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Abstract — This paper presents a highly integrated VLSI 

implementation of a mixed bio-signal lossless data 
compressor capable of handling multichannel 
electroencephalogram (EEG), electrocardiogram (ECG) and 
diffuse optical tomography (DOT) bio-signal data for reduced 
storage and communication bandwidth requirements in 
portable, wireless brain-heart monitoring systems used in 
hospital or home care settings. The compressor integrated in 
a multiprocessor brain-heart monitoring IC comprises 15k 
gates and 12kbits of RAM, occupying a total area of 58k µm2 
in 65nm CMOS technology. Results demonstrate an average 
compression ratio (CR) of 2.05, and a simulated power 
consumption of 170µW at an operating condition of 24MHz 
clock and 1.0V core voltage. Nominal power savings of 43% 
and 47% at the transmitter can be achieved when employing 
Bluetooth and Zigbee transceivers, respectively1. 
 

Index Terms — Biomedical signal processing, lossless data 
compression, electroencephalogram (EEG), electrocardiogram 
(ECG), diffuse optical tomography (DOT).  

I. INTRODUCTION 

Recent studies have shown that joint analysis of EEG 
together with heart rate variability (HRV) or brain functional 
near infrared spectroscopy (fNIRS) can aid in better medical 
diagnosis and treatment. For example, EEG and HRV data 
were jointly analyzed for the automatic detection of seizures 
in newborns [1] and sleep apnea in hospital patients [2], 
whereas the advantage of combined analysis of EEG and 
fNIRS data for cognitive rehabilitation and post-traumatic 
stress syndrome was presented in [3]. As a result, integrated 
brain-heart monitoring solutions for hospital and home care 
such as [4] have been proposed. 

Today, portability and thus wireless transmission 
capability in patient monitoring systems is highly desired in 
order to enhance the patient’s comfort and convenience. 
Strict restrictions on the size, weight and construction of 
portable devices have greatly limited their available onboard 
battery capacity, whereas wireless transmission of multi-
channel biomedical data only aggravates the energy problem 
in these inherently power-isolated portable devices. Since 
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most of the power is dissipated during wireless transmission, 
minimizing the amount of data through compression is 
essential to reduce the total system energy consumption, 
thereby allowing prolonged device autonomy and battery 
operating time. 

In this paper, we propose the VLSI implementation of a 
mixed bio-signal lossless data compressor as a means to 
reduce storage and data communication bandwidth 
requirements prior to wireless transmission, and, as an end 
result, achieve lower overall power consumption in portable 
brain-heart monitoring systems. 

The remainder of the paper is organized as follows. In 
Section II, we present the relationships between data 
compression and power consumption. In Section III, we 
provide a literature survey of existing lossless biomedical data 
compression algorithms and assess their complexity in view of 
hardware implementation, after which a discussion of the 
proposed algorithm is presented in Section IV. In Section V, 
we present the hardware implementation of the developed 
lossless compression algorithm and its integration into a 
DOT/EEG/ECG multiprocessor system implemented in 65nm 
CMOS technology. The results of the implementation are 
discussed in section VI, and finally a conclusion is given in 
Section VII. 

II. COMPRESSION FOR LOW-POWER 

It is well-known that wireless data communication takes up 
a large share of the total power consumption in most portable 
wireless devices or systems, with power dissipation 
proportional to the amount of data transferred.  By 
compressing the data prior to wireless transmission, power 
can be saved provided that the compression operation itself 
does not consume too much power. A power tradeoff analysis 
for wireless EEG systems was presented in [5], showing the 
relationships among compression ratio (CR), power required 
to perform compression (Pcomp), and power required for 
wireless transmission (Ptx). If Pcomp + CR-1• Ptx < Ptx, then total 
power consumption can be reduced. 

For short-range, low data bandwidth applications such as 
brain-heart signal monitoring, the Bluetooth and Zigbee 
wireless protocols are recommended over ultra-wideband and 
Wi-Fi [6]. Table I shows a comparison of various commercial 
wireless transceiver ICs in terms of their power-related 
characteristics assuming nominal operating usage. The lower 
operating current draw of the Bluetooth and Zigbee ICs is 
particularly attractive, especially in applications with low-
power requirements such as portable biomedical devices. 
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In order to save energy, a common practice is to turn on the 
transceiver only when data is available for transmission. Thus, 
when data bandwidth utilization is low, the transceiver spends 
most of its time in “sleep” mode, minimizing unnecessary 
energy consumption. Since power-up and power-down 
overheads are minimal, duty cycling can result in considerable 
energy savings. From an operational point of view, data 
compression can reduce the energy consumption even further 
by effecting a reduction in the amount of transmission data 
and essentially the resulting duty cycle. Fig. 1 illustrates the 
possible energy savings Esaved as a function of CR and Ecomp 
for cases employing a commercial Bluetooth or Zigbee 
transceiver IC. Energy savings can be maximized if a good 
compression ratio can be realized at a minimal energy 
consumption cost, but may become negative when CR is too 
low or when Ecomp is too high. 

III. SURVEY OF BIOMEDICAL SIGNAL COMPRESSION 

ALGORITHMS 
Many biomedical data compression algorithms have 

already been developed in the past, mostly for EEG and 
ECG signals, and can be classified as either lossy or 
lossless.  For brain-heart monitoring systems, we only 
consider lossless compression techniques in order to avoid 
the possibility of losing biomedical signal artifacts of 
potential diagnostic value. Table II shows a survey of 
various lossless biomedical data compression algorithms and 
their reported compression ratio performance. Since the 

compression ratio is highly sensitive to the characteristics of 
the input data (e.g. type of biomedical signal, sample 
precision, sampling frequency, slew rate, etc.), and most 
works were done independently using their own input data 
sets, the reported figures above only suggest expected 
compression performance possible within the bounds of 
standard clinical practice, and should not be objectively 
compared against each other. In summary, published lossless 
compression techniques report average compression ratio 
figures of 2.16 to 3.23 for EEG and 2.18 to 3.49 for ECG 
signals. 

However, unlike traditional data compression applications 
where storage space reduction and hence CR is the primary, 
and usually only, figure of merit, compression for low overall 
system power requires the algorithm’s space-time complexity 
to be considered as well. For example, [8] is exceedingly 
superior over [9] as far as the compression ratio is concerned, 
but then requires large buffers and numerous computational 
iterations for training and accurate error modeling. In a 
hardware implementation point of view, the former is 
expected to require significantly more memory and 
computational elements or iterations, resulting in higher 
leakage and switching power consumption. As an illustration, 
Fig. 1 shows how an algorithm with modest compression 
performance can be more suitable in a particular application 
when power consumption is also considered. Note that the 
power consumption points in the figure are indicated only for 
discussion purposes and do not represent actual results. 

TABLE I 
ENERGY CONSUMPTION OF COMMERCIAL TRANSCEIVER ICS 

Protocol Bluetooth Zigbee UWB Wi-Fi 

Chipset BlueCore2 CC2430 XS110 CX53111 
VDD (V) 1.8 3.0 3.3 3.3 
TX (mA) 57 24.7 227.3 219 
RX (mA) 47 27 227.3 215 

Bit rate (Mb/s) 0.72 0.25 114 54 

Energy consumption 
(nJ/bit) 

143 296 6.5 13.4 

(a) Zigbee           (b) Bluetooth 
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Fig. 1. Energy savings (1 - (CR-1*Etx + Ecomp)/Etx) in percent as a function 
of Ecomp and CR using (a) Zigbee and (b) Bluetooth transceiver ICs. Solid 
and dotted red lines correspond to the CRs of [8] and [9] respectively. 

TABLE II 
VARIOUS BIOMEDICAL DATA COMPRESSION ALGORITHMS 

Reference 
Biomedical 

Signal 
Algorithm Compression Ratio 

(CR) 
Prediction Transform Entropy Coding 

[7] EEG (16-bit) DPCM 
Integer Karhunen–Loève 
Transform, Stereo Integer DCT 

Huffman 2.80 

[8] EEG (16-bit) 
SLP Neural Network, 
Adaptive Error Modeling, 
Context-Based Bias Cancellation 

-- Arithmetic 3.23 

[9] EEG (16-bit) 
Auto-Regression Filter, 
Context-Based Bias Cancellation 

-- 
Conditional Coding, 
Huffman 

2.16 (approx.) 

[10] ECG (11-bit) Auto-Regression Filter 
Burrows-Wheeler Transform, 
Inversion Ranks 

Arithmetic 3.41 (approx.) 

[11] ECG (11-bit) 
Short-Term Prediction 
(Context-Based Bias Cancellation), 
Long-Term Prediction (R-R Interval) 

-- Golomb-Rice 3.49 (approx.) 

[12] ECG (13-bit) Lempel-Ziv '77/Complex Extract -- Exp-Golomb/Huffman 2.23/2.18 
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A. Algorithm Complexity Considerations 

In order to select a suitable candidate for a baseline 
hardware implementation, an assessment of algorithm 
complexity in the literature is presented. Most algorithms 
comprise a prediction step followed by entropy coding. More 
powerful algorithms [7], [10] additionally employ a lossless 
reversible transform in between, typically resulting in 
improved compression ratios. However, aside from 
introducing considerable computational overheads, transforms 
cause data dependencies that require sample buffering, 
negatively impacting power consumption as well as latency. 
With respect to low power compression, the inclusion of 
transforms is generally not recommended. 

1) Entropy Coding Complexity 
Entropy coding is an essential step in compression 

algorithms, where frequently occurring values or symbols are 
mapped to shorter binary sequences and less frequent ones to 
longer sequences. In the literature, the entropy coding step is 
well-represented by Huffman, arithmetic and variations of 
Golomb coding. Although Huffman and arithmetic codes can 
closely follow source entropies, they require the upkeep of large 
memory structures for modeling source symbol probabilities. 
Alternatively, Golomb coding only requires the storage and 
estimation of a single code scaling parameter, since it assumes a 
particular shape of symbol probability distribution. Because 
predictive coding of biomedical signals roughly satisfies the 
statistical assumptions of Golomb coding, the resulting entropy 
coding performance is only slightly inferior from optimal (by 
around 5%), but the hardware complexity can be significantly 
much lower. Hence, for entropy coding, the power of two 
variant of Golomb coding, Golomb-Rice, is suggested. 

2) Prediction Complexity 
Another important problem distinct from entropy coding is 

prediction. Prediction attempts to model the source signal such 
that an estimate of the current sample can be derived from 
previous samples. If the prediction can be recreated at the 
decoder side, then only the difference between the original 
and prediction values, called the prediction error, needs to be 
transmitted. An accurate predictor yields very small prediction 
errors, resulting in a low entropy signal that encodes 
efficiently into a shorter binary sequence after entropy coding. 

Prediction techniques for biomedical signals range from the 
very simple like discrete pulse code modulation (DPCM) 
(where the previous sample is taken as the expected value for 
the current sample) to memory-intensive and computationally 
involved ones like neural networks [8], auto-regression (AR) 
filters [9]-[11], Lempel-Ziv and complex extraction [12]. 

As mentioned earlier, most works focus only on the 
compression ratio, and hence take full advantage of more 
sophisticated mathematical techniques in order to achieve 
better prediction. For example, AR modeling and neural 
networks require multiple training iterations to be run against 
long sequences of samples in order to find precise floating-
point model parameters that yield good prediction. Similarly, 

the Lempel-Ziv and complex extraction methods perform 
pattern or template matching on blocks of samples, exploiting 
the periodicity of ECG signals [12]. For the same reasons, the 
above methods are generally considered unsuitable for real-
time, low power hardware implementation. 

B. Context-Based Bias Cancellation 

In [9], although the best reported compression ratio was 
associated with a 6th order AR predictor, it was shown that a 
very simple DPCM predictor, coupled with a computationally 
simple context-based bias cancellation, can attain compression 
performance close to that of more complicated techniques 
such as the AR model. In this scheme, contexts are defined 
based on past samples, and the typical DPCM prediction error 
in each context is estimated. By subtracting this estimate from 
the original prediction, an improved prediction can be 
achieved. Due to its simplicity, the method is seen to be very 
suitable for low power compression. 

From the foregoing discussions in the previous sections, the 
prediction technique based on a DPCM predictor with 
context-based bias cancellation [9] shows most promise, while 
an entropy coding method based on Golomb-Rice is 
recommended due to its low complexity and good entropy 
coding performance. In the next section, we proceed to 
describe the chosen lossless data compression algorithm in 
more detail. 

IV. PROPOSED ALGORITHM FOR LOW-POWER 

BIOMEDICAL SYSTEMS 

A.  Basic DPCM Prediction with Golomb-Rice Entropy 
Coding 

The proposed lossless data compression algorithm is largely 
based on a basic discrete pulse code modulation (DPCM) 
predictor followed by Golomb-Rice entropy coding, whose 
block diagram and algorithm flow is shown in Fig. 2. The 

x[n]
+

-

x[n-1]

Prediction
errors

D PC M  
Prediction

Packing

Encoded 
stream

G olom b-R ice 
C oding

K-Param eter 
Estim ation

 
Fig. 2. Basic DPCM prediction followed by Golomb-Rice entropy coding 
described as a block diagram (top) and pseudo code (bottom). 
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previous sample is taken as the prediction for the current 
sample, and the prediction error is obtained by subtracting the 
two. From a window size WS of prediction errors, the 
Golomb-Rice code scaling K parameter is estimated and the 
prediction errors are Golomb-Rice entropy coded using this 
parameter. Finally, the encoded stream is packed into data 
chunks of fixed width for output. 

DPCM prediction is partly able to model the redundancies 
between consecutive samples, such that the resulting 
frequency distribution of prediction errors tends to center and 
peak near zero, as shown in Fig. 3a. From this distribution, an 
appropriate K parameter can be estimated, such that 
distributions with smaller variances result in smaller K and 
distributions with larger variances result in larger K. A 
Golomb-Rice encoding table with K parameter equal to 2 is 
shown as an example in Fig. 3b. Since smaller symbol (the 
prediction error is taken as the symbol) values occur more 
frequently, shorter code lengths dominate, resulting in overall 
compression. Finally, the encoded output stream, illustrated in 
Fig. 3c, contains all the necessary information for the decoder 
to reconstruct the original signal. 

B.  Context Modeling 

A typical overall distribution of prediction errors after 
DPCM is shown in Fig. 3a, and is typically zero-mean with an 
overall variance to which an optimal K parameter is 
associated. However, it has been demonstrated in earlier 
literature [9], [14] that the overall Laplacian distribution is 
actually a composition of a plurality of Laplacian 
distributions, each having its own variance and mean shift 
away from zero (Fig. 3a). By appropriately defining a context 
model, these individual structures can be extracted, upon 
which 1) bias cancellation can be performed to re-center each 
distribution back to zero, resulting in smaller prediction 
errors; and 2) more optimal Golomb-Rice K parameters can be 
estimated for each distribution. 

A simple yet effective context model definition based on 
the past five sample differences was suggested in [9] for EEG 
signals, and is depicted in Fig. 4. The current sample is xk, and 
the sample differences di are defined as 

1  ikiki xxd         (1) 

where i is an integer between 1 and 5, inclusive, indexing the 
past five samples. To limit the number of contexts, the sample 
differences are quantized according to (2) with T = 0, resulting 
in a total of 32 contexts. 









Tdif

Tdif
dQ

i

i
i ,1

,0
)(         (2)

 

Finally, the context is defined by (3). 

 )(),(),(),(),()( 54321 dQdQdQdQdQxcontext k   (3) 

C. Bias Estimation and Cancellation 

For a particular context, the bias cancellation estimate is 
taken as the average prediction error occurring in that context. 
For example, the simple DPCM prediction for a current 

sample in an “always increasing” context (i.e. context(xk) = 
{1,1,1,1,1} tends to be short by some positive value. This bias 
is added back to the DPCM prediction, and the result is a 
shorter binary code sequence after Golomb-Rice coding. 

D.  Latency Reduction 

From a system point of view, a major disadvantage of the 
algorithm described thus far is its high output latency. Ideally, 
once a biomedical data sample (e.g. EEG, ECG) is sensed, it 
can be immediately shown on the display device. Since the 
Golomb-Rice encoder can only start outputting when the K 
parameter or bias cancellation value C has been calculated, the 
latency is seen to be the window size WS. From simulation 
results, the window size WS must be large enough (typically a 
quarter to half the period) to achieve reasonable compression 
performance. In many clinical situations, a latency of half a 
second is already unacceptable. 

To solve this problem, the estimation loop for the K 
parameter and bias cancellation value C is opened and is 
instead performed on a per sample basis according to [13]. As 
an additional benefit of this scheme, since at any time, the 
estimates are based on past samples only, the estimation 
procedure can be performed in exactly the same manner at the 
decoder, and hence both the K parameter and bias cancellation 
value C need not be transmitted as part of the output coded 
stream anymore. 

Symbol Value  Quotient  Remainder  Code

0 0 0 0 1 00

‐1 1 0 1 1 01

1 2 0 2 1 10

‐2 3 0 3 1 11

2 4 1 0 0 1  00

‐3 5 1 1 0 1  01

3 6 1 2 0 1  10

‐4 7 1 3 0 1  11

4 8 2 0 00 1 00

‐5 9 2 1 00 1 01

5 10 2 2 00 1 10

‐6 11 2 3 00 1 11

6 12 3 0 000 1 00

‐7 13 3 1 000 1 01

7 14 3 2 000 1 10

‐8 15 3 3 000 1 11

   (a)                              (b) 
 

First sample
(10 bits)

Golomb k parameter
(3 bits)

Golomb-Rice coded prediction errors

0000…00 1  XXXX

Legend: quotient, delimiter, remainder

(c) 
 

Fig. 3. (a) Prediction error distribution and its mapping to (b) Golomb-
Rice encoding table with K = 2; (c) Encoded output stream. 
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Fig. 4. Context model based on five past sample differences, where the
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V. HARDWARE IMPLEMENTATION 

A. Integration in a DOT/EEG/ECG Multiprocessor System for 
Brain-Heart Monitoring 

The developed algorithm is implemented in hardware and 
integrated in a multiprocessor brain-heart monitoring system 
[4] for the real-time lossless compression of multichannel 
discrete optical tomography (DOT), electroencephalogram 
(EEG) and electrocardiogram (ECG) biomedical data. Fig. 5 
shows the scope and application of the developed mixed bio-
signal lossless data compressor and a summary of the system 
specifications relevant to the lossless data compression unit is 
presented in Table III. 

The complete system operates as follows. A sensor control 
unit controls the acquisition of multichannel EEG, ECG and 
DOT data according to their specified sampling frequencies, 
after which each bio-signal is relayed to its corresponding 
signal processing engine. EEG data undergo independent 
component analysis (ICA), ECG data undergo heart rate 
variability analysis, and fNIRS data is processed for the 
reconstruction of a diffuse optical tomography image. 
Depending on user settings, the ICA and HRV engines can 
also be bypassed to support applications that only require raw 
EEG or ECG data acquisition. Raw or processed bio-signal 
data is then losslessly compressed in the proposed compressor 
and finally multiplexed into a single data stream and sent out 
of the chip in real-time through an output UART interface. 
Finally, the mixed multichannel data is sent off wirelessly to 
the base station device through a Zigbee wireless 
communication interface. 

With each packet containing only EEG, ECG or DOT data 
distinguished by a data type header, homogeneous encoded 
streams can be received and decoded independently on a 
mains-powered base station and subsequently displayed on a 
real-time display device. Alternatively, a bypass mode is also 
provided such that raw bio-signal data skips the compression 
operation and is transmitted as is, uncompressed. 

B. Hardware Architecture 

The hardware architecture of the proposed lossless data 
compressor unit, shown in Fig. 6, comprises four pipeline 
stages including first, a priority data selector (PDS) stage, 
second, a prediction and parameter estimation stage, third, a 
Golomb-Rice entropy coding stage (shaded in gray), and 
lastly an output packaging stage. Since Golomb-Rice codes 
vary in length, the number of clock cycles to completely pack 
an encoded stream onto a fixed bus width varies at the final 
packing stage. To prevent pipeline overflow, a ready-
acknowledge handshaking mechanism is employed 
throughout the pipeline in every stage. Unfortunately, due to 
restrictions in chip real estate, the bias cancellation 
mechanism was forfeited; resulting in around 7% performance 
loss in CR. Context-based estimation of the Golomb-Rice K 
parameter was retained. 

To conserve hardware resources, the prediction circuitry is 
shared among the different biomedical signals. The PDS stage 
serves as a multiplexer, serially sending each sample to the 

main compression unit (enclosed in dotted lines), at the same 
time indicating the biomedical signal type CHSEL and sample 
precision SP. The prediction stage in the main compression 
unit receives the current sample, determines its context and 
loads the context statistics from memory. In the next cycle, the 
K parameter is calculated, the prediction error remapped, and 
the context variables updated and written back to memory. 
The prediction stage maintains the individual memory 
locations for the context statistics of the different biomedical 
data channels. Note that for DOT, DPCM prediction is 
performed on an inter-frame basis, and context-based K 
parameter estimation is not performed, due to memory space 
limitations. 

 

Fig. 5. Integration of proposed mixed bio-signal lossless data compressor 
in a brain-heart monitoring system. 

TABLE III 
SYSTEM SPECIFICATIONS RELATED TO LOSSLESS DATA COMPRESSION 

Parameter DOT EEG ECG 

Signal Source 

Change in 
absorption 
coefficients 

influenced by 
hemoglobin 

Electrical 
activity on the 

scalp caused by 
firing neurons 

in the brain 

Electrical 
changes on the 
skin caused by 

heartbeat 

Sensor 
fNIR LED and 

sensor array 
EEG electrodes ECG electrodes 

Nature of Data Video Time-series Time-series 

Primary Function 
DOT image 

reconstruction 

Independent 
component 

analysis 

Heart rate 
variability 

Sampling Rate 
1 frame/s (96 

pixels) 
128 Hz 256 Hz 

Sample/Pixel 
Resolution 20-bit 10-bit 10-bit 

No. of Channels 1 4 3 
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The Golomb-Rice entropy coder, indicated in gray in Fig. 6, 
implements the Golomb-Rice coding table shown in Fig. 3b 
for various values of K. It calculates the quotient and 
remainder based on the estimated Golomb-Rice K parameter 
and input remapped prediction error, and outputs the result to 
the next stage within a single clock cycle. 

The output packaging unit is the final pipeline stage and 
maintains four separate output buffers for the different 
biomedical signals, which are filled up as samples are encoded 
into bit streams. Whenever any of the buffers become full, the 
buffer value is driven onto the output bus, together with an 
appended data type ID indicating the type of biomedical data. 
In case two or more buffers are full simultaneously, a priority 
scheme is enforced such that minimal output latency is 
achieved. 

The main compression unit, indicated by the dotted lines in 
Fig. 6, corresponds to the proposed algorithm described in the 
earlier sections to which the overhead energy consumption 
Ecomp is attributed. The PDS and output packaging stages 
perform mainly data routing and packing, which operate 
regardless of whether compression is employed or not. 

C. Implementation in 65nm CMOS 

The DOT/EEG/ECG multiprocessor chip was implemented 
using 65nm CMOS technology, with the proposed compressor 
comprising 53,969 gates and occupying a total of 58k µm2. 
Simulated power consumption using a full operation test case 
reports 170μW under the condition of 24MHz clock 
frequency and 1.0V core supply voltage. The chip layout and 
chip specifications are shown in Fig. 7 and Table IV 
respectively.  

VI. RESULTS 

Table V shows the average compression ratio results for the 
various biomedical data, as calculated from MATLAB 
simulations and cross-validated with post-layout simulations. 
For DOT, raw image pixel data were obtained from a typical 
laboratory demonstration setup, whereas EEG and ECG raw 
data were obtained from EEGLab and the MIT-BIH 
Arrhythmia Database, respectively. Overall, considering the 
number of channels, sample precision, sampling frequency 

and total bandwidth for each type of biomedical signal, an 
average CR of 2.05 was achieved. Similarly, dividing the 
average power consumption of the main compression unit by 
the total data bandwidth, the average normalized energy 
consumption Ecomp of 12nJ/bit was derived. Given the 
normalized energy consumption Etx figures of commercial 
Bluetooth and Zigbee ICs, the overall energy savings at the 
transmitter were calculated to be 43% and 47% respectively. 
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Fig. 6. Hardware architecture of proposed mixed bio-signal lossless 
compressor. 

 
 

Fig. 7. Chip layout of the DOT/EEG/ECG multiprocessor implemented in 
65nm CMOS, with the proposed lossless data compressor indicated. 

TABLE IV 
DOT/EEG/ECG MULTIPROCESSOR CHIP SPECIFICATIONS 

Parameter Value 

Technology 65nm CMOS 1P10M 
Pad/Core Voltage 2.5 / 1.0 V 

System Operating Freq. 24 MHz 
Die Size 1,317 x 1,317 µm2 

Number of PADs 104 

 Full Chip Proposed Compressor 

Core Size 462k µm2 58k µm2 
Equivalent Gate Count 368,314 53,969 

Estimated Power 3.59 mW 170 µW 

TABLE V 
COMPRESSION RATIO RESULTS 

Bio-Signal Compression Ratio (CR, Original/Compressed) 

DOT 2.10 
EEG / ICA 1.37 / 1.55 

ECG 2.38 

Overall (Average) 2.05 

TABLE VI 
ENERGY SAVINGS AT TRANSMITTER 

 Bluetooth Zigbee 

Etx (nJ/bit) 143 296 
Etotal_old (nJ/bit) 143 296 

CR 2.05 
Etx_new (nJ/bit) 70 144 
Ecomp (nJ/bit) 12 

Etotal_new (nJ/bit) 82 156 

Energy Savings 43% 47% 
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VII. CONCLUSION 

In this paper, the VLSI implementation of a low complexity 
lossless biomedical data compressor was presented, 
demonstrating that an average lossless compression ratio of 
2.05 can be achieved at a power consumption of 170µW (or 
normalized energy consumption of 12nJ/bit, considering data 
bandwidth as well) when using 65nm CMOS technology. At 
this given performance level and considering the 
compression-to-wireless transmission power trade-off 
relationship, 43% and 47% power savings can be achieved 
when employing commercial Bluetooth and Zigbee 
transceiver ICs, respectively. 

This work represents a study to determine the power 
consumption figure that can be achieved by a straightforward 
implementation of a low-complexity lossless data compression 
algorithm of reasonable compression ratio performance. In the 
future, it will be of interest to push further the limits of low 
power compression in terms of Ecomp and CR, possibly by 
investigating optimized implementations of more complex 
algorithms as well as more aggressive power optimizations at 
both algorithm and architectural levels. 
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