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Competition, Dedicated Assets, and Technological
Obsolescence in Multistage Infrastructure

Investments: A Sequential Compound
Option Valuation

Yu-Lin Huang and Chia-Chi Pi

Abstract—Multistage investments are common in area-wide de-
velopments of privatized telecommunication networks and other
complex infrastructure systems. They represent an incremental
strategy that maintains flexibility in managing market risks, fund-
ing needs, and resource constraints in geographical expansions.
Though compound options can be used to valuate multistage in-
vestments, their valuation is complex when the project in question
requires upfront and interim investments in dedicated assets for
future expansions. The problem becomes more complex when in-
frastructure markets are competitive and the investment in ques-
tion is prone to rapid technological progress, which quickly makes
the currently best in-use technology obsolete. This paper develops
a European sequential compound call option pricing model to valu-
ate multistage investments and analyze how competition, dedicated
assets, and technological obsolescence influence the value of flexi-
bility in this incremental strategy.

Index Terms—Dedicated assets, multistage investment, sequen-
tial compound option, technological obsolescence, valuation.

I. INTRODUCTION AND BACKGROUND

D EDICATED assets play an important technological role
in long-term contracts. Williamson [1] defined dedicated

assets as “discrete additions to generalized capacity that would
not be put in place but for the prospect of selling a large amount
of product to a particular customer” (p. 532). When deploying
special-purpose technologies for future expansions, dedicated
assets are prone to expropriation risk. Reciprocal arrangements
are necessary to attract dedicated asset investments and ensure
the continuity of long-term trading relations.

Dedicated assets are prevailing in multistage infrastructure
investments, and reciprocal arrangements are common in build-
operate-transfer (BOT) projects. Huang [2, p. 103] found that
BOT concession agreements have a system of “concerted reci-
procity,” e.g., to protect the concessionaires’ rights to serve,
to manage market risk, and to assure full capital recovery.
Reciprocity is also important for privatized infrastructure firms.
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These firms are usually protected by licenses or long-term ex-
clusive concessions. To prevent the abuse of exclusivity rights,
the firms are subject to rate-of-return (ROR) or price-cap regu-
lation. According to Rees and Vickers [3], ROR regulation is a
form of guarantee forcing regulators to commit to future prices
that ensure full remuneration of service costs.

In monopolistic markets with perfect regulation, the pres-
ence of dedicated assets is irrelevant in investment valuation. As
Schmalensee [4] indicated in an idealized ROR regulation model
that assumes no competition and allows full capital recovery, the
net present value of all investments is invariant to depreciation
schedules. However, promoting competition is a primary policy
objective of infrastructure privatization. As Guislain [5, p. 228]
observed, many privatized telecommunication firms have long-
term concessions with time-bound exclusivity rights. This tem-
porary exclusivity is designed to recover stranded sunk assets
and phase out internal cross subsidizations. Once these tasks
are complete, existing networks become open to competition.
In addition, Huang and Pi [6] found that dedicated asset invest-
ments in area-wide infrastructure networks usually occur well
before actual expansions. Since future expansions are uncertain,
the recovery of dedicated assets comes with the risk of inter-
ruption and premature termination. This risk further increases
if assets are prone to competition and technological obsoles-
cence. According to Crew and Kleindorfer [7], competition can
render full capital recovery impossible if the economic depre-
ciation rate exceeds the accounting depreciation rate in ROR
regulation, or if technological progress causes market prices to
fall below the price ceiling in price-cap regulation. Newbery [8]
suggested that price-cap regulation by total element long-term
incremental cost (TELRIC) requires a sensible depreciation rate
to compensate for technological obsolescence.

Therefore, competition, dedicated assets, and obsolescence
warrant more attention in competitive markets with imperfect
regulations. This paper proposes a multifold European sequen-
tial compound call option (SCCO) pricing model to tackle these
issues. The sequential compound option concept is straightfor-
ward for multistage investments with voluntary expansion and
abandonment rights: investing in one area gives the concession-
aire an option to invest in the next area. The concessionaire will
invest in the next area only if that area’s underlying asset value
exceeds a critical level. This arrangement is typical of incremen-
tal geographical expansions in infrastructure developments. It
can be viewed as a one of the strategic options addressed by
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Myers [9]. According to Merton [10], a warrant on a portfo-
lio of stocks is less valuable than a portfolio of warrants on the
stocks. Hence, multistage investments are potentially more valu-
able than one-stage investments because they retain a sequence
of options in future expansions.

Researchers have recently applied real-option approaches
for valuating complex infrastructure investments. For instance,
Huang and Chou [11] developed a real-option approach to val-
uate the minimum revenue guarantees (MRG) of BOT projects.
They found intricate interactions between the MRG and the op-
tion to abandon. The finding is consistent with Trigeorgis’ [12]
work on real-option interactions. Wand and Min [13] evaluated
the interrelations of power generation projects. Damnjanovic
et al. [14] evaluated interconnectivity and flexibility in toll road
expansions. Huang and Pi [6] evaluated multistage BOT projects
requiring upfront and interim investments in dedicated assets.

Unlike the continuous investments assumed in theoretical
real-option models (e.g., Majd and Pinkyck [15], and Pindyck
[16]), the geographical expansions of infrastructure systems or
networks are discrete in time. Dixit and Pindyck [17] presented a
solution to a discrete-time two-stage investment problem using
dynamic programming and simulation. Huang and Pi [6] ex-
tended the two-stage problem to n-stage, and solved the n-stage
problem as an n-fold SCCO studied by Thomassen and Van
Wouwe [18], Lajeri-Chaherli [19], Agliardi and Agliardi [20],
and Lee et al. [21].

This paper extends Huang and Pi’s [6] work to consider the
influences of competition and technological obsolescence on
project value. The extension treats competition and obsoles-
cence explicitly as SCCO risk parameters, and derives the sen-
sitivities of the SCCO value regarding these parameters. The
extension provides new insights in valuation and concession de-
signs. It applies not only for stand-alone BOT projects, but also
for area-wide infrastructure network developments in privatized
infrastructure markets.

The remainder of this paper is as follows. Section II discusses
the model setup and assumptions. Section III presents a pric-
ing solution to n-fold European SCCOs. Section IV discusses
the properties of the solution. Section V presents a numerical
analysis using the solution. Section VI discusses implications
to infrastructure concession and regulatory designs. Section VII
offers a conclusion.

II. MODEL SETUP AND ASSUMPTIONS

This section outlines the setup and assumptions of the pro-
posed SCCO pricing model, including 1) measure of technolog-
ical obsolescence; 2) measure of competition level; 3) foldwise
constant parameters; and 4) European-style SCCOs.

A. Measure of Technological Obsolescence

Economic depreciation is a general measure of technologi-
cal obsolescence. Hotelling [22] defined economic depreciation
as the rate of decrease in asset value. Hulten and Wykoff [23]
indicated that a decrease in asset value comprises two effects:
vintage and aging. The vintage effect reflects technological ob-
solescence in the presence of new vintages with superior produc-

tion efficiency and quality. The aging effect reflects deterioration
in asset value due to wear and tear of the in-use asset.

The vintage and aging effects differ substantially in various
kinds of assets or cohorts of assets. The aging effect dominates
vintage effect in many building and civil engineering structures.
For instance, on the basis of depreciation charge and net book
value of fixed assets, Cowan [24] calculated that the average
asset life in the water industry is over 40 years. More generally,
Hulten and Wykoff [23] estimated that the annual depreciation
rate of nonresidential structures is 3%. In contrast, the vintage
effect dominates in the presence of technological progress. As
Newbery [8, p. 338] indicated, technology evolves so rapidly
that the cost of the currently least-cost option soon becomes out
of date in telecom privatization. In R&D projects, the vintage
effect determines the asset value so much that obsolescence risk
can be modeled directly as depreciation rate (see, e.g., Berk
et al. [25]). Finally, like competition, changing environmental,
quality, and safety regulations can reinforce the vintage effect if
they require early replacement of existing assets.

Researchers have suggested that the dividend payout rate in
financial options can be viewed as the depreciation rate in real
options (see, e.g., Remer et al. [26] and Lee et al. [21]). This
implies that the depreciation rate can be formally incorporated
in the underlying asset-value process of real options. However,
according to Hulten and Wykoff [23], there are several plau-
sible economic depreciation patterns. Dixit and Pindyck [17,
p. 199] showed that each assumed depreciation pattern has a
specific stochastic asset-value process, and Ross [27] developed
three option-pricing models based on alternative dividend pay-
out policies.

This paper assumes a constant percentage rate in economic
depreciation. Denote a constant depreciation rate by q, and the
initial value of the underlying asset by V . The instantaneous
change in the underlying asset value of an investment is then
given by

dV = −qV dt. (1)

The solution to this partial differential equation is as follows:

V (t) = V (0) exp(−qt). (2)

In this solution, propositional depreciation produces an expo-
nential decay in asset value. Hulten and Wykoff [23] indicated
that a cohort of assets exhibits near-exponential decay even
though individual assets can exhibit different depreciation pat-
terns. Domes [28] showed that efficiency decay in capital invest-
ment streams also exhibits near-geometric patterns. Therefore,
exponential decay is a reasonable approximation for infrastruc-
ture networks or systems because their asset bases generally
contain many kinds of assets.

B. Measure of Competition Level

To capture the influence of competition, further assume that
the underlying asset value of an investment follows the stochas-
tic differential equation in Black and Scholes [29]:

dVt = μVtdt + σVtdWt (3)
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where Vt denotes the stochastic asset value and Wt denotes the
standard Brownian motion. The drift term of this S.D.E. is μVt ,
where μ is a constant expected ROR in Vt . The diffusion term
is σVt , where σ is a constant standard deviation of the return.

According to Merton [10], [30], asset-return volatility is a
sufficient statistic for comparing the underlying business risks
of individual securities that have lognormal return distributions.
In the context of the capital asset pricing model (CAPM), Beaver
et al. [31] indicated that individual securities with a higher than
average beta (i.e., the sensitivity of individual security returns to
stock market returns) tend to have a higher than average variance
of return associated with diversifiable risk factors. For infras-
tructure firms, Alexander et al. [32] suggested that competition,
regulatory regime, industry structure, and operation diversity are
important risk factors. They found that infrastructure firms sub-
ject to price-cap regulation have average betas higher than firms
under ROR regulation, and the asset and equity betas of telecom
industries are higher than those of electricity, gas, and water
industries. Grout [33] suggested that price-cap regulation pro-
duces higher betas because it is less adaptive to cost variations.
Gaspar and Massa [34] assumed that firms with greater market
power and lower demand elasticity have more stable profit mar-
gins because they can pass on cost changes to customers. Gaspar
and Massa [34] found that competition significantly increased
the profit and equity return volatilities of deregulated airlines,
electricity, natural gas, and telecom industries. Therefore, asset-
return volatility is an effective measure of competition faced by
infrastructure projects or firms. Moreover, the positive correla-
tion between asset-return volatility and the CAPM beta implies
that competition tends to increase the cost of capital.

Further assume that economic depreciation does not affect
the smooth-passing property of the diffusion term in (3). Incor-
porating propositional depreciation into (3) gives

dVt = (μ − q) Vtdt + σVtdWt. (4)

The solution to this stochastic differential equation (S.D.E.)
is obtained by Ito’s Lemma (see, e.g., Shreve [35])

Vt = V0 exp
{

σWt +
[
(μ − q) − 1

2
σ2

]
t

}
. (5)

This solution has three important properties. First, economic
depreciation reduces the expected ROR by an exponential decay
factor e−qt , which agrees with the assumed depreciation pattern.
Second, competition can only affect the asset-return volatility
because V0 exp{σWt − (1/2)σ2t} is an exponential martingale
(i.e., its conditional expectation, given the currently available
information, is equal to its current value). Finally, the asset-
return volatility is a sufficient measure of competition and other
business risk because the return is log-normally distributed with
constants μ, q, and σ.

C. Foldwise Constant Parameters

To produce a flexible valuation model, this study assumes that
the values of parameters replicating the stochastic asset value
are time-dependent and foldwise constant. For instance, it is
reasonable to assume that the depreciation rate changes as the

Fig. 1. Modeling multistage investment as an n-fold SCCO.

asset base changes from one stage to another, and the change
in depreciation rate is not stochastic. Agliardi and Agliardi [36]
showed that the stochastic interest rate does not guarantee the
uniqueness of critical value that triggers the next investment.
Rubinstein [37] further noted that if the asset return follows a
geometric Brownian motion, it will have a deterministic mean
equal to the risk-free return. This is fundamental to the risk-
neutral pricing approach in Section III.

D. European-Style SCCOs

This paper treats multistage investments in the context of
European-style call options. In the European model, the con-
cessionaire can decide to invest only at the option maturity
dates. This setting reflects the practice of stipulating in con-
cession contracts that, to meet public interests, the construction
schedules of privatized works must be fixed in advance accord-
ing to prudent preconstruction planning and engineering (see,
e.g., Huang [2, p. 103]).

The European model is flexible in handling infrastructure
valuation problems. First, a simple multistage investment that
requires no dedicated assets and faces a low level of market or
completion risk can be modeled as a stand-alone n-fold Euro-
pean SCCO. Fig. 1 shows this model setup, where V0 is the
present underlying asset value, Ki is the ith SCCO exercise
price, and Ci is the ith SCCO value. The present value of the
nth fold SCCO gives the present value of multistage investment,
denoted by Cn .

Second, when dedicated assets are necessary, Huang and
Pi [6] showed that a multistage investment can be modeled
as a vanilla European call option plus a portfolio of European
SCCOs. Fig. 2 shows this model setup, where K{j},i denotes
the allocation of the ith stage dedicated asset investment to the
subsequent stage j,∀1 ≤ i < j ≤ n. The total present value of
the constituent call options, or

∑n
i=1 C{i},i shows the invest-

ment value. Since dedicated asset investments are allocated as
exercise prices of downstream SCCOs, their impacts on value
can be assessed analytically.

To study the possibility of premature exercise, it is also possi-
ble to model multistage investments as American-style SCCOs.
According to Merton [10], the propositional dividend payout
will always produce a positive probability of optimal premature
exercise at a sufficient underlying stock price. Since this study
assumes propositional depreciation, it follows that the European
model will result in a low bound of multistage investment value
if the underlying asset value turns out be larger than expected.

According to Roll [38], Geske and Johnson [39], and Carr
[40], American options can be valuated as a portfolio of
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Fig. 2. Modeling n-stage investment requiring dedicated asset investments [6].

European compound options. This valuation is derived from
the “pseudo-American option,” whose time to maturity is arti-
ficially subdivided into a finite number of intervals. It is also
possible to first subdivide each stage’s construction period into
finite intervals (e.g., one year), and simulate staged construction
schedules using a sequence of stand-alone pseudo-American
call options. With these optimal schedules, one can further val-
uate the entire investment by European SCCOs.

III. CLOSED-FORM SOLUTION

Based on the aforementioned analysis, this section derives a
pricing solution to n-fold European SCCOs. The notations for
SCCO are the followings:

C{n},n (V, t0) Time t0 value of an n-fold SCCO.
rτ Foldwise constant risk-free interest rate.
στ Foldwise constant asset-return volatility.
qτ Foldwise constant depreciation rate.
V (tn , n) Time tn value of the underlying asset of

C{n},n (V, t0).
K{n},i Time ti value of the exercise price of

C{n},n (V, t0).
V̄i,{n} ith equivalent asset value (EAV) of

C{n},n (V, t0).
g{n},i ith value of factor g of C{n},n (V, t0).
h{n},i ith value of factor h of C{n},n (V, t0).
ρi,j Correlation coefficient between variates i and

j.
Nm (·) m-variate normal cumulative distribution

function.
Note that the EAV is the critical asset value that triggers the

next investment. The EAV is found at C{n},n−i(V, ti) = K{n},i
using the boundary condition

C{n},n−(i−1) (V, ti) = max
[
0, C{n},n−i (V, ti) − K{n},i

]
,

for 1 ≤ i < n. (6)

That is, for an n-stage investment, the concessionaire will de-
cide to invest in the ith stage at time ti only if C{n},n−i(V, ti) ≥
K{n},i . Although the stochastic interest rate does not guarantee
the uniqueness of V̄i,{n}, Agliardi and Agliardi [36] and Lee
et al. [21] showed that it is guaranteed when the interest rate
and other parameters have deterministic values.

To obtain a solution, assume that there is no arbitrage in
frictionless markets (e.g., no transaction cost; see Ross ([41]).
Risk-neutral pricing then gives the present value (t = 0) of an
n-fold SCCO as follows:

Cn (V, t0) = e−r1 τ 1E∗
{

max [0, Cn−1 (V, t1) − K1 ]
F0

}
(7)

where E∗ denotes a conditional expectation operator. Equation
(7) states that given information available at time t0 , denoted by
F0 , there is a risk-neutral probability such that the discounted
underlying asset value of the SCCO is a martingale. Applying
the idiosyncratic asset value process in (4) gives the following
theorem.

Theorem (The n-fold European SCCO pricing formula):

C{n},n (V, t0)

= V{n},0e
−
∑n

u = 1
qu τu Nn{[g{n},i ]n×1 ; [ρ{n},i,j ]n×n}

−
n∑

m=1

K{n},m e−
∑m

u = 1
ru τu Nm{[h{n},i ]m×1 ; [ρ{n},i,j ]m×m}

(8)

where ∀ 1 ≤ i ≤ n

g{n},i =
ln

(
V{n},0/V i,{n}

)
+

∑i
u=1

(
ru− qu+ (1/2)σ2

u

)
τu√∑i

u=1 σ2
uτu

,

h{n},i =
ln

(
V{n},0/V i,{n}

)
+

∑i
u=1

(
ru − qu − (1/2)σ2

u

)
τu√∑i

u=1 σ2
uτu

and the correlation matrix is symmetrical, or ρi,j = ρj,i . ρi,j =

1,∀i = j, and ρi,j =
√

(
∑i

u=1 σ2
uτu )/(

∑j
u=1 σ2

uτu ) ∀1 ≤ i <
j ≤ n.

Proof: The proof of this formula is by induction: since a
SCCO is a call option on a call option, it follows that if (8) is
true for an n-fold SCCO, then it must be true for an (n + 1)-fold
SCCO. Huang and Pi [6] provided a detailed outline of the proof
of a similar solution, which assumes a propositional dividend
payout.

IV. PROPERTIES OF THE MULTIFOLD EUROPEAN SCCO VALUE

Geske [42] showed that the value of the twofold compound
call option decreases with exercise price, but increases with the
underlying asset value, variance of asset return, risk-free interest
rate, and time to expiration. Geske verified that under certain
technical conditions, most results agree with Merton’s [10] ra-
tional option pricing theory. Agliardi and Agliardi [20] extended
Geske’s analysis to incorporate time-dependent parameters.
Thomassen and Van Wouwe [18] extended Geske’s analysis
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to n-fold SCCOs. Lee et al. [21] further extended this analysis
to generalized n-fold sequential compound options.

This study focuses on the sensitivity of C{n},n (V, t0) to three
parameters: asset-return volatility, exercise price, and depreci-
ation rate. According to Thomassen and Van Wouwe [18] and
Lee et al. [21], SCCO value increases monotonically with asset-
return volatility. This implies that the value of flexibility created
by multistage investment is higher in more competitive business
environments. The following derives the partial derivatives of
C{n},n (V, t0) with respect to exercise price and depreciation
rate.

Proposition 1: From the pricing formula (8)

n∑
l=1

∂C{n},n (V, t0)
∂K{n},l

= −
n∑

l=1

e−
∑l

u = 1
ru τu Nl{[h{n},i ]l×1 ; [ρ{n},i,j ]l×l}. (9)

Proof: See Appendix A.
Proposition 2: From (8)

n∑
l=1

∂C{n},n (V, t0)
∂ql

= −
n∑

l=1

τlV{n},0e
−
∑n

u = 1
qu τu Nn{[g{n},i ]n×1 ; [ρ{n},i,j ]n×n}.

(10)

Proof: See Appendix B.
Given these partial derivatives, the following corollary pro-

vides two new results.
Corollary: C{n},n (V, t0) is as follows:
a) strictly decreasing and convex in Kl , for 1 ≤ l ≤ n;
b) strictly decreasing and convex in ql , for 1 ≤ l ≤ n.
Proof: See Appendix C.
Corollary a) indicates that, other things being equal, the

n-fold European SCCO value is a strictly decreasing function,
as well as a convex function, of its exercise price. This implies
that increasing dedicated asset investment will reduce project
value. Likewise, Corollary b) implies that obsolescence will
also reduce project value. However, the relationships between
σ, q, and K are not straightforward. The signs of related partials,
e.g., ∂2C{n},n (V, t0) /∂q∂σ and ∂2C{n},n (V, t0) /∂q∂K, are
ambiguous. Scenario analysis is recommended to analyze the
interplays of these parameters on project value case by case.

V. NUMERICAL IMPLEMENTATION

This section presents an algorithm structure and a numeri-
cal example to illustrate how to implement the SCCO pricing
model for multistage projects involving dedicated asset invest-
ments. The structure of the numerical example follows closely
the valuation framework in Fig. 2. Huang and Pi [6] provide
a real-world application of the framework for multistage BOT
projects.

TABLE I
BASE-CASE VALUATION MODEL

A. Algorithm Structure

A MATLAB program is written to support the implementation
on the basis of three major steps.

1) Specify risk parameters that influence the SCCO values of
the n-stage project, including S, K, T , n, rτ , qτ , and στ .

2) For j = 2, 3, . . ., n, find the EAVs of the {j}-fold SCCO
of the project. From (6), the EAVs are given by

V i,{j} =

⎧⎨
⎩

K{j},i ∀i = j

The asset value V given ∀1 ≤ i < j.
C{j},j−i(V, ti) − K{j},i = 0

First, find V j,{j} = K{j},j , and calculate g{j},j ,
h{j},j , and ρi,j . Then, work backward to find
V j−1,{j}, V j−2,{j}, . . . , V 1{j} by (8). MATLAB’s while
loop is used to find the asset values by a tolerance of
10−6 . The mvncdf(X) function is used to find the cumu-
lative probabilities of the multivariate normal cumulative
distributions.

3) Calculate C{j},j , the value of the {j}-fold SCCO, and
repeat Step 2 to find the total value of the n-stage project,
denoted as χn , given by

χn = C{1},1 (V, t0) +
n∑

j=2

C{j},j (V, t0)

where C{1},1 is the value of a plain vanilla European call option
of the first-stage investment. The vanilla option value is given by
an extension to Black and Scholes’ [29] classical pricing model
using the dynamic asset process of (4).

B. Base-Case Valuation Problem

Table I summarizes the structure of the base-case numerical
example. The hypothetical five-stage project is assumed to have
dedicated asset investments, and thus, treated as a onefold plain
vanilla European call option plus four European SCCOs, as ex-
plained in Section II and Fig. 2. The project’s total construction
period is 25 years, and each stage requires 5 years to com-
plete. Each stage has a nominal investment cost of 20, and 15%
of each investment is allocated to dedicated asset investment
(“K ratio”) for later stage(s). Once complete, each stage gener-
ates a present value of 24.

Table II summarizes other base-case parameter values: risk-
free rate 4%, inflation rate 3%, depreciation rate 5%, and
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TABLE II
BASE-CASE PARAMETER VALUES

TABLE III
BASE-CASE INVESTMENT VALUES

asset-return volatility 0.5. The depreciation rate mimics a higher
level of obsolescence than in nonresidential structures (i.e., 3%).
The asset-return volatility reflects a competitive business envi-
ronment. By comparison, Gaspar and Massa [34] estimated that
the average idiosyncratic volatility of the U.S. telecom industries
increased from 0.087 to 0.223 immediately after deregulation.

C. Investment Values

The first panel of Table III summarizes the base-case in-
vestment values. The fourth column of the panel shows that

the vanilla call option value is 9.51, the SCCO portfolio value
is 24.9, and the total project value is 34.41. The higher order
SCCOs are less valuable because their EAVs are higher, as
shown in the third column. EAVs are sensitive to changes in the
K ratio. When the K ratio moves from 15% to 30%, the EAVs
increase substantially, and the SCCO values decrease accord-
ingly. The increase in K ratio reduces the total value from 34.41
to 33.64, even though the vanilla option value increases due to
a reduction in its exercise price.

D. Value of Flexibility

Based on Merton [10, Theorem 7], this study defines the
value of flexibility of a multistage investment as the value of
a portfolio of options on the underlying assets minus the value
of an option on the assets. Hence, the value is given by the
total value of an n-stage project, or χn minus the value of the
project implemented by a single stage. The single-stage option
can be valuated as a plain vanilla call option explained in Step 3
of the algorithm structure using the n-stage’s corresponding
underlying asset value and exercise price.

For the numerical case, first calculate the value of the single-
stage option, which is assumed to complete at year five. Since
the base-case construction costs of the five-stage project include
a 3% inflation rate, to ensure economic equivalence, the exercise
price of the vanilla option is given by the present value formula
using the base-case construction costs as cash flows and the
inflation rate as discount rate. The adjusted exercise price is
76.05 at maturity (i.e., year five). With the present underlying
asset value of 120, the plain vanilla option value is calculated as
50.50.

Second, since the vanilla option does not consider economic
depreciation, the base-case value needs to be recalculated by a
zero depreciation rate. That is, specify qτ = 0 in Step 1 of the
algorithm structure. The adjustment reduces the EAVs substan-
tially, and increases the total investment value from 34.41 to
87.01. As a result, the value of flexibility of the adjusted five-
stage option is 36.51 (=87.01 − 50.50), which is positive and
consistent with Merton’s theory. Note that the value of flexibility
will be destroyed if depreciation is considered. The following
sensitivity and scenario analyses will examine this issue more
closely.

By comparison, one can treat the project as a simple SCCO
by ignoring the presence of dedicated assets, and recalculate
the value of flexibility. As explained in Section II, the simple
SCCO treats dedicated assets as pure sunk costs, meaning that
each fold has an exercise price of 20. By the same algorithm,
the value of the simple SCCO is calculated as 82.01 under
zero depreciation rate. The corresponding value of flexibility is
31.51 (=82.01 − 50.5), which is lower than that of the adjusted
base case. This comparison shows that ignoring the existence
of dedicated assets can produce substantially different valuation
outcomes.

E. Sensitivity Analysis

1) Increasing q: Applying Corollary b) directly, Fig. 3 further
plots the base-case value against the plain vanilla option
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Fig. 3. Sensitivity with respect to q.

Fig. 4. Sensitivity with respect to σ.

value in terms of increasing q. Increasing q reduces value,
and the value of flexibility turns negative when q is over
2%. Other things being equal, rapid technological progress
can render the flexibility of multistage investments
worthless.

2) Increasing σ: Fig. 4 plots the vanilla option value against
all other values in terms of increasing σ. It shows that
multistage investment is more valuable when the asset
return is more volatile, meaning that flexibility is more
valuable in more competitive environment. The value of
flexibility remains positive and stable in the adjusted base
case and the simple SCCO, but the original base-case
value is below the vanilla option value due to depreciation.
This confirms that obsolescence can destroy value. The
adjusted base case produces a higher value of flexibility
than the simple SCCO, since it links dedicated assets to
future expansions. Future expansions are only valuable
if their underlying asset values can justify their exercise
prices, including allocated dedicated asset costs.

Fig. 5. Sensitivity with respect to K .

Fig. 6. Sensitivity with respect to the K ratio.

3) Increasing K or the K ratio: Applying Corollary a), Fig. 5
shows that increasing K in the base case reduces value.
In general, increasing (decreasing) embedded sunk costs
reduces (increases) values. For instance, the eighth col-
umn of Table III shows that as the K ratio increases from
15% to 30%, the vanilla option value increases and the
SCCO portfolio value decreases. Fig. 6 further shows that
the total value decreases monotonically when the K ratio
increases in the base case. This means that the decrease
in the SCCO portfolio value surpasses the increase in the
vanilla option value.

F. Scenario Analysis

1) Changing σ and the K ratio: In Fig. 6, the sensitivity of the
total project value with respect to the K ratio is relatively
small. Fig. 7 further shows that as the σ approaches 0.3,
the investment value becomes little variant to the K ratio.
Other things being equal, the influence of σ dominates the
influence of the K ratio in competitive or risky business
markets. Note that the total value increases monotonically
in the K ratio when the σ value is less than 0.3. This means
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Fig. 7. Scenario analysis with respect to the K ratio and σ.

Fig. 8. Scenario analysis with respect to the K ratio and q.

that the increase in the plain vanilla option value surpasses
the decrease in the SCCO portfolio value.

2) Changing q and the K ratio: In Fig. 8, increasing q gradu-
ally destroys the investment value, and when the q exceeds
10%, the value becomes almost invariant to the K ratio.
Thus, the influence of q dominates the influence of the
K ratio even when the obsolescence rate is modest. For
comparison, Hulten and Wykoff [23] estimated that the
average annual depreciation rate of computing equipment
is about 30%.

3) Changing σ and q: In Fig. 9, increasing q destroys the
investment value even when the level of σ is high, e.g., 0.6.
Hence, the influence of q dominates the influence of σ in
the presence of both competition and rapid obsolescence,
e.g., in telecom markets.

4) Changing K, the K ratio, σ, and q: As in Siegel et al. [43],
Table IV summarizes the option values per $1 of invest-
ment cost under various scenarios. These values increase
substantially when the V/K ratio increases from 0.8 to 1.2,
implying that the SCCO is more valuable “in the money”

Fig. 9. Scenario analysis with respect to σ and q.

TABLE IV
OPTION VALUES PER $1 OF INVESTMENT COST

(i.e., the underlying asset value is higher than the nominal
construction cost). In addition, the option values are more
sensitive to the change of the parameter values when the
SCCO is “out of the money” (i.e., the underlying asset
value is lower than the nominal construction cost). This
agrees with Siegel et al.’s [43] finding in the valuation
of offshore oil properties. However, the option values are
destroyed when the q increases from 5% to 15%. Finally,
the option values are not monotonic in the K ratio when
the q is at 10% or 15%. When the q is at 15%, these values
tend to increase with the K ratio. Therefore, postponing
dedicated asset investments tend to increase project values
in an environment of rapid technological obsolescence.
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VI. IMPLICATIONS TO CONCESSION AND

REGULATORY DESIGNS

The foregoing numerical implementation shows that the
SCCO model is viable for the valuation of complex multistage
infrastructure investments. The results provide some insights in
concession and regulatory designs under two common compe-
tition policies in infrastructure privatization.

1) Competition in the field: When policy makers promote
head-to-head competition in the market, e.g., in the tele-
com sector, investors should have full discretion to de-
velop their investment programs in order to maximize the
value of flexibility. In an environment of rapid technolog-
ical changes, policy markers can focus on reciprocal ar-
rangements to manage dedicated assets and obsolescence
risk by, e.g., accelerated depreciation schedule. If the
TELRIC is used, then a higher cost of capital can be al-
lowed to compensate for obsolescence risk and maintain
project value.

2) Competition for the field: When policy makers promote
competition for the market by long-term exclusivity rights,
and the market is truly monopolistic with trivial demand-
side risk, the focus is also on reciprocal arrangements
to manage dedicated assets and obsolescence risk. If the
market is not monopolistic (e.g., facing intermodal compe-
tition in the transportation sector) and/or the demand-side
risk is substantial, then policy makers can grant the in-
vestor voluntary expansion and abandonment rights to fa-
cilitate multistage investments and improve project value.

One crucial question remains: how to justify these recipro-
cal arrangements if they involve anticompetitive practices? The
answer centers on if the arrangements can serve public inter-
ests. The following observations derive, largely, from the SCCO
analysis.

1) Long-term exclusivity rights: Long-term exclusivity rights
can limit competition and reduce the value of flexibility.
However, according to Gaspar and Massa [34], competi-
tion can increase asset-return volatility. Other things being
equal, the extent to which exclusivity rights protect an in-
frastructure firm from competition is the extent to which
they will reduce the firm’s return volatility. This, in turn,
reduces the firm’s asset beta, and thus, cost of capital,
which eventually reduces service price and serve public
interests.

2) Voluntary expansion and abandonment rights: These
rights are basic tools to facilitate multistage investment
in BOT projects. Based on the principle of reciprocity, the
grant of these rights should stipulate on the concession-
aire’s acceptance of a lower required ROR. That is, other
things being equal, to the extent that expansion and aban-
donment rights increase the value of flexibility, the cost of
capital should be reduced accordingly.

3) Commitment for future prices and capital recovery: Ac-
cording to Alexander et al. [32], ROR regulation produces
lower asset betas than price-cap regulation because the
former is more adaptive to cost changes, and thus, can
reduce revenue volatility. If revenue volatility can be re-
duced, then according to Brealey and Myers [44], the im-

pact of operating leverage (i.e., the commitment to fixed
costs) on asset beta is reduced. If the project in question
involves dedicated asset and technological obsolescence,
then the reduction in asset beta is not trivial because both
of them increase operating leverage. Thus, other things
being equal, to the extent that government commitment
for future prices reduces revenue volatility is the extent it
will reduce asset beta. Moreover, if full capital recovery
is assured by embedding in the rate base all dedicated as-
sets and other fixed costs, as in Schmalensee [4], then the
firm’s cost of capital is minimal.

VII. CONCLUSION

Multistage investment is an incremental strategy in geograph-
ical expansions of infrastructure networks or systems. This strat-
egy creates a level of flexibility that is valuable in managing
demand-side risks, but faces great challenges when future ex-
pansions require upstream investments in dedicated assets prone
to obsolescence risk. This paper develops a multifold European
SCCO valuation approach to highlight these issues. This ap-
proach provides a viable analytical framework for modeling
and valuating multistage investments, and offers new insights
into the effects of competition, dedicated assets, and obsoles-
cence on value. This study shows that the value of flexibility in
multistage investment is substantial in competitive markets, but
the value can be totally destroyed by rapid obsolescence. More-
over, dedicated asset investments must be handled carefully,
since they influence investment value profoundly.

These results have important implications on infrastructure
concession and regulatory designs. The importance of compe-
tition and technology in infrastructure expansions cannot be
overemphasized. This study supports the practice of facilitating
multistage investment by granting exclusivity, expansion, and
abandonment rights. The practice can reduce the cost of capital
and serve public interests. However, to obtain better outcomes,
other reciprocal arrangements are necessary to further mitigate
the risks of dedicated assets and obsolescence, e.g., the use of ac-
celerated depreciation schedule in setting infrastructure service
prices.

APPENDIX A

Proof of Proposition 1: For n = 1, (8) reduces to a vanilla
European call option, and therefore,
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Since ∂g{1},1/∂K{1},1 = ∂h{1},1/∂K{1},1 and g{1},1 =
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σ2τ , it follows that
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By definition, V 1,{1} = K{1},1 , and therefore,

∂C{1},1 (V, t0)
∂K{1},1

= −e−r1 τ1 N1
{
h{1},1

}
. (A1)

Since the K{n},i , i = 1, 2, . . . , n − 1 does not exist in the
multivariate normal functions, it follows that
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By Lee et al.’s [23] Lemma 2
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Substituting (A4a) and (A4b) into (A3) gives
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where
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Summing up (A1) and (A6) gives (9). �

APPENDIX B

Proof of Proposition 2: By (8)
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By Lee et al.’s [23] Lemma 2
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The h and the g factors are as defined in Appendix A. The fol-
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The Ĉ∂q1 ,4 is an (n – 1)-fold SCCO starting at time t1 . By
definition Ĉ∂q1 ,4 = K{n},1 , and therefore, Ĉ∂q1 ,1 − Ĉ∂q1 ,2 =
0. Applying the same method gets Ĉ∂q1 ,1 − Ĉ∂q1 ,2 = 0 for s =
2, 3, . . ., n. Accordingly,
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Further denote by ql a subsequent depreciation rate. One can
verify by a similar process
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Summing up gives (10). �

APPENDIX C

Proof of Corollary:
1) Since

∑n
l=1 ∂C{n},n (V, t0)/∂K{n},l < 0 in Proposi-

tion 1, it follows that C{n},n (V, t0) is a monotonic function
of Kl . By a similar method in Appendix A, the following
proves that C{n},n (V, t0) is a convex function of Kl :
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⎧⎨
⎩
[

h{n},i − h{n},n ρ{n},n,i√
1 − (ρ{n},n,i)2

]
(n−1)×1

;

[
ρ{n},i,j − ρ{n},n,iρ{n},n,j√

(1 − (ρ{n},n,i)2)(1 − (ρ{n},n,j )2)

]
(n−1)×(n−1)

⎫⎬
⎭

> 0. (C1)

2) Since
∑n

l=1 ∂C (V, t0)/∂ql < 0 in Proposition 2, it fol-
lows that C{n},n (V, t0) is decreasing monotonically in ql .
By a similar method in Appendix B

n∑
l=1

∂2C (V, t0)
∂q2

l

=
n∑

l=1

τ 2
l V{n},0 exp

(
−

n∑
u=1

quτu

)

× [Nn{[g{n},i ]n×1 ; [ρ{n},i,j ]n×n} + Ĉ∂q 2
l
] (C2)

where

Ĉ∂q 2
l

=
n∑

s= l

1√
2π

∑s
u−1 σ2

uτu

exp
(
−1

2
(g{n},s)2

)

× Nn−s{[g{n},i,#s ](n−s)×1 ; [ρ{n},i,j,∗s ](n−s)×(n−s)}

× Ns−1

⎧⎨
⎩
[

h{n},i − h{n},sρ{n},s,i√
1 − (ρ{n},s,i)2

]
(s−1)×1

;

[
ρ{n},i,j − ρ{n},s,iρ{n},s,j√

(1− (ρ{n},s,i)2)(1− (ρ{n},s,j )2)

]
(s−1)×(s−1)

⎫⎬
⎭.

Since
∑n

l=1 ∂2C (V, t0)
/
∂q2

l > 0, if follows that C{n},n
(V, t0) is convex in ql . �
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