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Cell formation is the first step in the design of cellular manufacturing systems. In this study, an efficient
tabu search algorithm based on a similarity coefficient is proposed to solve the cell formation problem
with alternative process routings and machine reliability considerations. In the proposed algorithm, good
initial solutions are first generated and later on improved by a tabu search algorithm combining the
mutation operator and an effective neighborhood solution searching mechanism. Computational experi-
ences from test problems show that the proposed approach is extremely effective and efficient. When
compared with the mathematical programming approach which took three hours to solve problems,
the proposed algorithm is able to produce optimal solutions in less than 2 s.

� 2010 Published by Elsevier Ltd.
1. Introduction

Cellular manufacturing is the implementation of Group
Technology (GT), a manufacturing philosophy in which similar
parts are identified and grouped into part families; meanwhile,
machines are grouped into machine cells to take advantage of their
similarities in manufacturing and design. GT was originally intro-
duced by Mitrovanov (1966) and was popularized in the west by
Burbidge (1975). The implementation of cellular manufacturing
has been reported to result in significant benefits such as reduc-
tions in set-up times, work-in-progress inventory, throughput
times and material handling costs, simplified scheduling and im-
proved quality (Wemmerlov & Hyer, 1987).

Although cellular manufacturing may provide great benefits,
the design of cellular manufacturing systems (CMS) is complex
for real life problems. It has been known that the cell formation
problem (CFP) in CMS is one of the NP-hard combinational prob-
lems (Ballakur & Steudel, 1987). Many models and solution ap-
proaches have been developed to identify machine cells and part
families, as it becomes difficult to obtain optimal solutions in an
acceptable amount of time, especially for large-sized problems.
These approaches can be classified into three main categories:
mathematical programming (MP) models (e.g., Albadawi, Bashir,
Elsevier Ltd.
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ang).
& Chen, 2005; Boctor, 1991; Kumar, Kusiak, & Vannelli, 1986;
Lozano, Adenso-Diaz, & Onieva, 1999; Lozano, Guerrero, Eguia, &
Onieva, 1999; Srinivasan, Narendran, & Mahadevan, 1990; Wang,
2003), heuristic/meta-heuristic solution algorithms (e.g., Diaz,
Lozano, Racero, & Guerrero, 2001; Lei & Wu, 2005; Sofianopoulou,
1999; Sun, Lin, & Batta, 1995; Wu, Chang, & Chung, 2008; Wu,
Chung, & Chang, 2008; Wu, Low, & Wu, 2004), and similarity
coefficient methods (SCM) (e.g., Alhourani & Seifoddini, 2007;
McAuley, 1972; Nair & Narendran, 1998; Yin & Yasuda, 2006).

Most of the above CF researches assume that each part has a un-
ique process routing. However, it is well known that alternatives
may exist in any level of a process plan. When each part has alter-
native process routings (APR), the CFP becomes the generalized
CFP (Kusiak, 1987). Explicit consideration of APR may result in
additional flexibility in the CMS design.

Over the past four decades, the machine-part cell formation
problem has been the subject of numerous studies. Many research-
ers have applied various methodologies in an effort to determine
the optimal clustering of machines and the optimal groupings of
parts into families. However, only a limited amount of research
in the context of the CFP has dealt with machine breakdowns or
reliability issues (e.g., Das, Lashkari, & Sengupta, 2007; Diallo,
Perreval, & Quillot, 2001; Jabal Ameli & Arkat, 2008; Jabal Ameli,
Arkat, & Barzinpour, 2008; Logendran & Talkington, 1997; Savsar,
2000; Zakarian & Kusiak, 1997). Traditionally, CF and work alloca-
tion are performed, assuming that all the machines are 100%
reliable. However, this is not always the case. Machines are key
elements in manufacturing systems and oftentimes it is not
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Nomenclature

m number of machines
M machines set
p number of parts
P parts set
NC number of cells
C cells set
Vi production volume for part i
Qi number of routings for part i
Um maximum number of machines in each cell
Lm minimum number of machines in each cell
Ai unit cost of intercellular movement for part i
Kij number of operations in routing j of part i the opera-

tions of part i along route j are processed on a machines’

set of uð1Þij ;u
ð2Þ
ij ; . . . ;uðkÞij ;u

ðkþ1Þ
ij ; . . . ;uðKij�1Þ

ij ;uðKijÞ
ij

n o

uðkÞij machine index for the kth operation of part i along route
j

TðkÞij processing time for the kth operation of part i along
route j

Bk breakdown cost for machine k
MTBFk mean time between failures for machine k

uðKijÞ
ij Machine’s index in routing j of part i

Ykl 1, if machine k locates in cell l; 0, otherwise
Zij 1, if routing j of part i selected; 0, otherwise
Xijklsl 1, if routing j of part i is selected; machine k locates in

cell l and machine s do not locate in cell l; 0, otherwise
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possible to handle their breakdowns as quickly as the production
requirements dictate. Their breakdowns can dramatically affect
system performance measures and bring about detrimental effects
on the due date performance. Machine failures should hence be ta-
ken into account during the design of CMS to improve the overall
performance of the system (Jeon, Broering, Leep, Parsaei, & Wong,
1998). The machine breakdown cost generally consists of machine
repairing costs, production suspension costs, and capacity lost
costs, etc. (Jabal Ameli & Arkat, 2008).

Jabal Ameli and Arkat (2008) formulated a binary integer pro-
gramming model for the CFP accounting for APR and the machine
reliability issue. They solved the model using a mathematical pro-
gramming approach. However, since CFP is an NP-hard problem, it
usually takes a large amount of computational efforts to solve the
problem when classical optimization methods are used, especially
for large-sized problems. Thus, there is a need to develop an efficient
and effective solution approach capable of handling this problem.

Due to their excellent performances in solving combinatorial
optimization problems, meta-heuristic algorithms such as genetic
algorithm (GA), simulated annealing (SA), neural network (NN)
and tabu search (TS) are grouped into another class of search meth-
ods that have been adapted to solve the CF problem and its variants
efficiently. Among the aforementioned meta-heuristic algorithms,
TS has been successfully used to solve many problems appeared
in manufacturing system including cell formation problems (Loz-
ano, Adenso-Diaz et al., 1999; Lozano, Guerrero et al., 1999). TS
uses flexible memory structures to store information and attri-
butes of solutions from the recent history of the search. TS gives
some recently or frequently visited solutions (moves) a tabu
restriction to keep the solution search process from being trapped
at a local optimum.

The mutation operator of the genetic algorithm (GA) is another
well-known technique, famous for its capability to escape from lo-
cal solutions and prevent premature convergence. It is used mainly
to increase the diversity of the population and to ensure that an
extensive search will be performed.

This study anticipates the synergy effects between the TS and
the GA by presenting an efficient algorithm using the TS, together
with the mutation operator from the GA, to increase the quality
and efficiency of solutions.

The remainder of this article is organized as follows: Section 2
describes the problem definition including the CFP with alternative
routings and the issues of machine reliability. The mathematical
model presented by Jabal Ameli and Arkat (2008) for solving the
problem is given and reviewed in this section as well. Section 3
details the proposed TS algorithm including the generation of
initial solutions and solution improvement procedures. Computa-
tional results on test problems are reported in Section 4. Section
5 concludes the paper.
2. Problem definition

This section describes the problem definition of CFP accounting
for APR and the machine reliability issue. A 0–1 integer program-
ming model formulated by Jabal Ameli and Arkat (2008) for solving
this complicated problem is introduced as well.

2.1. Cell formation problem with alternative process routings

In a simple CFP, cell formation in a given 0–1 machine-part inci-
dence matrix involves the rearrangement of its rows and columns
to create part families and machine cells. Researches usually at-
tempt to determine a rearrangement in which the intercellular
movement can be minimized and the utilization of the machines
within a cell maximized. After the rearrangement, blocks can be
observed along the diagonal of the matrix. In the matrix, any 1s
outside the diagonal blocks are called ‘‘exceptional elements’’;
any 0s inside the diagonal blocks are called ‘‘voids’’.

Cases in which each part may have more than one process rout-
ings are more complicated than the simple CFP. A process routing
for a given part is a set of machines that have passed by this part. It
is assumed that the sequence of machines in each process routing
is identical with the operation sequence of the corresponding part.
When parts are allowed to have more than one process routing,
such as the case shown in Table 1, the CFP becomes generalized,
wherein cases are more complicated than the simple cell formation
problem. Under this circumstance, the formation of part families,
machine cells, and selection of routings for each part need to be
determined to achieve the decision objectives, such as the minimi-
zation of intercellular movement or the maximization of grouping
efficacy.

2.2. Machine reliability

Machines are key elements in manufacturing systems. Thus,
machine reliability should be taken into account during the design
of the CMS. The reliability of a machine is defined as R ¼ expðktÞ,
where k is the machine failure rate and t is the machine operating
time. A common way of dealing with machines reliability concern
in the design phase of a manufacturing system is by the evaluation
of the quantities of the mean time between failures (MTBF). MTBF



Table 1
APR and processing times for the numerical example (Bhide, Bhandwale, & Kesavadas, 2005).

PV 75 130 110 145 110 105 140 115
PN P1 P2 P3 P4 P5 P6 P7 P8

RN R1 R2 R3 R1 R2 R3 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R3 R4 R1 R2

M1 *1(5) 1(4) 1(4) 1(4) 1(5) 1(5) 1(4) 1(4) 1(5) 1(5) 1(4)
M2 1(5) 1(5) 1(5) 1(5) 1(3) 1(5) 1(3) 1(3) 2(3) 1(4)
M3 2(3) 2(3) 2(3) 2(3)
M4 2(3) 2(4) 3(3) 3(5) 3(5) 2(4) 2(4) 2(4)
M5 3(4) 2(4) 3(3) 2(3) 2(3) 3(4) 4(4) 3(3) 3(3)
M6 2(5) 2(4) 3(4) 2(3) 2(4)
M7 2(5) 3(5) 2(5) 2(5)
M8 3(4) 4(4) 3(4) 4(3) 4(3) 4(4) 5(4) 3(5) 3(5) 4(5)
M9 4(5) 3(5) 3(3) 3(5) 4(5) 4(5) 3(5) 4(5)

PV: Production Volume; PN: Part Number; RN: Routing Number.
* Production sequence (Production times).
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can be obtained by taking the reciprocal of k. As long as the break-
down cost for each machine is known in advance, the cost caused
by machine unreliability can be acquired after simple calculation.

Jabal Ameli and Arkat (2008) have presented a mathematical
approach to calculate the machine breakdown cost. This is
achieved by dividing the production time by the MTBF and then
multiplying this quantity by the unit machine breakdown cost.
The decision objective of their research is to minimize the sum of
total intercellular movement cost and the machine breakdown
cost. The 0–1 integer programming model that they formulated
is given below, and the notations are introduced first.

Intercellular movement cost:

Inter C ¼
Xp

i¼1

XQi

j¼1

XKij�1

k¼1

XNC

l¼1

AiViX
ij uðkÞ

ij

� �
l uðkþ1Þ

ij

� �
l

ð1Þ

Machine breakdown cost:

TBC ¼
Xp

i¼1

XQi

j¼1

XKij

k¼1

Zij

ViT
ðkÞ
ij B

uðkÞ
ij

� �
MTBF

uðkÞ
ij

� � ð2Þ

The 0–1 integer programming model is as follows:

Min TC ¼ Inter C þ TBC ð3Þ

s.t.

XQi

j¼1

Zij ¼ 1; 8i 2 P ð4Þ

Lm 6
Xm

k¼1

Ykl 6 Um; 8l 2 C ð5Þ

XNC

l¼1

Ykl ¼ 1; 8k 2 M ð6Þ

Xijklsl 6 Zij; 8i; j; k; l; s ð7Þ

Xijklsl 6 Ykl; 8i; j; k; l; s ð8Þ

Xijklsl 6 ð1� YslÞ; 8i; j; k; l; s ð9Þ

Zij þ Ykl þ ð1� YslÞ � Xijklsl 6 2; 8i; j; k; l; s ð10Þ

Ykl; Zij; Xijklsl 2 f0;1g 8i; j; k; l; s ð11Þ

In the above model, Eqs. (1) and (2) show the calculation of the total
intercellular movement cost and the machine breakdown cost,
respectively. Eq. (3) is the objective function, which seeks the min-
imization of total cost of intercellular movement and machine
breakdown. Eq. (4) indicates that only one process routing will be
assigned to each part. Eq. (5) assigns the upper and lower limits
of the cell size. Eq. (6) provides a restriction that each machine will
be assigned to exactly one cell. Eqs. (7)–(9) ensure that if one of the
primary binary variables takes has a zero value, then their corre-
sponding new variables will take a zero value as well. Eq. (10) en-
sures that if all of the primary variables take unit values, then
their corresponding new variables take unit values as well. Eq.
(11) indicates that Ykl, Zij and Xijklsl are 0–1 binary decision variables.

Although the original objective function has been transformed
into linear form, which makes several linear programming soft-
ware empowered to solve this model, the large number of binary
variables and constraints, makes it difficult to obtain optimal solu-
tions when the problem sizes increase. Developing good heuristic
approaches is more appropriate than using the exact method in
terms of solution efficiency, especially for large-sized problems.
This paper, thus, presents an efficient tabu search algorithm
possessing the features of both the tabu search and the genetic
algorithm and is collaborated with the delicate design of neighbor-
hood solution searching. The proposed algorithm is described and
explained in detail in the next section.
3. Proposed tabu search (TS) algorithm

When designing a heuristic search algorithm, there are several
important things to keep in mind. The first is to develop a mecha-
nism for searching the neighborhood solutions for improvement.
Since the neighborhood is what will be searched next, the choice
of the neighborhood function will strongly influence the direction
that the search takes. Another item that needs to be considered is
the mechanism for allowing the technique to escape local optima
and settle only on a global optimum.

TS is a meta-heuristic algorithm developed by Glover which has
been successfully used to generate solutions for a wide variety of
combinatorial problems. The main ideas of TS are to avoid recently
visited area of the solution space and to guide the search towards
new and promising areas. Non-improving moves are allowed to es-
cape from the local optima, and attributes of recently performed
moves are declared tabu or forbidden for a number of iterations
to avoid cycling. For more details about the tabu search methodol-
ogy, see Glover (1989) and Glover (1990).

In GA, some initial solutions are selected to be parents to gener-
ate offspring via the crossover operator. All the solutions are then
evaluated and selected based on Darwin’s concept of survival of
the fittest. The process of reproduction, evaluation, and selection
is repeated until the stopping criterion is met. In GA, the mutation



Table 2
Similarity matrix for machines in numerical example.

Machine 1 2 3 4 5 6 7 8 9

1 –
2 0.15 –
3 0.42 0.00 –
4 0.18 0.17 0.70 –
5 0.00 0.34 0.24 0.48 –
6 0.16 0.72 0.00 0.00 0.00 –
7 0.17 0.32 0.00 0.23 0.00 0.00 –
8 0.00 0.00 0.00 0.43 0.68 0.00 0.18 –
9 0.00 0.00 0.00 0.00 0.58 0.32 0.26 0.00 –

Table 3
Machine reliability information for the numerical
example.

Machine Breakdown cost MTBF (min)

M1 900 5400
M2 2000 3060
M3 2000 4380
M4 1600 3600
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operator is usually applied to solutions at hand with a certain
probability to escape from local solutions and/or to prevent prema-
ture convergence. This special feature of the mutation operator
provides a higher degree of diversification in the solution searching
process. It is expected that the synergy effects from both the TS and
the GA can be appreciated through a proper collocation of both
techniques.

The proposed TS procedure consists of two stages: the initial solu-
tion construction and the improvements stage. The similarity coeffi-
cient-based method (SCM) is adapted in the first stage to produce
good initial solutions, while the TS continuously improves and gen-
erates more effective solutions through the neighborhood moves in
the second stage. The details of these procedures are given below.

3.1. Initial solution construction

When generating the initial solutions, the SCM-based procedure
follows three steps: (1) formation of machine cells; (2) selection of
routings for each part; and (3) formation of part families.

3.1.1. Formation of machine cells
The part-based SCM of Kusiak and Cho (1992) and the machine-

based SCM of Won and Kim (1997) are the two most widely used
generalized similarity coefficient methods for considering alterna-
tive process routings. They are an extension of the Single Linkage
Clustering Algorithm (SLCA) of McAuley (1972). Compared to the
machine-based, the part-based SCM suffers from a computational
burden since the number of parts in a cell formation problem is
usually much greater than the number of machines. The ma-
chine-based SCM is adapted in this research.

According to Seifoddini and Djassemi (1995), incorporation of
production volume into the similarity measures increases the
chance of components with high production volumes being pro-
cessed within a single cell. As a result, there will be fewer intercel-
lular movements and lower material handling costs. Won and
Kim’s machine-based SCM is thus modified to incorporate the pro-
duction volume information. Consider a specific machine-part ma-
trix with alternative routings and the information of production
volume, the corresponding similarity matrix for machines can be
obtained by using the following formula:

Sij ¼
Nij

Ni þ Nj � Nij
ð12Þ

where
M5 1500 4560
M6 1800 3720
Sij
 similarity coefficient between machines i and j
M7 1400 4260
Ni

Pp

k¼1Vkak
i ,
M8 1700 3480
Nj

M9 1500 3900
¼
Pp

k¼1Vkak
j ,
Nij
 ¼
Pp

k¼1Vkak
ij
P
 number of parts

Vk
 production volume of part k�
 PV 75 130 110 145 110 105 140 115

PN P1 P2 P3 P4 P5 P6 P7 P8
ak
i

RN R1 R2 R3 R1 R2 R3 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R3 R4 R1 R2
1 if i 2 some routing of part k
0 otherwise�
M2 1 1 1 1 1 1 1 1 2 1
ak
j

M6 2 2 3 2 2
1 if j 2 some routing of part k
0 otherwise�
M7 2 3 2 2
ak
ij
M1 1 1 1 1 1 1 1 1 1 1 1

1 if i; j 2 some routing of part k synchronously
0 otherwise
M3 2 2 2 2
M4 2 2 3 3 3 2 2 2

M5 3 2 3 2 2 3 4 3 3
M8 3 4 3 4 4 4 5 3 3 4
M9 4 3 3 3 4 4 3 4

Fig. 1. Assignment of machines.
After calculating the similarity matrix for each pair of machines, the
initial machines assignment is generated by using the following
rule: the higher similarity measure a pair of machines has, they
should be placed in the same cell with higher priority. This process
is repeated until all machines have been assigned to cells. Consider
the numerical example with alternative process routings in Table 1.
The corresponding similarity matrix for machines can be obtained
by using Eq. (12) and is listed in Table 2.

Suppose there are two cells to be formed. The largest coefficient
in the similarity matrix of Table 3 is 0.72, indicating that machines
2 and 6 must be assigned to cell 1. The second largest coefficient in
the matrix, 0.70, appears in pair (4, 3). Because machines 3 and 4
have not been assigned to any cell, they are assigned to cell 2. Pair
(8, 5) is the next choice. When determining to which cell machine
5 should be assigned, the similarity coefficients of machine 5 with
machines in each cell are examined respectively. For cell 1, the
largest similarity coefficient with machine 5 appears in machine
2, which is equal to 0.34. For cell 2, the largest similarity coefficient
with machine 5 appears in machine 4, which is equal to 0.48. Ma-
chine 5 is thus assigned to cell 2 together with machines 3 and 4.
By repeating the same logic, it can finally be determined that ma-
chines 2, 6 and 7 should be assigned to cell 1; while machines 1, 3,
4, 5, 8 and 9 are assigned to cell 2. The sample problem displayed in
Table 1 is thus rearranged as shown in Fig. 1.

3.1.2. Selection of routings for each part
The next task deals with assigning a routing for each part after

the machine cells have been obtained. The part routings are



PV 110 105 115 75 130 110 145 140

PN P5 P6 P8 P1 P2 P3 P4 P7

RN R1 R1 R2 R1 R1 R1 R1 R1

M2 1 1 1

M6 2

M7 2 2

M1 1 1 1 1 1

M3 2 2

M4 2 2 3 2

M5 3 3 3 3

M8 3 4 4 4

M9 3 4 4

TBC 608 772 523 405 700 530 925 773

Inter_C 550 525 0 0 0 0 0 0

TC 1158 1297 523 405 700 530 925 773

Fig. 3. Initial solution matrix obtained.
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assigned to machine cells that would result in the least cost of
intercellular movement and the machine breakdown. The unit
intercellular movement for each trip made is assumed to be five,
and machine breakdown information such as shown in Table 3
has to be given in order to calculate the cost. The part routing
assignment procedure is described below:

Step 1: Read the results of machine cells formed by the machine-
based similarity matrix.
Step 2: For each part with alternative routings, find the routing
that will result in the least sum of the intercellular movement
cost (Inter_C) and the machine breakdown cost (TBC). If a tie
happens, make a random selection.
Step 3: Repeat Step 2 until the process routing has been deter-
mined for each part. Results of machines assignment shown
in Fig. 2 are used to demonstrate the above procedure.

3.1.3. Formation of part families
Wu, Chang, et al. (2008) presented a simple procedure for

assigning machines to manufacturing cells in which the number
of voids and exceptional elements – major components comprising
the formula of grouping efficacy – are explicitly considered. Instead
of using this procedure for assigning machines to cells, their ap-
proach is adapted for assigning parts to cells in this study. The pro-
cedure is summarized as follows:

Step 1: Read the results of machines assignment and routing
selection for each part.
Step 2: For each part, find the cell to which a part assignment
will result in the least sum of number of exceptional elements
and the number of voids. If a tie happens, assign the part to a
cell with the least number of voids.
Step 3: Repeat Step 2 until all parts have been assigned to cells.

Results of machines assignment and routings selection shown
in Fig. 2 are used to demonstrate the above procedure. After calcu-
lating the sum of numbers of voids and exceptional elements for
each part-cell combination, it can be observed in Fig. 3 that parts
5, 6 and 8 are assigned to cell 1, while parts 1–4 and 7 are assigned
to cell 2. The initial solution matrix for this CF problem has been
PV 75 130 110 145

PN P1 P2 P3 P4

RN R1 R2 R3 R1 R2 R3 R1 R2 R1 R2

M2 1 1 1 1

M6 2

M7

M1 1 1 1 1 1 1

M3 2 2 2 2

M4 2 2 3 3 3

M5 3 2 3 2 2 3 4

M8 3 4 3 4 4 4 5

M9 4 3 3

TBC 405 573 488 700 703 807 530 532 925 1116

Inter_C 0 375 375 0 650 650 0 0 0 0

TC 405 948 863 700 1353 1457 530 532 925 1116

Fig. 2. Selection
generated and shown in Fig. 3 with total intercellular movement
cost 1075 and machine breakdown cost 5236.
3.2. Solution improvements

The initial solution generated in Section 3.1 is to be improved
through the tabu search iteratively to produce more effective solu-
tions. The elements comprising the proposed tabu search algo-
rithm are described below.
3.2.1. Configuration
An easy way to represent a configuration of a feasible solution

of the CF problem is a string, the size of which is equal to the num-
ber of machines, as shown in Fig. 4. In such a configuration, the jth
bit of the string stores the identifier of the cell to which the ma-
chine is assigned. From the string (2, 1, 2, 2, 2, 1, 1, 2, 2), it is known
that machines 2, 6, 7 are assigned to cell 1, while machines 1, 3, 4,
5, 8 and 9 are assigned to cell 2.
110 105 140 115

P5 P6 P7 P8

R1 R2 R1 R2 R1 R2 R3 R4 R1 R2

1 1 1 1 2 1

2 3 2 2

2 3 2 2

1 1 1 1 1

2 2 2

3 3

3 3 4

3 4 4 3 4

608 661 772 499 773 815 1004 931 244 523

550 1100 525 1050 0 700 700 1400 575 0

1158 1761 1297 1549 773 1515 1704 2331 819 523

of routings.



Machine # 1 2 3 4 5 6 7 8 9

Cell # 2 1 2 2 2 1 1 2 2

Fig. 4. Configuration of a feasible solution to the CF problem.

Fig. 5. Machine mutation strategy.
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3.2.2. Neighborhood solution searching
In this study, the neighborhood of a given solution is defined as

the set of all feasible solutions reachable by an insertion-move. The
insertion-move is an operation that moves a machine j from its
current cell i (source cell) to a new cell i0 (destination cell). The
new move is denoted as (i0, j). For the insertion-move, a move that
results in the most improvement in the objective function value
from the current solution is selected – that is:

Zði0; jÞ ¼ Maxfobjði
0 ;jÞ � objði;jÞ; 8i; i0 2 NF and

ðR NT or 2 NAÞ; i0 – i; 8j 2 Mg ð13Þ

where NF is the set of solutions satisfying the upper and lower limits
of cell size; NT is the set of tabu list; NA is the set of solutions satis-
fying the aspiration criterion; M is the set for machines. The above
formula implies that every possible move will be evaluated as long
as it is not in tabu status and it satisfies the upper and lower limits
of the cell size.

3.2.3. Tabu list
In the process of tabu search, certain moves are characterized as

tabu for some iterations (tabu tenure/tabu list size) to avoid repe-
tition of previously visited solutions. In this paper, a tabu list
TL[m][NC][NC] with a three-dimensional array (m � NC � NC) is
used to check if a move from a solution to its neighborhood is for-
bidden or allowed, where m is the number of machines and NC is
the number of cells. If machine j moves from its current cell i to
a new cell i0, then moving machine j from cell i0 to cell i will be for-
bidden for a certain number of iterations, which is equal to the
tabu list size (e.g. TL[j][i

0
][i] = tls). Previous studies have shown that

the best tabu list size is between 5 and 12 in many applications,
with 7 being the most recommended one (Glover, 1990). This sug-
gestion is followed in this study.

3.2.4. Aspiration criterion
The tabu restriction may be overridden if the move will result in

a solution that is better than the best solution found thus far. This
aspiration criterion is applied in the proposed algorithm.

3.2.5. Machine mutation strategy
The mechanism of mutation aims at maintaining diversity in

the population so that the large areas of the space are searched.
In this study, when the number of moves has not been improved
within a certain number of iterations, mut_check, the machine
mutation strategy is implemented by reassigning a machine to
any cells other than the current one based on a prescribed proba-
bility c. That is, all machines are probable to change cell when ma-
chine mutation is applied. For each machine in the incumbent
solution, a random number from (0, 1) is first drawn. If the value
is greater than c, then the machine is assigned to another randomly
determined cell; otherwise, it stays in the current cell. Note that
when machines change cell, the resulting solution would not be ac-
cepted unless it satisfies the upper and lower limits of cell size.
Through this strategy, the search is able to explore a large solution
space, thereby enhancing the possibility of finding the optimum
solution in a very short time. The procedure of the machine muta-
tion strategy in the pseudo-code format is shown in Fig. 5. The va-
lue of mut_check is determined by the formula, m(NC � 1)/2; while
c is set to 0.8 in this study.
3.2.6. Stopping criterion
The proposed solution procedure will be terminated if a maxi-

mum number of iterations Nmax has been reached, or the solution
has not been improved within a certain number of iterations stag_
check. After intensive testing, the values of Nmax and stag_check are
set at 9000, 3000 (one third of Nmax), respectively.

3.3. Proposed algorithm TSM

This section describes the proposed TS algorithm with mutation
(TSM) in detail. It is evident that the number of cells to be formed
will affect the grouping solutions obtained in the CF problem. Un-
like many researches in literature where the number of cells to be
formed is prescribed beforehand, the number of cells resulting in
the best objective values will be automatically calculated and used
in the proposed TSM. However, to preserve flexibility, users are
permitted to specify the preferred number of cells when imple-
menting the algorithm. Before explaining the solution procedure,
notations in addition to those in Section 2.2 are introduced.
Nmax
 maximum number of iterations

counter_stag
 number of times the incumbent solution did

not improve

counter_mut
 number of times the mutation strategy has

been implemented

NT
 set of tabu list

NA
 set of solutions satisfying aspiration criterion

NF
 set of solutions satisfying the upper and lower

limits of the cell size

m0
 initial solution of machines assignment

mc
0

current solution of machines assignment

m
 neighborhood solution of machines assignment

m*
 incumbent solution of machines assignment of

current cell size

m**
 best solution of machines assignment so far

p0
 initial solution of parts assignment

pc
0

current solution of parts assignment

p
 neighborhood solution of parts assignment

p*
 incumbent solution of parts assignment of

current cell size

p**
 best solution of parts assignment so far

r0
 initial solution of routings selection

rc
 current solution of routings selection

r
0

neighborhood solution of routings selection

r*
 incumbent solution of routings selection of

current cell size

r**
 best solution of routings selection so far
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S0 objective function value of initial cell configuration
(m0, p0, r0)

Sc objective function value of current cell configuration

(mc, pc, rc)
S
0

objective function value of neighborhood cell
configuration (m

0
, p
0
, r
0
)

S*
 objective function value of incumbent cell configuration
(m*, p*, r*)
S**
 objective function value of best cell configuration
(m**, p**, r**)so far
Table 5
Parameters setting for TSM.

Parameter Value

tls 7
mut_check m(NC � 1)/2
c 0.8
Nmax 9000
stag_check Nmax/3
The proposed algorithm TSM is described as follows:

Step 1: Set NC ¼ dm=Ume.
Step 2: Generate initial cell configuration (m0, p0, r0) using the
initial solution construction procedure in Section 3.1. Calculate
the objective function value S0.
Step 3: Initialization: Let counter_iter = 0, counter_stag = 0, mc 
m0, pc p0, rc r0, Sc S0, S* S0, NT = £.
Step 4: If counter_iter 6 Nmax and counter_stag 6 stag_check,
repeat Steps 5–10; otherwise, go to Step 11.
Step 5: If counter_mut P mut_check, then apply the mutation
operator, as mentioned in Section 3.2.5, to generate a new cell
configuration (mc, pc, rc) and let counter_mut = 0.
Step 6: Search for a best neighborhood cell configuration
{(m

0
, p

0
, r
0
)|m

0 2 NF and m
0
R NT or m

0 2 NA} by performing the
insertion-move. Calculate the objective function value S

0
.

Step 7: Update tabu list NT.
Step 8: If S

0
< S* then S* S

0
, m* m

0
, p* p

0
, r* r

0
, counter_

stag = 0, counter_mut = 0; otherwise, counter_stag = counter_
stag + 1, counter_mut = counter_mut + 1.
Step 9: Let Sc S

0
, mc m

0
, pc p

0
, rc r

0
.

Step 10: counter_iter = counter_iter + 1, go to Step 4.
Step 11. If S* < S** then S** S*, m** m*, p** p*, r** r*, NC =
NC + 1, go to Step 2; otherwise report the best solutions so far,
and stop the algorithm.

Note that algorithm TSM consists of a TS procedure that will be
repeatedly applied until a cell formation resulting in the best
objective function values, e.g., minimization of the total intercellu-
lar movement cost and the machine breakdown cost in this study,
has been found. In Step 1, the initial number of cells is set at the
nearest integer that is greater than m/Um; it gradually increases
by increments of 1 as long as solution improvement is observed
in Step 11. Every time the number of cells is increased, another
TS procedure will be started. For a specific cell size, the best routing
selection and grouping plan for parts and machines will be calcu-
lated iteratively and obtained in Steps 5–10. All algorithmic param-
eters and counters are initialized in Step 3. Initial solutions of
machine cells, routing selections, and assignments to machine cells
are generated in Step 2. As long as the value of counter_mut is smal-
Table 4
Data of test problems.

No. Original source

1 Bhide et al. (2005)
2 Kim, Baek, and Baek (2004)
3 Sofianopoulou (1999)
4 Sofianopoulou (1999)
5 Kazerooni, Luong, and Abhary (1997)
6 Sofianopoulou (1999)
7 Lee, Luong, and Abhary (1997)
8 Hu and Yasuda (2006)

BC: machine breakdown cost (1000�1700) (rand()%8 + 10) � 100);
MTBF: mean time between failure (800�5000) (rand()%4201 + 800);
PT: production times (2�6) (rand()%5 + 2).
ler than mut_check, a new neighborhood solution is generated
through the insertion-move in Step 6; otherwise, gene-by-gene
mutation is applied to machines to generate a new solution with
higher degree of diversification in Step 5. If the newly generated
neighborhood solution results in a better objective function value,
the incumbent solution will be updated and the counter_stag and
counter_mut will be set to 0 in Step 8; otherwise, the counter_stag
and counter_mut are increased by 1. The solution process repeats
until any of the two stopping criteria in Step 4 is met. The incum-
bent solution obtained at this point represents the best solution of
the current cell size. If larger cell sizes are considered, it is possible
that better solutions may be obtained. The incumbent solution of
current cell size is thus compared to the best solution found so
far in Step 11 to determine whether to increase the cell size by 1
and restart another TS procedure to continue the search or to re-
port the best solution found and terminate TSM.

For users having specific preferences in cell size, the proposed
algorithm can save considerable amounts of run time since it will
skip the process of iteratively searching for the cell size that will
result in the best objective function values. The savings in run time
become even more significant as the cell size increases.
4. Computational results

To validate the quality of the solutions provided by the pro-
posed algorithm TSM, we have to prepare suitable test instances.
However, only a limited amount of research in the context of cell
formation problem has dealt with machine breakdown or reliabil-
ity issues, suitable test problem can very rarely be found from the
literature. Eight test instances, as shown in Table 4, are solved in
this research. Among them, two (#1 and #5) are drawn from the
literature and have been solved optimally in previous studies (Jabal
Ameli & Arkat, 2008). The remaining six problems are prepared by
adding self-created data such as machine breakdown cost (BC),
mean time between failure (MTBF), and production time (PT) to
test instances chosen from the literature which have machine-part
matrices and process routing data ready. Detailed data of each new
test problems are available under request to the authors.
Size (m � p � r) Randomly generated data

9 � 8 � 20 –
10 � 10 � 25 BC, MTBF
12 � 20 � 26 BC, MTBF, PT
14 � 20 � 45 BC, MTBF, PT
17 � 30 � 63 –
18 � 30 � 59 BC, MTBF, PT
30 � 40 � 89 BC, MTBF, PT
30 � 70 � 149 BC, MTBF, PT



Table 6
Results comparison of TSM and optimal solutions by LINGO 8.0.

Test instances LINGO 8.0 software (B&B) Proposed method (TSM)

No. Source Size (m � p � r) Lm Um NC Inter_C TBC TC CPU (s) NC Inter_C TBC TC Std. CPU(s)

1 Bhide et al. (2005) 9 � 8 � 20 2 6 2 550 5146 5696* 30 2 550 5146 5696* 0 0.303
2 This study 10 � 10 � 25 2 5 2 380 1539 1919* 1 2 380 1539 1919* 0 0.366
3 This study 12 � 20 � 26 2 5 3 150 247 397* 21 3 150 247 397* 0 0.790
4 This study 14 � 20 � 45 2 5 3 125 213 338* 9226 3 125 213 338* 0 1.187
5 Kazerooni et al. (1997) 17 � 30 � 63 2 5 4 4300 45864 50164* 323 4 4300 45864 50164* 0 1.775
6 This study 18 � 30 � 59 2 7 3 165 305 470* 1053 3 165 305 470* 0 1.250
7 This study 30 � 40 � 89 2 7 5 2925 38192 41117* 7198 5 2925 38192 41117* 0 3.296
8 This study 30 � 70 � 149 2 8 4 1160 1205 2365 90000 4 895 1204 2099 0 8.467

* Global optimum.

Table 7
Comparison of computational results for ignoring and considering machine reliability.

Test instances Ignoring reliability Considering reliability Cost decreased (%)

No. Source Size (m � p � r) Lm Um NC Inter_C TBC TC CPU(s) NC Inter_C TBC TC CPU (s)

1 Bhide et al. (2005) 9 � 8 � 20 2 6 2 525 5366 5891 0.315 2 550 5146 5696 0.303 3.31
2 This study 10 � 10 � 25 2 5 2 320 1667 1987 0.375 2 380 1539 1919 0.366 3.44
3 This study 12 � 20 � 26 2 5 3 145 265 410 0.765 3 150 247 397 0.790 3.08
4 This study 14 � 20 � 45 2 5 3 125 216 341 0.928 3 125 213 338 1.187 0.95
5 Kazerooni et al. (1997) 17 � 30 � 63 2 5 4 3800 46446 50246 1.593 4 4300 45864 50164 1.775 0.16
6 This study 18 � 30 � 59 2 7 3 160 323 483 1.203 3 165 305 470 1.250 2.72
7 This study 30 � 40 � 89 2 7 6 475 44152 44627 5.958 5 2925 38192 41117 3.296 7.87
8 This study 30 � 70 � 149 2 8 4 875 1316 2191 7.763 4 895 1204 2099 8.467 4.20
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Table 4 describes basic problem data and how the machine
breakdown cost (BC), mean time between failures (MTBF), and pro-
duction time (PT) data are created:

1. BC is set to be any number between 1000 and 1700.
2. MTBF is set to be any number between 800 and 5000.
3. PT is set to be any number between 2 and 6.

The proposed algorithm was coded in C++ using Microsoft Vi-
sual Studio 6.0 and implemented on a Intel(R) 1.66 GHz PC with
1 GB RAM. Due to the proposed method might have stochastic fea-
tures, five independent runs were performed for each test instance.
The intercellular movement unit cost for all instances is assumed
to be five. The computational results are compared with the opti-
mal solutions obtained by the LINGO 8.0 software. Parameter set-
tings for the proposed TSM are given in Table 5.
4.1. Results comparison

Eight test instances considering machine reliability are solved
by the proposed TSM and compared with the branch and bound
(B&B) algorithm with the LINGO 8.0 software. The maximum run
time is set to be 25 h when running the LINGO. The computational
results are summarized and compared in Table 6. The results show
that the proposed TSM is able to achieve global optimum in seven
out of eight test instances in less than 9 s. In addition, the standard
deviation for all test instances is equal to 0, which indicates that
TSM is able to consistently produce good solutions. As for test in-
stance #8, due to its giant problem size, even the LINGO is not able
to find the optimal solution after 25 h of running with the objective
value of 2365 obtained. In contrast, the proposed TSM results in a
final solution of 2099 in less than nine seconds, which is more than
10% better than the solution of LINGO in terms of solution quality.
The final solutions for all eight test problems obtained by TSM are
available under request to the authors.

Among the eight test instances, test instance #5 is a medium-
sized example. Jabal Ameli and Arkat (2008) solved this problem
using LINGO 8.0. Based on the data of the optimal machine-part
matrix that appeared in Table 6 of their article, the authors have
obtained 50,164 as the optimal objective function value. Jabal
Ameli and Arkat (2008) reported that it took about 3 h to obtain
the optimal solution. In contrast, the proposed TSM was able to
find the optimal solution in 1.775 s, illustrating the superiority of
TSM in solution efficiency over other approaches derived from
the literature.

To the authors’ knowledge, test instance #8 generated in this
study is the largest example that has ever been used in literature
in analyzing the cell formation problem with alternative process
routings and machine reliability considerations. Although it has
big size, it still can be solved by the TSM in less than 9 s. The sur-
prisingly good solution efficiency should be attributed to the syn-
ergy effects through a proper collocation of both TS and GA
techniques. It is also believed that several counters used in the
TSM procedure, such as the counter_stag and counter_mut, play
important roles in monitoring the situation of solution stagnancy
and controlling the timing for activating the mutation strategy,
which contribute to increase the quality and efficiency of the
solutions.
4.2. Ignoring reliability vs. considering reliability

Table 7 gives the computational results when the reliability is-
sue is considered in the model. From this table, it can be seen that a
greater number of intercellular movements have resulted in when
the machine reliability is considered, as opposed to the situation
where reliability concern is ignored. But as would be expected,
the machine break down cost (TBC) decreased, and so did the total
system cost (TC). Thus, the reliability consideration does have
meaningful effects on reducing the total system cost.
5. Conclusions

Very limited amount of articles have simultaneously considered
the issues of production volume, production sequence, machine
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reliability and alternative process routings in cell formation prob-
lem so far. Accounting for these factors and integrating them into
one model makes the CF problem complex but more realistic.
Although Jabal Ameli and Arkat (2008) have formulated a binary
integer programming model for solving this complicated problem,
the resulting long computer run time has motivated the authors of
this study to propose an efficient meta-heuristic algorithm. Since
both the tabu search and the genetic algorithm have had excellent
performances in solving many combinatorial optimization prob-
lems, the synergy effects of both heuristic approaches are antici-
pated in a hybrid algorithm designed to increase the quality and
efficiency of solutions. The proposed TS procedure consists of
two stages, the initial solution construction and the improvements
stage. The similarity coefficient-based method is adapted in the
first stage to produce good initial solutions, while the tabu search
continuously improves and generates more effective solutions
through the neighborhood moves in the second stage. Computa-
tional experiences of test problems from the literature as well as
those newly generated by this study show that the reliability con-
sideration has meaningful effects on reducing the total system
cost. Additionally, for the test problem which took the mathemat-
ical approach about 3 h to solve, this study is able to solve it opti-
mally in less than two seconds. Even the largest test problem that
has ever been used in the literature has been solved in less than 9 s.
The superiority of the proposed algorithm, TSM, in both solution
effectiveness and efficiency over other approach from the litera-
ture can be easily observed.

For future research, several other factors may be added into the
current model or even treat them as decision objectives. These fac-
tors may include the cell layout, intracellular machine layout and
the cell load variation.
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