mathbf{1 5}$ gave a $1: 1$ mixture of E - and Z-alcohols. To our delight, the face selectivity on the reduction of $\mathbf{1 5}$ can be altered by inclusion of itself into β-CD cavity, but the results are opposite to our expectation based on previous model of 3-X in $\beta-\mathrm{CD}^{13 a}$ (vide infra).

The 50/50 en/zu face selectivity of the sodium borohydride reduction of $\mathbf{1 5}$ in THF or methanol becomes $45 / 55$ in water. The effect of β-CD complexation on the en/zu selectivity of 15 in sodium borohydride reduction is shown in Figure 1, which reaches a maximum value of $32 / 68$ at 15 mM of β-CD. The yields of Z - and $E-\mathbf{1 8}$ alcohols from these reactions were in the range of $75-82 \%$ when $\beta-C D$ was below 3 mM , but slightly decreased to $70-73 \%$ when $\beta-\mathrm{CD}$ concentration was above 6 mM . The product ratio varies with the concentration of $\beta-C D$ in the way expected from the fact that saturation will be approached if the concentration of β-CD is made sufficiently high. ${ }^{13,14}$ Based on the binding constants $\left(260 \mathrm{M}^{-1}\right)$ of $\mathbf{1 5}$ with $\beta-\mathrm{CD}$ (vide infra) and assuming a $1: 1$ complex, one can calculate the percentage of compound 15 bound by $\beta-\mathrm{CD}$ to be 75% if the starting concentration of $\mathbf{1 5}$ is 5 mM and $\beta-\mathrm{CD}$ is 15 mM . Accordingly, after correcting for the unbound $\mathbf{1 5}$ the theoretical value of en/zu face selectivity in the reduction of $\mathbf{1 5} \cdot \beta-\mathrm{CD}$ should be $22: 78$ instead of the observed 32:68. The enhanced $z u$-face attack in $15 \cdot \beta$-CD complex is surprising because one would have expected the opposite had its conformation been similar to that of the reported $\mathbf{3}-\mathbf{X} \cdot \beta-C D .{ }^{13 a}$ In order to gain some insights on the structures of $\mathbf{1 5} \cdot \beta$-CD complexes, both ${ }^{1} \mathrm{H}$ NMR titration experiments and molecular dynamic calculations were carried out (see Supporting Information).

Figure 1. The percentage $E-\mathbf{1 8}$ product obtained in the sodium borohydride reduction reactions of $\mathbf{1 5}(5 \mathrm{mM})$ in aqueous solution as a function of added $\beta-C D$.

Evidences for complexation of $\mathbf{1 5}$ by $\beta-C D$ were obtained from ${ }^{1} \mathrm{H}$ NMR spectra, which show that H_{3} ($\Delta \delta=-0.055 \mathrm{ppm}$) and $\mathrm{H}_{5}(\Delta \delta=-0.087 \mathrm{ppm})$ of $\beta-\mathrm{CD}$ (which are oriented toward the interior of the CD cavity) are shifted upfield considerably in the presence of $\mathbf{1 5}$. By contrast, $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{4}, all located on the exterior wall of

CD, either have small downfield shifts or are unaffected (Fig. 2). ${ }^{15}$ On the other hand, the $\mathrm{H}_{1^{\prime}}, \mathrm{H}_{3^{\prime}}$, and $\mathrm{H}_{5^{\prime}}$ of 4-methyleneadamantan-2-one $\mathbf{1 5}$ are substantially downfield shifted in the presence of $\beta-\mathrm{CD}$ and their chemical shift difference $\Delta \delta$ is: $+0.18,+0.11$, and +0.13 ppm , respectively (Fig. 3). ${ }^{15}$ These observations are consistent with the notion that a complex is formed between $\beta-\mathrm{CD}$ and 15 and they most likely have $1: 1$ stoichiometric ratio, similar to those of adamantane derivatives found in several X-ray crystallography data. ${ }^{16}$ The binding constant for complexes of 15 with β-CD was determined to be $260 \pm 20 \mathrm{M}^{-1}$ by Benesi-Hilderbrand plot (Figs. S-1 and S-2), ${ }^{1,17}$ where the reciprocal chemical shift differences of guest $\mathbf{1 5}$ are plotted with the reciprocal concentration of $\beta-C D$.

Figure 2. Effects of $\mathbf{1 5}$ on the ${ }^{1} \mathrm{H}$ NMR spectra of $\beta-C D$ in $\mathrm{D}_{2} \mathrm{O}$; where the concentration of 15 was fixed at 5 mM but the concentration of $\beta-C D$ decreased gradually from bottom $(15 \mathrm{mM})$ to top $(2 \mathrm{mM})$. Spectra were measured at 300 K .

Figure 3. Effects of β-CD on the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 5}(5 \mathrm{mM})$ in $\mathrm{D}_{2} \mathrm{O}$ solution; where the concentrations of $\beta-C D$ increases gradually from bottom $(0 \mathrm{mM})$ to top $(15 \mathrm{mM})$. The signals of protons on the $\mathrm{C}_{4}{ }^{-}$ methylidene of $\mathbf{1 5}$ were buried in the huge water peak and were omitted. Spectra were measured at 300 K .

Four of the most likely conformations of $\mathbf{1 5}$ in $\beta-C D$ are shown in Chart 2 and they are complexes $\mathbf{A}-\mathbf{D}$. The results of sodium borohydride reduction reactions on the complex of 15 in β-CD is out of our expectation, because if complexes \mathbf{C} and \mathbf{D} are the major conformations (similar to those reported for 5 -substituted-adamantan-2-ones 3-X β $\mathrm{CD})^{13 \mathrm{a}}$ one would expect that predominant Z-alcohol $\mathbf{1 8}$ be

Chart 2.

formed. On the contrary, E-alcohol 18 became the major product when 3 equiv. of $\beta-C D$ vs. $\mathbf{1 5}$ was used. Alternatively, if complexes \mathbf{A} and \mathbf{B} are the major conformations of the $\mathbf{1 5} \cdot \beta$-CD complexes, one may easily explain why more $E-\mathbf{1 8}$ was formed at high [$\beta-\mathrm{CD}$] because the torus of β-CD protects the en-face of $\mathbf{1 5}$ from hydride attacks. Theoretical calculations were thus carried out to gain more insight about the conformations of $15 \cdot \beta-C D$ complexes.

Snapshots from the MD simulations showed that preferred complexes are \mathbf{C} and \mathbf{D}, both with the hydrophobic methylidene groups pointing towards the CD cavity. The results are in accord with the previous proposed model 3$\mathbf{X} \cdot \beta$-CD, where a dramatic reversal in face selectivity was achieved by partial blockage of the π-face $z u$ to the bulky 5substituent of a $3-\mathbf{X} \cdot \beta-C D$ complex by the $C D$ host. ${ }^{13 a}$ Thus, the results from the simulations would predict the reduction reaction to yield the $Z-\mathbf{1 8}$ alcohol as the dominant product by partial blockage of the $z u$-face of $\mathbf{1 5}$ from hydride attack. Yet, the predominant formation of the $E-\mathbf{1 8}$ may indicate that $\beta-C D$ has mediated the reaction through hydrogen bonding interaction of its hydroxyl groups with the metal hydride; it therefore favors a $z u$-face attack. ${ }^{17 \mathrm{~b}}$

The 1,3-dipolar cycloaddition reactions of the 4 -substituted-2-methyleneadamantane $\mathbf{1 3 - 1 5}$ with benzonitrile oxide

Scheme 4.
were studied next (Scheme 4). ${ }^{18}$ Only E-isoxazolines 20 and 21 were formed in the reaction of $\mathbf{1 3}$ and $\mathbf{1 4}$, whereas, a 1:1 mixture of E - and Z-isoxazolines 22 were obtained in the reaction of $\mathbf{1 5}$ (Table 2). The E-adducts $\mathbf{2 0}$ and $\mathbf{2 1}$ were obtained from the expected attack of benzonitrile oxide on the less-hindered side, namely, the en-face that is opposite to the $4-\mathrm{X}$ substituents. The face selectivity in the $1,3-$ dipolar reactions of $\mathbf{1 3}$ and $\mathbf{1 4}$ is similar to that of reduction in 11 and $\mathbf{1 2}$, but the reaction of $\mathbf{1 4}$ gave a very poor yield of product. Most of the starting material $\mathbf{1 4}$ could be recovered from the 1,3-dipolar reaction due to its poor reactivity.

Table 2. Product ratios and yields in the 1,3-dipolar addition, carbene addition, and m CPBA epoxidation reactions of 4-substituted-2-methyleneadamantanes 13-15

Substrate	E/Z product ratio ${ }^{\text {a }}$ (yield, \%)		
	1,3-Dipolar addition	Dichlorocarbene addition	m CPBA epoxidation
13	E-20:Z-20	E-23:Z-23	E-26:Z-26
	>99:1 (49\%)	92:8 (98\%)	49:51 (80\%)
14	E-21:Z-21	E-24:Z-24	E-27:Z-27
	>99:1 (trace)	No reaction	Complex mixture
15	E-22:Z-22	E-25:Z-25	E-28:Z-28
	49:51 (51\%)	$1:>99^{\text {b }}$ (48\%)	33:67 ${ }^{\text {b }}$ (71\%)

${ }^{\text {a }}$ Product ratios determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with an estimated error of $\pm 5 \%$ unless otherwise specified. Note that in the three types of reactions, en attack of reagents leads to E-products.
${ }^{\text {b }}$ Ratios determined by GC with an estimated error of $\pm 2 \%$.

The E and Z configuration of isoxazolines $\mathbf{2 0}$ and $\mathbf{2 1}$ are assigned by inspecting the splitting patterns of the methylene protons on C_{11}, in which a larger chemical shift difference $\Delta \nu_{\mathrm{AB}}$ is expected for the E-isomer than for the Z-isomer due to their closer interaction with 4-ketal or 4-thioketal groups. For example, the $\Delta \nu_{\mathrm{AB}}$ of the methylene protons on C_{11} of $E-21$ was found to be 0.62 ppm but was 0.26 ppm for the $Z-\mathbf{2 1}$. The assignments of E - and Z-22 were further confirmed by an independent synthesis of $E-22$ through PTSA catalyzed conversion of $E-20$ to $E-22$. Lightner et al. reported ${ }^{12 a}$ that the magnetic anisotropy of the C_{4}-oxo group can deshield the C_{11} carbon in a very similar structure and our observations are consistent with their statements; for example, the chemical shift of C_{11} is 43.6 ppm as an axial substituent $(E-22)$ but is 43.0 ppm as an equatorial one ($Z-\mathbf{2 2}$). The $1: 1$ face selectivity of $\mathbf{1 5}$ by nitrile oxide is unexpected if one considers the C_{4}-oxo to be an electron-withdrawing group, where the Cieplak's model ${ }^{19}$ would have predicted a favored $Z-22$ product (from $z u$-face attack). On the other hand, an electrostatic repulsion between the nitrile oxide and the C_{4}-oxo group of $\mathbf{1 5}$ should disfavor a $z u$-face attack, thus counter-balanced the face preference by hyperconjugative effect. The photoreactions of $\mathbf{1 5}$ with acetone and benzophenone were reported by Mlinarić-Majerski ${ }^{20 a}$ to give E-oxetanes (from en-face attack) as the major product (in 70:30 ratios); where, both steric effect and the electronic effect of C_{4}-oxo group were used to rationalize the observed products.

The electrophilic addition reactions of dichlorocarbene on 4-substituted-2-methylene-adamantanes 13-15 were carried out next (Scheme 5 and Table 2). The addition of

Scheme 5.
dichlorocarbene with $\mathbf{1 3}$ gave E - and Z-spirocyclopropanes 23 in 98% yield, in a ratio of $92: 8$ (determined by ${ }^{1} \mathrm{H}$ NMR analysis). However, no reaction was found when 14 replaced $\mathbf{1 3}$ in a similar reaction conditions for carbene additions. To our surprise, the addition of dichlorocarbene with 4-methylene-2-adamantanone $\mathbf{1 5}$ gave Z-spirocyclopropanes 25 as the predominant product (based on GC analysis, $E / Z-\mathbf{2 5}=1:>99$) in 48% isolated yield. The configuration assignment of E - and Z-spirocyclopropanes $\mathbf{2 3}-\mathbf{2 5}$ can again be judged from the splitting pattern of the methylene protons of C_{11} on the spirocyclopropanes, in which a larger chemical shift difference $\Delta \nu_{\mathrm{AB}}$ is expected for the E-isomer than the Z-isomer due to their closer interaction with 4-ketal or 4-thioketal groups. Furthermore, the structure of $E-\mathbf{2 5}$ can be independently synthesized from the acid catalyzed deprotection of $E-\mathbf{2 3}$. The exclusive formation of Z-25 reminds us about the Simmons-Smith reaction of homoallylic 4-cyclohexenols ${ }^{21}$ which gave specifically syn cyclopropane product. The results imply that the C_{4}-oxo group of $\mathbf{1 5}$ may have directed the dichlorocarbene to the $z u$-face; therefore, leads to high yield of Z-25.

In all reactions carried out on 13, the en-face attack had almost always been the predominant one; we were therefore a bit surprised to find that the epoxidation of $\mathbf{1 3}$ by $m \mathrm{CPBA}$ gave E - and Z-oxiranes 26 as a $1: 1$ mixture (Scheme 6). Moreover, complex mixtures were obtained in the epoxidation of $\mathbf{1 4}$ presumably due to the attack of $m \mathrm{CPBA}$ on the sulfur atoms of sulfide, because the 2-methylene group was found to be intact by ${ }^{1} \mathrm{H}$ NMR analysis. For comparison, the epoxidation of $\mathbf{1 5}$ gave E - and Z-oxiranes $\mathbf{2 8}$ (33:67) in 71% yield (Table 2). The somewhat high $z u$-face reactivity on 13 and 15 despite their steric congestions, suggests that hydrogen-bonding interaction between the m CPBA and C_{4}-oxo or ketal groups is quite likely. Remember that the hydroxyl group of an allylic alcohol is well-known to direct m CPBA in a highly stereoselective syn epoxidation reaction, ${ }^{22}$ here, the C_{4}-oxo seems to play a similar role. It is worth noting that the $z u$-face epoxidation is more favored

Scheme 6.
on 15 than on $\mathbf{1 3}$ and we believe that the results are consistent with the Cieplak's model. ${ }^{19}$ In other words, since C_{4}-oxo is considered to be stronger electron-withdrawing than the ethylene ketal group, therefore, the reaction on $\mathrm{C}=$ C double bond of $\mathbf{1 5}$ (or 13) is expected to occur preferentially from a direction anti to the more electronrich $\mathrm{C}-\mathrm{C}$ bonds.

The configuration of E - and Z-26 was judged from the ${ }^{1} \mathrm{H}$ NMR spectrum of the ketal group, where the splitting pattern of Z-26 is more complex than E-26 due to its close interaction with oxirane. On the other hand, the configuration assignments of E - and Z-28 can also be judged from the splitting pattern of the methylene protons (of C_{11}) of the oxirans, in which a larger chemical shift difference $\Delta \nu_{\mathrm{AB}}$ is expected for the E-isomer $(0.11 \mathrm{ppm})$ than for the Z-isomer (0.08 ppm) due to their closer interaction with C_{4}-oxo group. Furthermore, the protons on C_{11} are more downfield for the $E-28$ than those for the $Z-28$ due to their interactions with C_{4}-oxo. Independent syntheses of E - and $Z-28$ from acid-catalyzed deprotection of $\mathbf{2 6}$ with PTSA were unsuccessful because the oxirane rings tend to be opened by the acid too.

3. Conclusion

The results studied here indicate that in the reduction and 1,3-dipolar addition reactions of 4-disubstituted-2adamantylidene or adamantan-2-one 11-14 steric hindrance is the dominating factor in determining the face selectivity. Despite the difficulties in isolating electronic effects from these steric biased probes, we found valuable information about 'neighboring group participation' in the carbene addition and epoxidation reactions. Finally, an enhanced $z u$-face attack of hydride on 15 can be achieved by complexation with $\beta-C D$ which is opposite to our expectation based on previously proposed model. ${ }^{13 \mathrm{a}, 17 \mathrm{~b}}$ Molecular dynamic calculations as well as ${ }^{1} \mathrm{H}$ NMR titration experiments support the 1:1 inclusion complexes of $\mathbf{1 5}$ with β-CD.

4. Experimental

4.1. General

4.1.1. The preparation of adamantane-2,4-dione (10). ${ }^{\mathbf{1 1 a , b}}$ To a chromium oxide solution ($66.7 \mathrm{~g}, 0.67 \mathrm{~mol}$) in acetic anhydride (300 mL) was added dropwise a solution of 2-admantanone ($\mathbf{3}-\mathbf{H}$) (16.7 g in 200 mL of acetic anhydride) through addition funnel under nitrogen. The solution was vigorously stirred and the temperature was controlled at $20^{\circ} \mathrm{C}$ by a circulator. After ten days, the solution was neutralized with saturated sodium bicarbonate solution and extracted several times ($100 \mathrm{~mL} \times 6$) with methylene chloride. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered and concentrated. The mixture was recrystallized in n-hexane/ethyl acetate (5/1) to give $10(5.5 \mathrm{~g}, 33.5 \mathrm{mmol})$ and the residue from recrystallization was purified on a silica gel column by elution with n-hexane/ethyl acetate to give $\mathbf{1 0}(3.3 \mathrm{~g}, 20.1 \mathrm{mmol})$. The total amount of $\mathbf{1 0}$ is 8.8 g (an average of $37-50 \%$).

Colorless solid; mp $279-281{ }^{\circ} \mathrm{C}$ (lit. ${ }^{8} 280-282^{\circ} \mathrm{C}$, lit. ${ }^{10 \mathrm{a}}$ $\left.282-283{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}} 1.75-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.18(\mathrm{~m}, 6 \mathrm{H})$, 2.41 (bs, 2H), 2.77 (bs, 2H), $3.38(\mathrm{bs}, 1 \mathrm{H}) ; \delta_{\mathrm{C}} 27.0(\mathrm{CH})$, $30.1\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{CH}_{2}\right), 45.2(\mathrm{CH}), 68.4(\mathrm{CH})$, 208.6 (Cq); MS (EI, m / z) 164 ($\mathrm{M}^{+}, 28$), 95 (40), 79 (100), 66 (50), 55 (59), 53 (39); HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ 164.0838 , found 164.0830 . The preparation of 4 -ethylene-ketaladamantan-2-one (11) followed a literature procedure. ${ }^{5}$
4.1.2. Synthesis of 4-ethylenethioketaladamantan-2-one (12). ${ }^{\mathbf{2 0 b}}$ The procedure for the synthesis of $\mathbf{1 2}$ is similar to that of 11, and the amount of reagents used is as follows: $\mathbf{1 0}$ $(104 \mathrm{mg}, \quad 0.63 \mathrm{mmol}), \quad$ ethane-1,2-dithiol $(64 \mathrm{mg}$, $0.68 \mathrm{mmol})$, PTSA $\cdot \mathrm{H}_{2} \mathrm{O}(30 \mathrm{mg}, 0.16 \mathrm{mmol})$ and benzene $(6 \mathrm{~mL})$. The yield is 95%. Colorless liquid; (lit. ${ }^{20 \mathrm{~b}} \mathrm{mp} 56-$ $59^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 1.89-2.00(\mathrm{~m}, 6 \mathrm{H}), 2.15-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.45$ (m, 2H), $2.64(\mathrm{bs}, 1 \mathrm{H}), 3.18-3.24(\mathrm{~m}, 4 \mathrm{H}) ; \delta_{\mathrm{C}} 25.7(\mathrm{CH})$, $36.1\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 38.4\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right)$, $39.4\left(\mathrm{CH}_{2}\right), 40.7(\mathrm{CH}), 45.0(\mathrm{CH}), 60.8(\mathrm{CH}), 76.3(\mathrm{Cq})$, 213.9 (Cq); MS (EI, m/z) 240 (M^{+}, 100), 212 (78), 184 (34); HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}_{2} 240.0644$, found 240.0651.
4.1.3. Synthesis of 4-ethyleneketal-2-methyleneadamantane (13). To a solution of methyltriphenylphosphonium bromide ($941 \mathrm{mg}, 2.51 \mathrm{mmol}$) in dried tetrahydrofuran $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was slowly added n-butyllithium $(2.5 \mathrm{M}$ in n-hexane, 2.50 mmol) via syringe under nitrogen. After the solution was stirred for $1-2 \mathrm{~h}$ at room temperature, $\mathbf{1 1}$ ($253 \mathrm{mg}, 1.21 \mathrm{mmol}$) in dried tetrahydrofuran $(10 \mathrm{~mL})$ was added gradually and refluxed for 24 h . After cooling, the solution was washed with water and separated into organic and water layers. The water layer was extracted several times ($30 \mathrm{~mL} \times 4$) with methylene chloride. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated. The residue was purified on a silica gel column by elution with n-hexane/ethyl acetate to give $\mathbf{1 3}$ ($217 \mathrm{mg}, 87 \%$). Colorless liquid; $\delta_{\mathrm{H}} 1.72-2.18$ (m, 10H), $2.41(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.98(\mathrm{~m}, 4 \mathrm{H}), 4.61,4.66(\mathrm{AX}, J=$ $1.8 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}} 26.8(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right), 36.0$ $(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 37.6(\mathrm{CH}), 39.0\left(\mathrm{CH}_{2}\right), 47.5(\mathrm{CH}), 64.2$ $\left(2 \times \mathrm{CH}_{2}\right), 103.7\left(\mathrm{CH}_{2}\right), 111.2(\mathrm{Cq}), 154.5(\mathrm{Cq}) ; \mathrm{MS}(\mathrm{EI}$, $\mathrm{m} / \mathrm{z}) 206\left(\mathrm{M}^{+}, 100\right), 91$ (32), 73 (47), 57 (36); HRMS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ 206.1307, found 206.1297.
4.1.4. Synthesis of 4-ethylenethioketal-2-methyleneadamantane (14). The procedure for the synthesis of $\mathbf{1 4}$ is similar to that of $\mathbf{1 3}$. The amount of reagents used is as follows: 12 ($900 \mathrm{mg}, 3.75 \mathrm{mmol}$), methyltriphenylphosphonium bromide ($2.19 \mathrm{~g}, 5.77 \mathrm{mmol}$), dried tetrahydrofuran (100 mL) and n-butyllithium $(2.5 \mathrm{M}$ in n-hexane, $5.63 \mathrm{mmol})$. The yield is 85%. Colorless solid; mp 51$52^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.69-1.84(\mathrm{~m}, 6 \mathrm{H}), 2.01(\mathrm{bs}, 1 \mathrm{H}), 2.14-2.26(\mathrm{~m}$, $3 \mathrm{H}), 2.40(\mathrm{bs}, 1 \mathrm{H}), 2.58(\mathrm{bs}, 1 \mathrm{H}), 3.14-3.24(\mathrm{~m}, 4 \mathrm{H}), 4.60$, $4.62(\mathrm{AB}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}} 26.4(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right), 37.1$ (CH$), 38.2\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2}\right), 39.4$ $\left(\mathrm{CH}_{2}\right), 41.9(\mathrm{CH}), 52.6(\mathrm{CH}), 77.6(\mathrm{Cq}), 104.7\left(\mathrm{CH}_{2}\right), 154.3$ (Cq); MS (EI, m / z) $238\left(\mathrm{M}^{+}, 27\right), 210$ (32), 185 (49), 183 (100), 108 (59); HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~S}_{2}$ 238.0851, found 238.0854. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~S}_{2}$: C, $65.49 ; \mathrm{H}$, 7.61, found: C, 65.38; H, 7.66.
4.1.5. Synthesis of 4-methyleneadamantan-2-one (15). A well-stirred solution of $\mathbf{1 3}$ ($755 \mathrm{mg}, 3.70 \mathrm{mmol}$) in 70%
acetone (aq) $(20 \mathrm{~mL})$ was added PTSA $\cdot \mathrm{H}_{2} \mathrm{O}(84.5 \mathrm{mg}$, 0.44 mmol) as a catalyst and maintained at $35^{\circ} \mathrm{C}$ for 22 h . The solution was washed with water and separated into two layers. The water layer was extracted several times ($5 \mathrm{~mL} \times$ 4) with methylene chloride. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated. The residue was purified on a silica gel column by elution with n-hexane/ethyl acetate to give $15(566 \mathrm{mg}, 85 \%)$. Colorless solid; mp $280-281{ }^{\circ} \mathrm{C}$ (lit. ${ }^{23} 135-138^{\circ} \mathrm{C}$; lit. ${ }^{24}$ $\left.280-282{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}} 1.88-2.12(\mathrm{~m}, 9 \mathrm{H}), 2.59-2.62(\mathrm{~m}, 2 \mathrm{H})$, $3.14(\mathrm{bs}, 1 \mathrm{H}), 4.62,4.66(\mathrm{AB}, J=15 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}} 27.5(\mathrm{CH})$, $37.6(\mathrm{CH}), 37.6\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right)$, $46.2(\mathrm{CH}), 58.4(\mathrm{CH}), 105.1\left(\mathrm{CH}_{2}\right), 152.7(\mathrm{Cq}), 214.4(\mathrm{Cq})$; MS (EI, m / z) $162\left(\mathrm{M}^{+}, 69\right), 134$ (31), 119 (29), 105 (32), 93 (79), 92 (100), 91 (80), 79 (43), 77 (39); HRMS m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}$ 162.1045, found 162.1048.

4.2. General procedure for the reduction of 4-substituted-admantan-2-ol (Z-16, Z-17 and Z-, E-18)

(a) Sodium borohydride reduction. The procedure for $\mathrm{Z} \mathbf{- 1 6}$ is given as an example. To a solution of $\mathbf{1 1}(25.8 \mathrm{mg}$, 0.01 mmol) in methanol (4 mL) was added sodium borohydride ($6.7 \mathrm{mg}, 0.02 \mathrm{mmol}$) in one portion at room temperature. After stirred for 1 h , the solution was washed with saturated ammonium chloride and extracted several times ($3 \mathrm{~mL} \times 4$) with methylene chloride. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated to give Z-16 in 98% yield. For other reduction the yields are as follows: Z-17, 98%; Z - and $E-18$ (1:1), 98%. (b) Lithium aluminum hydride reduction. The procedure for $Z-\mathbf{1 6}$ is given as an example. To a wellstirred solution of lithium aluminum hydride in dried tetrahydrofuran (THF) at $0^{\circ} \mathrm{C}$ under nitrogen was added 11 (in THF) via syringe and stirred for 1 h . The solution was worked up with THF/water (1/1) and washed with water. The water layer was extracted several times ($3 \mathrm{~mL} \times 4$) with methylene chloride. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated. The residue was purified on a silica gel column by elution with n-hexane/ethyl acetate and the yields are as follows: $Z-16$, $\mathbf{7 0 \%}$; Z-17, 71\%; Z- and E-18 (1:1), 73\%.
4.2.1. Data for 4-ethyleneketaladamantan- $\mathbf{2}_{\mathrm{a}}$-ol (Z-16). ${ }^{\mathbf{2 4}}$ Colorless liquid; $\delta_{\mathrm{H}} 1.60-2.00(\mathrm{~m}, 12 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 1 \mathrm{H})$, $3.86(\mathrm{bs}, 1 \mathrm{H}), 3.93-4.01(\mathrm{~m}, 4 \mathrm{H}) ; \delta_{\mathrm{C}} 25.5(\mathrm{CH}), 29.0\left(\mathrm{CH}_{2}\right)$, $34.0\left(\mathrm{CH}_{2}\right), 34.3(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 36.07(\mathrm{CH}), 36.09$ $\left(\mathrm{CH}_{2}\right), 41.1(\mathrm{CH}), 63.7\left(\mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 76.2(\mathrm{CH}), 111.8$ (Cq); MS (EI, m/z) $210\left(\mathrm{M}^{+}, 32\right), 208$ (100), 192 (36), 182 (31), 148 (32), 137 (36), 112 (31), 99 (61), 79 (45), 55 (35); HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$ 210.1256, found 210.1258.
4.2.2. Data for 4-ethylenethioketaladamantan- $\mathbf{2}_{\mathrm{a}}$-ol (Z-17). Colorless solid; mp 87-88 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.68-1.79$ (m, $6 \mathrm{H}), 1.93$ (bs, 1H), 2.08-2.18 (m, 2H), 2.22-2.32 (m, 3H), $3.18-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{OH}), 3.97(\mathrm{~m}, 1 \mathrm{H})$; $\delta_{\mathrm{C}} 25.4(\mathrm{CH}), 31.4\left(\mathrm{CH}_{2}\right), 33.7(\mathrm{CH}), 36.6\left(\mathrm{CH}_{2}\right), 36.9$ $\left(\mathrm{CH}_{2}\right), 37.3\left(2 \times \mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 41.3(\mathrm{CH}), 46.2(\mathrm{CH})$, 75.1 (Cq), 77.1 (CH); MS (EI, m / z) 242 (M ${ }^{+}$, 92), 214 (91), 196 (63), 182 (65), 180 (45), 154 (49), 149 (76), 131 (43), 121 (100), 112 (45), 91 (61), 79 (68), 69 (52), 55 (25); HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OS}_{2} 242.0800$, found 242.0796.
4.2.3. Data for 4-methyleneadamantan- $\mathbf{2}_{\mathrm{a}}$-ol (Z-18). ${ }^{\mathbf{2 5}}$ Colorless solid; mp $86-87^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.67-2.01(\mathrm{~m}, 11 \mathrm{H}), 2.43-$ $2.48(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H}), 4.67,4.77(\mathrm{AX}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H})$; $\delta_{\mathrm{C}} 26.8(\mathrm{CH}), 33.8\left(\mathrm{CH}_{2}\right), 34.5(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right), 37.9$ $\left(\mathrm{CH}_{2}\right), 38.2(\mathrm{CH}), 38.7\left(\mathrm{CH}_{2}\right), 46.1(\mathrm{CH}), 75.2(\mathrm{CH}), 106.7$ $\left(\mathrm{CH}_{2}\right), 153.4(\mathrm{Cq}) ; \mathrm{MS}(\mathrm{EI}, m / z) 164\left(\mathrm{M}^{+}, 100\right), 94(31), 93$ (33); HRMS m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}$ 164.1202, found 164.1197.
4.2.4. Data for 4-methyleneadamantan- $\mathbf{2}_{\mathrm{e}}$-ol (E-18). ${ }^{\mathbf{2 5}}$ Compound $E-18$ was not separated from its geometric isomers but its spectrum can be differentiated from the $1: 1$ mixture, because $Z-18$ was obtained through an independent synthesis from $Z-19$. Colorless solid; $\delta_{\mathrm{H}} 1.51-1.96$ (m, $11 \mathrm{H}), 2.12-2.25(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{bs}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}$ $27.4(\mathrm{CH}), 30.6\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 34.3(\mathrm{CH}), 36.6\left(\mathrm{CH}_{2}\right)$, $37.6(\mathrm{CH}), 39.1\left(\mathrm{CH}_{2}\right)$, $45.5(\mathrm{CH}), 74.7(\mathrm{CH}), 103.3\left(\mathrm{CH}_{2}\right)$, $155.5(\mathrm{Cq})$; GC-MS (EI, m/z) $164\left(\mathrm{M}^{+}, 100\right), 94$ (61), 93 (68).

4.3. General procedures for ${ }^{1} H$ NMR titration studies of 15 with $\beta-C D$

Solutions containing different proportions of guest-to- β-CD were prepared by stirring 5 mM of 15 with $0,1,2,3,4,5,7$, 9 , and 15 mM of β-CD solutions (15 mM stock solution in $\mathrm{D}_{2} \mathrm{O}$) in $1 \mathrm{~mL} \mathrm{D} \mathrm{D}_{2} \mathrm{O}$ for $c a .3 \mathrm{~h}$ before measurements. The NMR spectra of all the β-CD complexes, $\beta-C D$ and 15 in $\mathrm{D}_{2} \mathrm{O}$ and CDCl_{3} with a coaxial external standard $\left(\mathrm{CDCl}_{3}\right)$ were recorded with a 300 MHz NMR and the results are shown in Figures 2 and 3.
4.3.1. Synthesis of $\mathbf{4}_{\mathrm{a}}$-hydroxyadamantan-2-one (19). The procedure for the synthesis of $\mathbf{1 9}{ }^{25,26}$ is similar to that of $\mathbf{1 5}$. And the amounts of reagents used are as follows: Z-16 $(250 \mathrm{mg}, 1.20 \mathrm{mmol})$, PTSA $\cdot \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.26 \mathrm{mmol})$ and 70% acetone (aq) (17 mL). The yield for 19 is 61%. Colorless solid; mp not determined (lit. ${ }^{9} \mathrm{mp} 316-320^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 1.82-2.06(\mathrm{~m}, 9 \mathrm{H}), 2.39-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{bs}, 1 \mathrm{H})$, $2.73(\mathrm{bs}, 1 \mathrm{H}), 4.23(\mathrm{bs}, 1 \mathrm{H}) ; \delta_{\mathrm{C}} 26.2(\mathrm{CH}), 33.2\left(\mathrm{CH}_{2}\right), 33.5$ $(\mathrm{CH}), 35.1\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{CH}), 54.3$ (CH), $78.1(\mathrm{CH}), 217.7(\mathrm{Cq})$; MS (EI, $m / z) 166\left(\mathrm{M}^{+}, 72\right)$, 148 (53), 138 (80), 96 (55), 79 (100), 78 (76); HRMS m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ 166.0994, found 166.0986.

4.4. General procedure for the 1,3-dipolar reaction of 13-15

To a well-stirred solution of $\mathbf{1 3}(38.6 \mathrm{mg}, 0.19 \mathrm{mmol})$ and benzohydroximinoyl chloride ($43.5 \mathrm{mg}, 0.28 \mathrm{mmol}$) in dried tetrahydrofuran (5 mL) under nitrogen was added triethylamine $(31.9 \mathrm{mg}, 0.32 \mathrm{mmol})$ via syringe and refluxed for 24 h . After cooled down to room temperature, the solution was washed with water and the water layer was extracted several times ($3 \mathrm{~mL} \times 4$) with methylene chloride. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated. The residue was purified on a silica gel column by elution with n-hexane/ethyl acetate to give $E-\mathbf{2 0}$. The yields are as follows: $E-20$ (from 13), 49\%; E - and Z-22 (1:1) (from 15), 51\%. Only recovered starting material $\mathbf{1 4}$ was obtained under this reaction condition.

4.4.1. Data for (E)-4-ethyleneketalspiro[adamantane-

$2, \mathbf{5}^{\prime} \mathbf{- 3}^{\prime}$-phenyl- $\boldsymbol{\Delta}^{\mathbf{2}}$-isoxazoline] (E-20). Colorless liquid; $\delta_{\mathrm{H}} 1.49-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.63-2.05(\mathrm{~m}, 9 \mathrm{H}), 2.29-2.35(\mathrm{~m}$, $2 \mathrm{H}), 3.08,3.56$ (AX, $J=17.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.96(\mathrm{~m}, 4 \mathrm{H})$, 7.37-7.40 (m, 3H), 7.68-7.71 (m, 2H); $\delta_{\mathrm{C}} 25.2(\mathrm{CH}), 30.8$ $\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 35.7(\mathrm{CH}), 35.7$ $(\mathrm{CH}), 44.0\left(\mathrm{CH}_{2}\right), 44.4(\mathrm{CH}), 63.8\left(\mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 90.8$ $(\mathrm{Cq}), 111.5(\mathrm{Cq}), 126.4(\mathrm{CH}), 128.5(\mathrm{CH}), 129.7(\mathrm{CH})$, $130.3(\mathrm{Cq}), 157.6(\mathrm{Cq})$; MS (EI, m / z) $325\left(\mathrm{M}^{+}, 100\right), 179$ (50), 99 (35), 91 (32), 77 (70), 55 (32); HRMS m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N} 325.1678$, found 325.1680.
4.4.2. Data for (E)-spiro[adamantan-2-one-4:5'-3'-phenyl- $\boldsymbol{\Delta}^{\mathbf{2}}$-isoxazoline] $\boldsymbol{(\boldsymbol { E } - 2 2)}$. Colorless solid; mp $131-132{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.82-1.92(\mathrm{~m}, 3 \mathrm{H}), 2.03-2.12(\mathrm{~m}, 5 \mathrm{H})$, $2.41-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.68(\mathrm{~m}, 3 \mathrm{H}), 2.97,3.06(\mathrm{AB}, J=$ $16.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}$ $25.8(\mathrm{CH}), 32.3\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 36.6(\mathrm{CH})$, $38.7\left(\mathrm{CH}_{2}\right), 43.6\left(\mathrm{CH}_{2}\right), 45.6(\mathrm{CH}), 56.2(\mathrm{CH}), 90.4(\mathrm{Cq})$, $126.4(\mathrm{CH}), 128.6(\mathrm{CH}), 129.4(\mathrm{Cq}), 130.1(\mathrm{CH}), 156.6$ (Cq), $214.2(\mathrm{Cq}) ; \mathrm{MS}(\mathrm{EI}, m / z) 281\left(\mathrm{M}^{+}, 100\right), 144$ (31), 117 (47), 77 (36); HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}$ 281.1416, found 281.1414. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}$: C, $76.84 ; \mathrm{H}, 6.81$; N, 4.98, found: C, $76.64 ; \mathrm{H}, 6.83 ; \mathrm{N}, 5.01$.
4.4.3. Data for (Z)-spiro[adamantan-2-one-4:5'-3'-phenyl- $\boldsymbol{\Delta}^{\mathbf{2}}$-isoxazoline] (Z-22). Colorless solid; mp 118$119{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.92-2.13(\mathrm{~m}, 9 \mathrm{H}), 2.52-2.67(\mathrm{~m}, 3 \mathrm{H}), 3.24,3.34$ (AB, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{C}} 26.3$ (CH), $33.2\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 36.4(\mathrm{CH}), 37.7\left(\mathrm{CH}_{2}\right), 39.1$ $\left(\mathrm{CH}_{2}\right), 43.0\left(\mathrm{CH}_{2}\right), 45.3(\mathrm{CH}), 55.4(\mathrm{CH}), 93.7(\mathrm{Cq}), 126.5$ $(\mathrm{CH}), 128.7(\mathrm{CH}), 129.7(\mathrm{Cq}), 130.1(\mathrm{CH}), 155.7(\mathrm{Cq})$, 213.6 (Cq); MS (EI, m / z) 281 (M ${ }^{+}, 100$), 146 (30), 144 (45), 117 (65), 91 (39), 77 (51); HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}$ 281.1416, found 281.1422. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}$: C, 76.84; H, 6.81; N, 4.98, found: C, 76.55; H, 6.87; N, 5.07.

4.5. General procedure for the synthesis of 4 -substituted-11-dichlorocyclopropylspiro-adamantane ($E-23$ and E-, Z-25)

The procedure for $E-\mathbf{2 3}$ is given as an example. To a well-stirred solution of $\mathbf{1 3}(69.5 \mathrm{mg}, 0.34 \mathrm{mmol})$ and triethylbenzylammonium chloride ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$) in chloroform (1 mL) was added $50 \% \mathrm{NaOH}(\mathrm{aq})(1 \mathrm{~mL})$ at room temperature and stirred overnight. The solution was washed with water and extracted several times ($5 \mathrm{~mL} \times 4$) with methylene chloride. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated. The residue was purified on a silica gel column by elution with n-hexane/ethyl acetate to give $E-23$. The yields are as follows: $E-23,98 \%$; E - and $Z-25(1:>99), 48 \%$.
4.5.1. Data for (E)-4-ethylketal-11-dichlorocyclopropylspiroadamantane ($\boldsymbol{E}-23$). Colorless liquid; $\delta_{\mathrm{H}} 1.21,1.41$ (AX, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-2.01(\mathrm{~m}, 12 \mathrm{H}), 3.84-3.94$ (m, $4 \mathrm{H}) ; \delta_{\mathrm{C}} 25.7(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 33.8$ $\left(\mathrm{CH}_{2}\right), 34.2(\mathrm{CH}), 35.2\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 37.9(\mathrm{Cq}), 41.9$ $(\mathrm{CH}), 64.1\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 66.0(\mathrm{Cq}), 111.3(\mathrm{Cq})$; MS $(\mathrm{EI}, m / z) 292\left(\mathrm{M}^{+}+4,2\right), 290\left(\mathrm{M}^{+}+2,10\right), 288\left(\mathrm{M}^{+}, 13\right)$, 253 (100), 99 (45); HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}^{35} \mathrm{Cl}_{2}$ 288.0685, found 288.0682. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Cl}_{2}$: C, 58.14 ; H, 6.27, found: C, 57.99 ; H, 6.36. For characteristic ${ }^{1}$ H NMR peaks of Z-23 see Fig. S-35.
4.5.2. Data for (Z)-11-dichlorocyclopropylspiroadaman-tan-2-one (Z-25). Colorless solid; mp $53-54^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.27$, 1.37 (AB, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-2.08(\mathrm{~m}, 9 \mathrm{H}), 2.09-2.13$ (m, 1H), 2.43 (bs, 1H), $2.64(\mathrm{bs}, 1 \mathrm{H}) ; \delta_{\mathrm{C}} 26.5(\mathrm{CH}), 30.7$ $\left(\mathrm{CH}_{2}\right), 33.8(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 38.8$ $\left(\mathrm{CH}_{2}\right), 41.2(\mathrm{Cq}), 45.6(\mathrm{CH}), 51.5(\mathrm{CH}), 65.9(\mathrm{Cq}), 214.4$ (Cq); MS (EI, m / z) $248\left(\mathrm{M}^{+}+4,7\right), 246\left(\mathrm{M}^{+}+2,39\right), 244$ ($\mathrm{M}^{+}, 61$), 209 (38), 181 (87), 178 (86), 152 (33), 145 (75), 139 (56), 138 (49), 105 (39), 91 (65), 79 (100); HRMS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}^{35} \mathrm{Cl}_{2}$ 244.0423, found 244.0415. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{OCl}_{2}: \mathrm{C}, 58.79 ; \mathrm{H}, 5.76$, found: C, $58.65 ; \mathrm{H}$, 5.82 .
4.5.3. Data for (E)-11-dichlorocyclopropylspiroadaman-tan-2-one ($\boldsymbol{E}-25$). Which was obtained from the acid catalyzed hydrolysis of $E-22$, a colorless liquid; $\delta_{\mathrm{H}} 1.15$, 1.31 (AB, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.85$ (bs, 1H), 1.95-2.15 (m, 8H), $2.29-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{bs}, 1 \mathrm{H}) ; \delta_{\mathrm{C}} 26.3(\mathrm{CH}), 31.2\left(\mathrm{CH}_{2}\right)$, $34.0(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right)$, $40.5(\mathrm{Cq}), 45.3(\mathrm{CH}), 52.4(\mathrm{CH}), 64.4(\mathrm{Cq}), 214.6(\mathrm{Cq}) ; \mathrm{MS}$ $(\mathrm{EI}, m / z) 248\left(\mathrm{M}^{+}+4,9\right), 246\left(\mathrm{M}^{+}+2,51\right), 244\left(\mathrm{M}^{+}, 76\right)$, 209 (34), 181 (100), 145 (69), 91 (91), 79 (94); HRMS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}^{35} \mathrm{Cl}_{2}$ 244.0423, found 244.0418.

4.6. General procedure for the synthesis of 4 -substituted-2-oxacyclopropyladamantane (Z-, E-26 and Z-, E-28)

The procedure for $Z-, E-26$ is given as an example. To a well-stirred solution of $13(40.5 \mathrm{mg}, 0.20 \mathrm{mmol})$ in methylene chloride (2 mL) was added $70-75 \% \mathrm{mCPBA}$ $(48.2 \mathrm{mg}, 0.28 \mathrm{mmol})$ at room temperature and kept stirred for 1.5 h . The solution was washed with water and the water layer was extracted several times ($3 \mathrm{~mL} \times 4$) with methylene chloride. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated to give $Z-, E-26$. The yields are as follows: Z - and $E-26$ (1:1), 80\%; Z - and E-28 (67:33), 71%.
4.6.1. Data for (Z)-4-ethyleneketal-2-oxacyclopropyladamantane (Z-26). Colorless liquid; $\delta_{\mathrm{H}} 1.33$ (bs, 1 H), $1.41(\mathrm{bs}, 1 \mathrm{H}), 1.65-1.84(\mathrm{~m}, 7 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.12-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 2.52,2.57(\mathrm{AB}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-4.02$ $(\mathrm{m}, 4 \mathrm{H}) ; \delta_{\mathrm{C}} 25.9(\mathrm{CH}), 31.6\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right)$, $35.0(\mathrm{CH}), 35.4(\mathrm{CH}), 36.6\left(\mathrm{CH}_{2}\right), 43.9(\mathrm{CH}), 51.5\left(\mathrm{CH}_{2}\right)$, $64.0\left(\mathrm{CH}_{2}+\mathrm{Cq}\right), 64.6\left(\mathrm{CH}_{2}\right), 110.9(\mathrm{Cq}) ; \mathrm{MS}(\mathrm{EI}, m / z) 222$ $\left(\mathrm{M}^{+}, 62\right), 221\left(\mathrm{M}^{+}-1,87\right), 192(53), 179$ (36), 151 (39), 149 (62), 99 (100), 91 (74), 79 (66), 55 (62); HRMS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ 222.1256, found 222.1266.
4.6.2. Data for (\boldsymbol{E})-4-ethyleneketal-2-oxacyclopropyladamantane ($\boldsymbol{E}-26$). Colorless liquid; $\delta_{\mathrm{H}} 1.36$ (bs, 2H), $1.62-1.84(\mathrm{~m}, 5 \mathrm{H}), 1.96-2.02(\mathrm{~m}, 5 \mathrm{H}), 2.66,2.71(\mathrm{AB}, J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.94(\mathrm{~m} 4 \mathrm{H}) ; \delta_{\mathrm{C}} 25.6(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right)$, $32.4\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 34.6(\mathrm{CH}), 35.7(\mathrm{CH})$, $44.1(\mathrm{CH}), 55.7\left(\mathrm{CH}_{2}\right), 63.2(\mathrm{Cq}), 64.2\left(2 \times \mathrm{CH}_{2}\right), 111.5$ (Cq); MS (EI, m / z) $222\left(\mathrm{M}^{+}, 100\right), 221$ (67), 193 (46), 192 (43), 149 (35), 99 (71), 91 (32); HRMS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ 222.1256, found 222.1261.
4.6.3. Data for (Z)-4-oxacyclopropyladamantan-2-one (Z-28). Colorless solid; mp $96-98^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.86-1.91$ (m, $2 \mathrm{H}), 2.01-2.11(\mathrm{~m}, 7 \mathrm{H}), 2.18-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.60(\mathrm{bs}, 1 \mathrm{H}), 2.64,2.72(\mathrm{AB}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}} 26.3$
$(\mathrm{CH}), 33.0\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 34.6(\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right), 38.7$ $\left(\mathrm{CH}_{2}\right), 45.3(\mathrm{CH}), 54.4\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{CH}), 63.9(\mathrm{Cq}), 214.0$ (Cq); MS (EI, $m / z) 178\left(\mathrm{M}^{+}, 60\right), 150(100), 105(31), 92$ (60), 91 (34); HRMS m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ 178.0994, found 178.0988.
4.6.4. Data for (\boldsymbol{E})-4-oxacyclopropyladamantan-2-one (\boldsymbol{E}-28). Colorless solid; mp $99-100{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.56$ (bs, 1 H), $2.00-2.19(\mathrm{~m}, 10 \mathrm{H}), 2.59(\mathrm{bs}, 1 \mathrm{H}), 2.63,2.74(\mathrm{AB}, J=$ $4.5 \mathrm{~Hz}, 2 \mathrm{H})$; $\delta_{\mathrm{C}} 26.4(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 34.9(\mathrm{CH}), 35.7$ $\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 45.6(\mathrm{CH}), 52.8\left(\mathrm{CH}_{2}\right), 54.6$ $(\mathrm{CH}), 66.4(\mathrm{Cq}), 214.2(\mathrm{Cq})$; MS (EI, $m / z) 178\left(\mathrm{M}^{+}, 68\right)$, 150 (100), 93 (32), 92 (65), 91 (30); HRMS m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ 178.0994, found 178.0991. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 74.13 ; H, 7.92, found: C, 73.79 ; H, 8.00.

Acknowledgements

We thank the National Science Council of Republic of China for financial support. We also thank National Chiao Tung University for a financial support to the Center for Interdisciplinary Molecular Science.

Supplementary Data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2004.07. 075

References and notes

1. (a) Kaselj, M.; Chung, W.-S.; le Noble, W. J. Chem. Rev. 1999, 99, 1387 and references cited therein. (b) Adcock, W.; Trout, N. A. Chem. Rev. 1999, 99, 1415. (c) Ohwada, T. Chem. Rev. 1999, 99, 1337.
2. (a) Tomoda, S.; Kaneno, D. Org. Lett. 2003, 5, 2947. (b) Knoll, W.; Bobek, M. M.; Malchhauser, H.; Rosenberg, M. G.; Brinker, U. H. Org. Lett. 2003, 5, 2943. (c) Tomoda, S.; Senju, T.; Kawamura, M.; Ikeda, T. J. Org. Chem. 1999, 64, 5396. (d) Knoll, W.; Bobek, M. M.; Giester, G.; Brinker, U. H. Tetrahedron Lett. 2001, 42, 9161.
3. Lange, H.; Gleiter, R.; Fritzsche, G. J. Am. Chem. Soc. 1998, 120, 6563.
4. (a) Mehta, F.; Uma, R. J. Org. Chem. 2000, 65, 1685. (b) Mehta, G.; Khan, F. A.; Gadre, S. R.; Shirsat, R. N.; Ganguly, B.; Chandrasekhar, J. Angew. Chem. Int. Ed. 1994, 33, 1390. (c) Mehta, G.; Gunasekaran, G.; Gadre, S. R.; Shirsat, R. N.; Ganguly, B.; Chandrasekhar, J. J. Org. Chem. 1994, 59, 1953. (d) Mehta, G.; Praveen, M. Tetrahedron Lett. 1992, 33, 1759.
5. Kaselj, M.; le Noble, W. J. J. Org. Chem. 1996, 61, 4157.
6. Cuddy, B. D.; Grant, D.; McKervey, M. A. J. Chem. Soc. (C) 1971, 3173.
7. (a) Maurin, J. K.; Lasek, W.; Gorska, A.; Switzj, T.; Wamil, M.; Mlynarczuk, I.; Kazimierczuk, Z. Anti-Cancer Drug. Design. 2001, 16, 73. (b) Chen, C. S. H.; Shen, D.-M.;

Wentzek, S. E. PCT Int. Appl. WO 94 28.885, 1994; Chem. Abstr. 1995, 122, 239227. (c) Kolocouris, N.; Foscolos, G. B.; Kolocouris, A.; Marakos, P.; Pouli, N.; Fytas, G.; Ikeda, S.; De Clercq, E. J. Med. Chem. 1994, 37, 2896.
8. Udding, A. C.; Strating, J.; Wynberg, H. Tetrahedron Lett. 1968, 1345.
9. McKervey, M. A.; Faulkun, D.; Hamill, H. Tetrahedron Lett. 1970, 1971.
10. (a) Duddeck, H.; Wiskamp, V.; Rosenbaum, D. J. Org. Chem. 1981, 46, 5332. (b) Duddeck, H.; Feuerhelm, H.-T.; Snatzke, G. Tetrahedron Lett. 1979, 829. (c) Duddeck, H.; Rosenbaum, D. J. Org. Chem. 1991, 56, 1700.
11. (a) Gilbert, E. E. Synth. Commun. 1985, 15, 53. (b) Chu, J.-H. Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, 1999. Surprisingly, we later found that similar synthesis of $\mathbf{1 0}$ by exactly the same method was reported contemporarily, see: Bobek, M. M.; Brinker, U. H. Synth. Commun. 1999, 29, 3221.
12. (a) Lightner, D. A.; Bouman, T. D.; Wijekoon, W. M. D.; Hansen, A. E. J. Am. Chem. Soc. 1986, 108, 4484. (b) Olah, G. A.; Krishnamurthy, V. V. J. Am. Chem. Soc. 1982, 104, 3987.
13. (a) Chung, W.-S.; Wang, N.-J.; Liu, Y.-D.; Leu, Y.-J.; Chiang, M. Y. J. Chem. Soc., Perkin Trans. 2 1995, 307 and earlier references cited therein. (b) Li, W.-S.; Chung, W.-S.; Chao, I. Chem. Eur. J. 2003, 9, 951.
14. For reviews of the determination of host-guest complexation: (a) Diederich, F. Angew. Chem., Int. Ed. 1988, 27, 362 and references cited therein. (b) Connors, K. A. Binding Constants, the Measurement of Molecular Complex Stability; Wiley: New York, 1987.
15. Similar results in ${ }^{1} \mathrm{H}$ NMR spectroscopy in the studies of $\beta-\mathrm{CD}$ complexes were observed. For example: (a) Greatbanks, D.; Pickford, R. Magn. Reson. Chem. 1987, 25, 208. (b) Reddy, G. D.; Usha, G.; Ramanathan, K. V.; Ramamurthy, V. J. Org.

Chem. 1986, 51, 3085. (c) Eaton, D. F. Tetrahedron 1987, 43, 1551.
16. (a) Hamilton, J. A.; Steinrauf, L. K.; vanEtten, R. L. Acta Crystallogr. 1968, B24, 1560. (b) Crugler, M.; Eckle, E.; Stezowski, J. J. Chem. Soc., Chem. Commun. 1981, 1291.
17. (a) Benesi, H. A.; Hilderbrand J. Am. Chem. Soc. 1949, 71, 2703. (b) Similar results have been observed in Indium mediated allylation of 3-X in β-CD: Jan, M. -D. MS Thesis, National Chiao Tung University, 1999 and Proceeding of the 11th IUPAC Symposium on OMCOS, p. 319, July 22-26, Taipei, 2001.
18. For 1,3-dipolar addition reaction on 3-X see (a) Chung, W.-S.; Tsai, T.-L.; Ho, C.-C.; Chiang, M. Y. N.; le Noble, W. J. J. Org. Chem. 1997, 62, 4672. (b) Tsai, T.-L.; Chen, W.-C.; Yu, C.-H.; le Noble, W. J.; Chung, W.-S. J. Org. Chem. 1999, 64, 1099.
19. (a) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4550. (b) Cieplak, A. S.; Tait, B. D.; Johnson, C. R. J. Am. Chem. Soc. 1989, 111, 8447. (c) Johnson, C. R.; Tait, B. D.; Cieplak, A. S. J. Am. Chem. Soc. 1987, 109, 5875. (d) Cieplak, A. S. Chem. Rev. 1999, 99, 1265.
20. (a) Mlinarić-Majerski, K.; Pavlović, D.; Veljković, J.; ŠindlerKulyk, M. Croat. Chem. Acta 1993, 66, 385. (b) MlinarićMajerski, K.; Vinković, M.; Škare, D.; Marchand, A. P. Arkivoc 2002, 30 part IV.
21. Chan, J. H.; Rickborn, B. J. Am. Chem. Soc. 1968, 90, 6406.
22. Adam, W.; Wirth, T. Acc. Chem. Res. 1999, 32, 703.
23. (a) Mlinarić-Majerski, K.; Majerski, Z. J. Am. Chem. Soc. 1980, 102, 1418. (b) Mlinarić-Majerski, K.; Majerski, Z. J. Am. Chem. Soc. 1983, 105, 7389.
24. Henkel, J. G.; Spector, J. H. J. Org. Chem. 1983, 48, 3657.
25. Grob, C. A.; Wittwer, G.; Rao, K. R. Helv. Chim. Acta 1985, 68, 760.
26. Faulkner, D.; McKervey, M. A. J. Chem. Soc. (C) 1971, 3906.

[^0]: Keywords: Face selectivity; 2,4-Disubstituted adamantanes; β-Cyclodextrin; Inclusion complex; Neighboring group participation.

 * Corresponding authors. E-mail: wschung@cc.nctu.edu.tw

