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Abstract—Research has shown fuzzy c-means (FCM) cluster-
ing to be a powerful tool to partition samples into different cate-
gories. However, the objective function of FCM is based only on
the sum of distances of samples to their cluster centers, which
is equal to the trace of the within-cluster scatter matrix. In this
study, we propose a clustering algorithm based on both within-
and between-cluster scatter matrices, extended from linear dis-
criminant analysis (LDA), and its application to an unsupervised
feature extraction (FE). Our proposed methods comprise between-
and within-cluster scatter matrices modified from the between- and
within-class scatter matrices of LDA. The scatter matrices of LDA
are special cases of our proposed unsupervised scatter matrices.
The results of experiments on both synthetic and real data show
that the proposed clustering algorithm can generate similar or
better clustering results than 11 popular clustering algorithms: K-
means, K-medoid, FCM, the Gustafson–Kessel, Gath–Geva, possi-
bilistic c-means (PCM), fuzzy PCM, possibilistic FCM, fuzzy com-
pactness and separation, a fuzzy clustering algorithm based on
a fuzzy treatment of finite mixtures of multivariate Student’s t
distributions algorithms, and a fuzzy mixture of the Student’s t
factor analyzers model. The results also show that the proposed
FE outperforms principal component analysis and independent
component analysis.

Index Terms—Cluster scatter matrices, clustering, linear dis-
criminant analysis (LDA), unsupervised feature extraction (FE).

I. INTRODUCTION

C LUSTERING analysis is a tool that assesses the relation-
ships among samples of a dataset by organizing the pat-

terns into different groups, such that patterns within one group
show greater similarity to each other than those belonging to
different groups [1]. Clustering analysis has the potential to
detect underlying structures within data, for classification and
pattern recognition, as well as for model reduction and opti-
mization [2], [8].
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Fuzzy c-means (FCM) is one of the most well-known cluster-
ing methods [3], [4]. However, the objective function of FCM
is only based on the sum of distances between samples to their
cluster centers, which is equal to the trace of the within-cluster
scatter matrix [5], [26]. In recent years, linear discriminant anal-
ysis (LDA) [5] has often been used for dimensional reduction
in supervised classification problems. LDA uses the mean vec-
tor and covariance matrix of each class to formulate within-
class, between-, and mixture-class scatter matrices. Based on
the Fisher criterion, the LDA method finds features such that
the ratio of the between-class scatter to the average within-class
scatter is maximized in a lower dimensional space. By applying
the concept of class scattering to class separation, the Fisher
criterion takes the large values from samples when they are well
clustered around their mean within each class, and the clusters of
the different classes are well separated [8]. It is formulated as a
function of class statistics. For these reasons, we have proposed
a clustering algorithm based on the Fisher criterion.

Despite the wide use of FCM-type clustering algorithms, their
performance suffers from the curse of dimensionality [34]. It has
been shown that using dimension reduction in preprocessing can
improve the performance of clustering [28], [45]–[47]. Based
on LDA, we have also proposed an unsupervised dimension
reduction algorithm in this study.

This paper is organized as follows: Section II introduces re-
views of certain popular clustering algorithms and dimension
reduction methods. Section III discusses the proposed clustering
algorithm and its application to an unsupervised feature extrac-
tion (FE) method, and the connection of LDA and the methods
to be proposed are shown. In Section IV, both synthetic and real-
data experiments are designed to evaluate the performances of
the proposed methods, and results of experiments are reported.
Section V contains comments and conclusions. Section VI dis-
cusses future work.

II. REVIEWS OF CERTAIN POPULAR CLUSTERING ALGORITHMS

AND DIMENSION REDUCTION METHODS

Clustering partitions data into dissimilar groups of similar
items and is perhaps the most important and widely used method
of unsupervised learning [8]. To avoid the curse of dimension-
ality (Hughes phenomenon), dimension reduction methods are
usually used to discover suitable representations by using spe-
cific criteria. In this section, some well-known clustering algo-
rithms and dimension reduction methods are reviewed.

A. Some Popular Clustering Algorithms

1) K-Means and K-Medoid Algorithms: To partition sam-
ples into L clusters, two hard clustering methods, i.e., the
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K-means (KMS) and K-medoid (KMD) clustering algorithms,
are simple and popular [2], [6]–[8]. Unfortunately, their perfor-
mance is not always reliable or very sensitive to initial clustering
centers. KMS and KMD find the centers ci , i = 1, . . . , L to min-
imize the within-cluster sum of squares:

JKM =
L∑

i=1

∑
xj ∈Hi

‖xj − ci‖2

where Hi is a set of samples in the ith cluster, and ci is the
center of cluster i.

In KMS, the cluster centers are defined by

ci =
1
Ni

∑
xj ∈Hi

xj

where Ni is the number of samples in Hi . The main difference
between KMS and KMD is in calculating the cluster centers:
The new cluster center in KMD is the nearest data point to the
mean of the cluster points, i.e.,

ci = arg min
xj ∈Hi

∥∥∥∥∥∥xj −
1
Ni

∑
xj ∈Hi

xj

∥∥∥∥∥∥ .

2) Fuzzy C-Means Clustering Algorithm: FCM clustering
is the fuzzy equivalent of the nearest mean “hard” clustering
algorithm [2], [6]–[9] that minimize the cost function

JFCM(uij , ci) =
L∑

i=1

N∑
j=1

(uij )m ‖xj − ci‖2

with respect to membership grade uij , where ci is the center
of fuzzy cluster i, N is the number of samples, L > 1 is the
number of clusters, and m ∈ (1,∞) is a weighting exponent.

In the FCM algorithm, the memberships, which were in-
versely related to the relative distance of xj to the L cluster
centers, {ci} were assigned to xj . The formulation of criterion
JFCM could be regarded as the trace of the fuzzy within-cluster
scatter matrix [8]

SFW =
L∑

i=1

N∑
j=1

(uij )m (xj − ci)(xj − ci)T

.
The earlier form is similar to the within-class scatter matrix of

LDA, i.e., this criterion only considers the within-cluster scatter
matrix. A consideration of the within-cluster similarity is the
only criterion. Based on the suggestion from [52], the division
into clusters should be characterized by within-cluster similarity
and between-cluster (external) dissimilarity. This is the reason
that we applied the Fisher criterion in this study.

3) Fuzzy Compactness and Separation: Two similar fuzzy-
based clustering algorithms based on fuzzy within-cluster,
between-cluster, and total scatter matrices are proposed in [26]
and [42]. The objective function of the fuzzy compactness and
separation (FCS) [26] is based on fuzzy between- and within-
cluster scatter matrices. Hence, the measurement of compact-
ness is minimized, and the separation measure can be maximized
simultaneously.

The fuzzy between-cluster scatter matrix SFB and within-
cluster scatter matrix SFW are defined as follows:

SFB =
c∑

i=1

n∑
j=1

ηi(uij )m (xj − c)(xj − c)T

and

SFW =
c∑

i=1

n∑
j=1

(uij )m (xj − ci)(xj − ci)T

where c = 1/N
∑N

i=1 xj . The objective function of FCS is de-
fined as follows:

JFCS(uij , ci) = tr(SFW ) − tr(SFB)

=
L∑

i=1

N∑
j=1

(uij )m ‖xj − ci‖2

−
L∑

i=1

N∑
j=1

ηi(uij )m ‖xj − c‖2 .

By minimizing JFCS , we use the following equations that mu-
tually update each other:

uij =
(‖xj − ci‖2 − ηi‖ci − c‖2)−1/(m−1)∑L

k=1 (‖xj − ck‖2 − ηk‖ck − c‖2)−1/(m−1)

and

ci =

∑N
j=1 (uij )m xj − ηi

∑n
j=1 (uij )m c∑N

j=1 (uij )m − ηi

∑n
j=1 (uij )m

where the parameter ηi could be set up with ηi =
((β/4)mini ′ �=i ||ci − ci′||2)/maxk ||ck − c||2 , and β ∈ [0, 1] is
the parameter that should be predetermined. Note that the ob-
jective function proposed by Yin et al. [42] is a special case of
FCS when the parameters ηi are all set to 1/(L(L − 1)).

The Fisher criterion, tr[(SFW )−1SFB] takes large values
when samples are well clustered around their mean within each
class, and the clusters of the different classes are well sepa-
rated [8]. This approach is widely used in different applica-
tions [33], [43], [44]. In the following, the new definitions of
unsupervised cluster scatter matrices are introduced, and the cor-
responding objective function is based on the Fisher criterion,
including the interaction of cluster scatter matrices.

4) Other Advanced FCM-Type Clustering Algorithms: A
typical well-known algorithm of this category is the Gustafson–
Kessel (GK) algorithm [29], which employs an adaptive distance
norm, to detect clusters of different geometrical shapes in one
dataset [2]. In addition, Krishnapuram and Keller [24] proposed
a new clustering model named possibilistic c-means (PCM),
which relaxes the constraint “the sum of the membership val-
ues of every sample to all clusters is” in order to interpret in a
possibilistic sense the membership function or degree of typi-
cality [53]. In 1997, the fuzzy PCM (FPCM) [31] was proposed
to generate both possibility and membership values. However,
the possibility values generated by FPCM are very small as the
size of the dataset increases. To eliminate the problem of FPCM
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and integrate the benefits of FCM and PCM, the possibilistic
FCM (PFCM) was proposed in 2005 [25].

Some FCM-type algorithms employ an adaptive distance
norm based on the fuzzy maximum likelihood estimates [2],
[30], such as the Gath–Geva (GG) algorithm. Chatzis and
Varvarigou [27] proposed a robust fuzzy clustering algorithm
based on a fuzzy treatment of finite mixtures of multivariate
Student’s t distributions (FSMM), which used finite mixtures of
multivariate Student’s t distributions, instead of finite Gaussian
mixture models (GMMs).

B. Reviews of Dimension Reduction Methods

There are some main divisions for dimension reduction, e.g.,
filters [35], [36], wrappers [37], [38], embedded maps [39], [40],
and hybrid search [41]. In the classical statistical method, prin-
cipal component analysis (PCA) [12], [13] and independent
component analysis (ICA) [14] are commonly applied to di-
mension reduction. Factor analysis is a linear latent variable
scheme, which is used to capture local substructures and local di-
mensionality reduction techniques. Chatzis and Varvarigou [28]
combined the advantages of factor analysis and proposed a fuzzy
mixture of Student’s t factor analyzers (FMSFA). FMSFA pro-
vided a well-established observation space dimensionality re-
duction framework for fuzzy clustering algorithms based on
factor analysis. This allows concurrent performance of fuzzy
clustering and, within each cluster, a reduction in local dimen-
sionality. Their experimental results show that FMSFA outper-
forms finite mixtures of Student’s t factor analyzers (tMFA) [46],
the KLFCV model of Honda and Ichihashi [49], and the MFA
model [50]. In this study, the performance of the proposed FE
will be compared with those of PCA, ICA, and FMSFA.

LDA is often used for dimension reduction in classification
problems. It is often referred to the parametric FE method in [5],
since LDA uses the mean vector and covariance matrix of each
class. Usually, within-class, between class, and mixture scatter
matrices are used to formulate the criterion of class separability.

Suppose that Hi = {x(i)
1 , . . . , x

(i)
Ni

} ⊂ Rd were the set of
samples in class i, Ni were the number of samples in class
i, i = 1, . . . , L, and N = N1 + · · · + NL were the number of
all training samples. In LDA, the between-class scatter matrix
SLDA

b and the within-class scatter matrix SLDA
w would be de-

fined as

SLDA
b =

L∑
i=1

Ni/N(ci − c)(ci − c)T

and

SLDA
w =

L∑
i=1

Ni∑
j=1

1
N

(
x

(i)
j − ci

)(
x

(i)
j − ci

)T

where ci were the class mean defined by ci = 1/Ni

∑Ni

j=1 x
(i)
j

and c = 1/N
∑L

i=1
∑Ni

j=1 x
(i)
j representing the total mean.

The optimal features are determined by optimizing the Fisher
criterion JLDA = J1 given by

JLDA = tr
[(

SLDA
w

)−1
SLDA

b

]
.

This is equivalent to solving the generalized eignevalue
problem

SLDA
b vs = λsS

LDA
w vs, s = 1, . . . , d with λ1 ≥ λ2 ≥ · · · ≥ λd

where the extracted eigenvectors are used to form the transfor-
mation matrix of LDA, i.e., the transformation matrix from the
original space to the reduced subspace is defined by

A = [v1 , v2 , . . . , vp ].

The Fisher criterion JLDA is able to detect the capacity of
the separability for the transformed training samples but LDA
is a supervised FE. In Section III, we propose the between-
and within-cluster scatter matrices of an unsupervised LDA
(UFLDA) using the concept of membership values and cluster
means of FCM as a clustering algorithm and an unsupervised
FE.

III. PROPOSED METHOD:
LINEAR-DISCRIMINANT-ANALYSIS-BASED CLUSTERING

ALGORITHM AND UNSUPERVISED LINEAR

DISCRIMINANT ANALYSIS

In this section, we propose a novel clustering algorithm, i.e.,
LDA-based clustering (FLDC), and its application to an unsu-
pervised FE and UFLDA.

Two unsupervised between- and within-cluster scatter matri-
ces are derived from the scatter matrices of LDA and are applied
to formulate FLDC. We define the between-cluster scatter ma-
trix SUFLDA

b and the within-cluster scatter matrix SUFLDA
w as

follows:

SUFLDA
b =

L∑
i=1

∑N
j=1 uij

N
(ci − c)(ci − c)T

and

SUFLDA
w =

c∑
i=1

N∑
j=1

uij

N
(xj − ci)(xj − ci)T

where ci =
∑N

j=1 (uij /
∑N

k=1 uik )xj is the class mean, which

is the same as FCM, and c = 1/N
∑N

i=1 xj represents the to-
tal mean. The following theorem shows that the between- and
within-class scatter matrices of LDA are special cases of our
proposed SUFLDA

b and SUFLDA
w , respectively.

Theorem 1: In the supervised situation, if

uij =

{
1, if xj ∈ Hi

0, if xj /∈ Hi

for all 1 ≤ i ≤ L and 1 ≤ j ≤ N

then the proposed SUFLDA
b and SUFLDA

w are the same as SLDA
b

and SLDA
w , respectively.

Proof: Suppose there are Ni samples in Hi for i = 1, . . . , L
and

∑N
k=1 uik = Ni . Then

ci =
N∑

j=1

uij∑N
k=1 uik

xj =
∑

xj ∈Hi

1
Ni

xj =
1
Ni

Ni∑
j=1

x
(i)
j
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is the same as the class mean shown in LDA and the between-
cluster scatter matrix

SUFLDA
b =

L∑
i=1

∑N
j=1 uij

N
(ci − c)(ci − c)T

=
L∑

i=1

Ni

N
(ci − c)(ci − c)T = SLDA

b .

The within-cluster scatter matrix is, thus, as follows:

SUFLDA
w =

c∑
i=1

N∑
j=1

uij

N
(xj − ci)(xj − ci)T

=
c∑

i=1

∑
xj ∈Hi

uij

N
(xj − ci)(xj − ci)T

=
c∑

i=1

Ni∑
j=1

1
N

(
x

(i)
j − ci

)(
x

(i)
j − ci

)T = SLDA
w .

Based on this theorem and the objective function of LDA, the
general objective function of FLDC is defined by

JFLDC(uij ) = tr
[(

SUFLDA
w

)−1
SUFLDA

b

]
including the interaction of SUFLDA

b and SUFLDA
w . We con-

sider the interaction of the between- and within-cluster scatter
matrices in the Fisher criterion. In our results on the artificial
datasets, FLDC is able to detect the clusters with the largest
between-cluster separability.

To reduce the effect of the cross products of within-class
distances and prevent singularity, some regularized techniques
[15], [16] can be applied to within-cluster scatter matrix. In
FLDC, the within-cluster scatter matrix is regularized by

SUFLDA
rw = rSUFLDA

w + (1 − r)diag
(
SUFLDA

w

)
where diag(SUFLDA

w ) is the diagonal parts of matrix SUFLDA
w ,

and r ∈ [0, 1] is a regularization parameter.
In the proposed clustering algorithm, the optimization prob-

lem is defined as follows:

UFLDC = arg max
U

JFLDC(uij )

= arg max
U

[(
SUFLDA

rw

)−1
SULDA

b

]
which constrains

∑L
i=1 uij = 1, j = 1, . . . , N . Since the opti-

mization problem is nonlinear and nonconvex, some popular op-
timization algorithms [17], [20]: “interior-point,” “active-set,”
and “trust-region-reflective” can be applied to solve this prob-
lem. In implementing these algorithms, we find that the cost
in time of the “active-set” algorithm is less than the other two
algorithms, but it is sensitive to the initial value. Hence, the
“interior-point” algorithm is used to find the optimizer UFLDC .
However, the corresponding time cost of the “interior-point”
algorithm is higher than the others.

After finding the optimizer UFLDC in FLDC, the features of
UFLDA can be obtained by solving the following generalized

eignevalue problem:

SUFLDA
b vs = λsS

UFLDA
rw vs, s = 1, . . . , d

with

λ1 ≥ λ2 ≥ · · · ≥ λd

where the elements uij is in UFLDC . The extracted eigenvectors
form the transformation matrix of UFLDA. The algorithm of
UFLDA is described as follows:

Step 1: Initialize the membership matrix U =
[uij ]1≤i≤L,1≤j≤N with random values from [0, 1] such
that the element uij of U satisfies

∑L
i=1 uij = 1, j = 1, . . . , N .

Step 2: Use the interior-point optimization method
to find the optimal UFLDC under the Fisher criterion
maxU tr[(SUFLDA

rw )−1SUFLDA
b ], which constrains

L∑
i=1

uij = 1, j = 1, . . . , N

and

uij ∈ [0, 1], i = 1, . . . , L, j = 1, . . . , N.

Step 3: Compute SUFLDA
rw and SUFLDA

b with the optimal
UFLDC obtained in Step 2.

Step 4: Solve the eignevalue problem
(SUFLDA

rw )−1SUFLDA
b vs = λsvs with λ1 ≥ λ2 ≥ · · · ≥ λd .

Step 5: The transformation function from the original space to
the reduced subspace is defined by A = [v1 , v2 , . . . , vp ], p ≤ d.

IV. EXPERIMENTS

The performances of the proposed FLDC and UFLDA were
validated in Experiments 1 and 2, respectively. We selected ten
artificial and three real datasets for the experiments. We com-
pared the results of clustering FLDC, KMS, KMD, FCM, GK al-
gorithm, GG algorithm [2], PCM [24], FPCM [31], PFCM [25],
FCS [26], FSMM [27], and FMSFA [28], [51] algorithms on
artificial and real datasets. The parameters r in FLDC and β
in FCS were set to 0.5. The weighting exponents of FCM,
GK, GG, and PCM were set to m ∈ {2, 4}. The weighting
exponents of FPCM and PFCM were set to m ∈ {2, 4} and
η ∈ {2, 4}. The parameters of FSMM were set to the default val-
ues [51]. The results of clustering FMSFA were the best results
within the given set {0.5, 1, 1.5} of the model’s degrees of fuzzi-
ness of the fuzzy membership values.

In order to avoid the influence of initialization, all clustering
algorithms were evaluated, based on the three real datasets and
100 randomly generated initial values for each dataset. The
mean, standard deviation, maximum, and minimum accuracy of
the 100 clustering accuracy are calculated and compared. The
accuracy of the clustering is the proportion of correctly clustered
data in the dataset, i.e., clustering accuracy = (the number of
correctly clustered data)/(the number of all samples).

In Experiment 2, the scatter plots of transformed data
with two-dimensional (2-D) extracted features obtained from
UFLDA, PCA, and ICA are displayed. We compare the ac-
curacy of the clustering obtained from the first ten clustering
algorithms with extracted features in this experiment.
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Fig. 1. Ten artificial datasets [22] were used in this study. The first three
datasets were generated with ten additional noise features. The number of clus-
ters is given in parentheses.

TABLE I
DESCRIPTIONS OF THREE REAL DATASETS

A. Datasets

Ten artificial datasets [21] containing “Four-gauss data” (four
clusters), “Easy doughnut data” (two clusters), “Difficult dough-
nut data” (two clusters), “Boat data” (three clusters), “Noisy
lines data” (two clusters), “Petals data”, (four clusters), “Saturn
data” (two clusters), “Regular data” (16 clusters), “Half-ring
data” (two clusters), and “Spirals data” (two clusters) and can

Fig. 2. Results of clustering the “Four gauss” dataset applied by 12 clustering
algorithms. The best clustering results from the application of GG and GGD
were chosen for comparison. Similarly, the best results of clustering FSMM and
FSMMD were also shown for comparison.

be downloaded from [22] and are presented in Fig. 1. These
were all created in two dimensions and are meant to present
challenges in varying degrees to the clustering algorithm. Ten
dimensions of uniformly random noise were appended to each
of the first three datasets (four gauss, easy doughnut, and diffi-
cult doughnut), while the other seven datasets were kept as 2-D.
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Fig. 3. Results of clustering “Easy doughnut” dataset applied by 12 clustering
algorithms. The best clustering results from the application of GG and GGD
were chosen for comparison. Similarly, the best results of clustering FSMM and
FSMMD were also shown for comparison.

The last two datasets were omitted because the clustering results
obtained by applying all clustering algorithms are similar.

The real datasets, “Wine,” “Iris,” and “Breast Cancer Wiscon-
sin (Diagnostic)” (WDBC) are described in Table I. The wine
dataset is a collection of data using three classes of wine from

Fig. 4. Results of clustering “Difficult doughnut” dataset applied by 12 cluster-
ing algorithms. The best clustering results from the application of GG and GGD
were chosen for comparison. Similarly, the best results of clustering FSMM and
FSMMD were also shown for comparison.

various locations in Italy. Iris dataset contains three classes,
Iris Setosa, Iris Versicolour, and Iris Virginica of Iris flowers
collected from Hawaii. There are two classes, i.e., benign and
malignant, in the WDBC dataset. These datasets are available
from the FTP server of the University of California at Irvine
(UCI) [23] data repository.
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Fig. 5. Results of clustering “Boat” dataset applied by 12 clustering algo-
rithms. The best clustering results from the application of GG and GGD were
chosen for comparison. Similarly, the best results of clustering FSMM and
FSMMD were also shown for comparison.

B. Results of Experiment 1

The results of clustering Experiment 1 on the artificial datasets
are shown in Figs. 2–9. The covariance matrices of two density-
based methods, i.e., GG and FSMM, are near-singular. Hence,
we used the GG and FSMM with diagonal covariance matri-
ces for the Gaussian distributions (GGD) and the Student’s

Fig. 6. Results of clustering “Noisy lines” dataset applied by 12 clustering
algorithms. The best clustering results from the application of GG and GGD
were chosen for comparison. Similarly, the best results of clustering FSMM and
FSMMD were also shown for comparison.

Fig. 7. These figures show the results of clustering “Petals” dataset applied by
12 clustering algorithms. The best clustering results from the application of GG
and GGD were chosen for comparison. Similarly, the best results of clustering
FSMM and FSMMD were also shown for comparison.

t distributions (FSMMD), respectively. The best clustering re-
sults from the application of GG and GGD in different datasets
were chosen for Figs. 2–9. The best results of clustering FSMM
and FSMMD were also shown in Figs. 2–9. In comparing
Figs. 2–9, we find the following:
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Fig. 8. Results of clustering “Saturn” dataset applied by 12 clustering algo-
rithms. The best clustering results from the application of GG and GGD were
chosen for comparison. Similarly, the best results of clustering FSMM and
FSMMD were also shown for comparison.

Fig. 9. Results of clustering “Regular” dataset applied by 12 clustering al-
gorithms. The best clustering results from the application of GG and GGD
were chosen for comparison. Similarly, the best results of clustering FSMM and
FSMMD were also shown for comparison.

1) The results of clustering FLDC significantly outperformed
or were equal to others for the normal-like distribution
of data, for instance, four-gauss, easy doughnut, difficult
doughnut, boat, and petals datasets, because the interac-
tion of the between- and within-cluster scatter matrices
was considered when applying FLDC. Especially in the
easy doughnut and difficult doughnut, all algorithms had
poor clustering results, except for FLDC.



160 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 1, FEBRUARY 2011

TABLE II
MEAN, STANDARD DEVIATION, MAXIMUM, AND MINIMUM ACCURACY OF CLUSTERING OF THREE REAL DATASETS

2) The FLDC had the best performance with the regular and
noisy lines datasets.

3) KMS, KMD, FCM, FPCM, PFCM, and FCS performed
well only on the four gauss and petals datasets.

4) PCM performs well only on the petals and noisy lines
datasets.

5) GK employed an adaptive norm by estimating covariance
matrices for each cluster. Hence, it could detect clusters
with different geometrical shapes, and it performed well
on the boat and noisy lines datasets. However, on the four
gauss, easy doughnut, and difficult doughnut datasets, the
performance was dismal.

6) Although FLDC performed poorly on the saturn, half
rings, and tow spirals datasets, it was able to detect the
clusters with the largest between-cluster separability in
the saturn dataset. FLDC was unsuitable for saturn, half
rings, and tow spirals data as these were complex nonlin-
ear problems. Perhaps, the kernel method would be a way
to solve these types of datasets.

7) The distribution-based clustering algorithms GG, FSMM,
and FMSFA performed poorly on the four gauss, easy
doughnut, petals, and regular datasets, because the co-
variance matrices of the density-based methods are near-
singular.

8) FSMMD was able to perform better by applying FSMM
on the boat and noisy lines.

Table II shows the clustering accuracy in Experiment 1 using
real datasets. Note that the highest mean clustering accuracy for
each dataset (in rows) is shaded. From Table II, we can see that
the highest mean accuracy among all methods was 0.972, 0.966,
and 0.940. All of these results were obtained by performing
FLDC.

C. Results of Experiment 2

The scatter plots of transformed data with 2-D extracted
features obtained from UFLDA, PCA, and ICA on three real

Fig. 10. Two-dimensional projections of “Wine” data by (a) UFLDA, (b)
PCA, and (c) ICA, respectively. The legends 1, 2, and 3 indicate three classes
of wine from various locations in Italy.

Fig. 11. Two-dimensional projections of “Iris” data by (a) UFLDA, (b) PCA,
and (c) ICA, respectively. The legends 1, 2, and 3 indicate “Iris Setosa,” “Iris
Versicolour,” and “Iris Virginica,” respectively.

Fig. 12. Two-dimensional projections of “WDBC” data by (a) UFLDA, (b)
PCA, and (c) ICA, respectively. The legends 1 and 2 indicate “malignant” and
“benign,” respectively.

datasets are displayed in Fig. 10–12. Moreover, the accuracy
of the three real datasets after applying FMSFA is shown in
the Table III. The maximum accuracy of these datasets was 1,
0.980, and 0.949, respectively. However, it is very sensitive to
the initial value. Hence, the highest average accuracy in every
column was only 0.945, 0.774, and 0.882. Because the FSMM
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TABLE III
MEAN, STANDARD DEVIATION, MAXIMUM, AND MINIMUM ACCURACY OF CLUSTERING OF THREE REAL DATASETS BY APPLYING FMSFA, WHERE LD

REPRESENTS THE LATENT DIMENSION

TABLE IV
HIGHEST MEAN ACCURACY AND THE NUMBERS OF USED FEATURES (IN

BRACKETS) (WINE DATA)

used the results of clustering KMS as the initial value, it was
more stable than FMSFA.

After comparing the accuracy of clustering, we compared the
capacity for separation of extracted features by UFLDA, PCA,
and ICA. The 2-D scatter plots for the “Wine” dataset extracted
by UFLDA, PCA, and ICA are displayed in Fig. 10. The purpose
of PCA is to reduce dimensionality according to the selected
percentage of the overall variance that can be captured, and the
purpose of ICA is to find the underlying factors or sources.
In the 2-D scatter plot figures, the capacity for separation was
poor. However, the proposed UFLDA was based on the Fisher
criterion to discover the preferred features for discrimination.
We can clearly observe that there were three clusters in the
reduced 2-D subspace. We expect that the clustering algorithms
performed better on the UFLDA subspace than on the original
space, the PCA, or the ICA subspaces.

The highest mean clustering accuracy from extracted features
by UFLDA, PCA, and ICA, which were applied to this dataset
using ten popular clustering algorithms, is shown in Table IV.
We observe that the KMD with UFLDA features obtained the
best performance in the wine dataset. From Tables II and IV,
the clustering algorithms performed better with UFLDA features
than with the original features.

The 2-D scatter plots for the “Iris” dataset extracted by
UFLDA, PCA, and ICA are displayed in Fig. 11. Although
two classes “versicolor” and “virginica” are overlapped in the
dataset, it is observed that the capacity for separation of UFLDA
was improved.

Table V shows the highest mean accuracy using extracted fea-
tures by UFLDA, PCA, and ICA, which were applied to the Iris
dataset in ten popular clustering algorithms. It was observed that

TABLE V
HIGHEST MEAN ACCURACY AND THE NUMBER OF USED FEATURES (IN

BRACKETS) (IRIS DATA)

TABLE VI
HIGHEST MEAN ACCURACY AND THE NUMBERS OF USED FEATURES (IN

BRACKETS) (WDBC DATA)

using extracted features by UFLDA could obtain an improve-
ment in performance. The greatest accuracy was 0.980 (UFLDA
+ PFCM). In Tables II and V, performing clustering algorithms
with UFLDA features may improve the accuracy over that of
the original features.

Finally, the 2-D scatter plots for the “WDBC” dataset ex-
tracted by UFLDA, PCA, and ICA are displayed in Fig. 12. In
spite of the overlapping samples in these two figures, the labeled
samples show that the clustering results of UFLDA were supe-
rior to those of PCA and ICA. In Table VI, the results are similar
to the aforementioned two datasets. It was observed that using
the UFLDA features could achieve equal or improved perfor-
mance in the WDBC dataset. The highest accuracy was 0.960
(UFLDA + GG).

The selected features by UFLDA are of the same order of
magnitude as the eigenvalues, i.e., the magnitude of separabil-
ity of the projected samples. Therefore, the number of features



162 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 1, FEBRUARY 2011

selected by UFLDA was quite small, i.e., only one or two se-
lected features, for all three real datasets.

V. CONCLUSION

In this study, we proposed a clustering algorithm FLDC based
on the Fisher criterion composed of the between- and within-
cluster scatter matrices extended from LDA and its application
for an unsupervised FE, UFLDA. The results of the experiment
with both synthetic and real data have shown that our proposed
clustering algorithm outperformed the KMS, KMD, FCM, GK,
GG, PCM, FPCM, PFCM, FCS, FSMM, and FMSFA algo-
rithms. We have also observed an improvement in separabilities
with the 2-D projections of three real datasets by UFLDA. When
we applied UFLDA features to clustering algorithms, the accu-
racy was higher than that of PCA and ICA features to clustering
algorithms.

VI. FUTURE WORK

From the results of clustering synthetic datasets, we observe
that FLDC only worked well when the distribution of clusters
showed normal-like distribution. Hence, in upcoming research,
we can extend FLDC by kernel tricks, i.e., a clustering algo-
rithm based on an unsupervised version of kernel-based LDA
for nonnormal datasets.

Another upcoming direction in research shows the proposed
optimization problem is nonconvex and nonlinear. Although the
proposed methods work well, the optimal solution may be a
local minimum, and the interior-point optimization method is
time consuming. It will be necessary to find a more efficient
algorithm to solve such problems.

Finally, the number of clusters is an important aspect for
all clustering algorithms. Our next study will be to develop or
choose an appropriate criterion for FLDC (Akaike and Bayesian
information criteria) to determine the number of clusters.
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