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Abstract: This article considers batch scheduling with centralized and decentralized decisions. The context of our study is concur-
rent open shop scheduling where the jobs are to be processed on a set of independent dedicated machines, which process designated
operations of the jobs in batches. The batching policy across the machines can be centralized or decentralized. We study such
scheduling problems with the objectives of minimizing the maximum lateness, weighted number of tardy jobs, and total weighted
completion time, when the job sequence is determined in advance. We present polynomial time dynamic programming algorithms
for some cases of these problems and pseudo-polynomial time algorithms for some problems that are NP-hard in the ordinary sense.
© 2010 Wiley Periodicals, Inc. Naval Research Logistics 58: 17–27, 2011
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1. INTRODUCTION

This article considers concurrent open shop scheduling
with batching policies. The concurrent open shop model is
defined as follows: A set of n jobs J = {J1, J2, . . . , Jn} is
to be processed. Each job Ji ∈ J has m tasks or opera-
tions Oki , 1 ≤ k ≤ m, to be processed on m independent
dedicated machines M1, M2, . . . , Mm, subject to the condi-
tion that operation Oki , 1 ≤ k ≤ m, can only be processed
on machine Mk and requires a processing time pki . The m

operations of a job are independent and their processing
can overlap, i.e., they can be simultaneously processed on
their dedicated machines. Each machine can process at most
one operation at a time and no preemption is allowed. This
production model is similar to open shops except that the
operations of the same job can be simultaneously processed.
Leung et al. [15] provided several practical applications of
concurrent open shop scheduling. In this study, we assume
that the job operations are processed in batches on each
machine. A practical example of the scheduling model is as
follows: A manufacturer produces different types of foam
products, like pillows and bed mattresses, on dedicated
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production lines. Due to differences in material properties,
each dedicated machine requires a setup time to prepare the
molds and mixture of raw materials, and to adjust the machine
setting (e.g., temperature) whenever a batch of products of the
same type is to be processed. A client who places an order that
consists of several different products would like to receive
the products in a single shipment. The manufacturer wants
to optimize certain performance metrics by batching and
sequencing the production of all the products on the dedicated
machines.

The batching decision considered in this study is described
as follows: Whenever a batch is formed on machine Mk , 1 ≤
k ≤ m, a machine-dependent setup time sk will be incurred.
Batch processing is assumed to be sequential, i.e., the pro-
cessing length of a batch is equal to the setup time plus the
processing times of all the operations contained in the batch.
Completion of an operation follows the batch availability
mode, which means that the completion time of an opera-
tion coincides with the time when the batch it belongs to is
finished. If all the machines have the same batching decision,
then the model is called centralized, which signifies the fact
that a centralized decision is applied to all the machines. On
the other hand, if each machine has its own batching decision,
then the model is called decentralized.
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Setup s1 = s2 = 5.
J1 J2 J3 J4

p1i 9 9 8 8
p2i 4 5 15 11

Decentralized Batching Centralized Batching
Machine M1: {O11}, {O12}, {O13, O14} Machine M1: {O11, O12}, {O13, O14}
Machine M2: {O21, O22}, {O23}, {O24} Machine M2: {O21, O22}, {O23, O24}
C11 = 14, C12 = 28, C13 = C14 = 49 C11 = C12 = 23, C13 = C14 = 44
C21 = C22 = 14, C23 = 34, C24 = 50 C21 = C22 = 14, C23 = C24 = 45
C1 = 14, C2 = 28, C3 = 49, C4 = 50 C1 = C2 = 23, C3 = C4 = 45

Figure 1. Centralized vs. decentralized batching.

Denote the completion time of operation Oki on machine
Mk by Cki . Because a job is completed only if all of its opera-
tions are finished, the completion time of job Ji is defined as
Ci = max1≤k≤m{Cki}. Associated with each job Ji ∈ J are a
weight wi and a due date di , which specifies the time by which
the job is expected to be completed. In a particular schedule,
the lateness of job Ji is defined as Li = Ci − di and the
maximum lateness of the schedule is Lmax = maxJi∈J {Li}.
Subject to the due date constraints, we use the binary vari-
able Ui to denote the status of job Ji as being tardy or not by
letting Ui = 1 if Ci > di , and Ui = 0 otherwise.

Scheduling of jobs in the proposed production model con-
sists of sequencing, as well as grouping the jobs, so as to
optimize a certain objective function. We use the three-field
notation ID|batch∗|γ to denote the concurrent open shop
scheduling problem with batching considerations. The first
field ID stands for independent dedicated machines. For our
problem, batch∗ is present in the second field as a short form
of “s-batch(b/a, sk)”, i.e., sequential batch processing of the
jobs in the batch availability mode with different machine set-
up times given by sk (k = 1, . . . , m). The last field γ is the
objective function to be minimized. In this article, we study
three objective functions, namely γ = Lmax, γ = ∑

wiUi ,
and γ = ∑

wiCi (i.e., the total weighted job comple-
tion time). The objective min

∑
wiCi will be studied based

upon the assumption that the operation sequences on all the
machines are known a priori. Figure 1 shows an instance of
four jobs to be processed on two dedicated machines. With
decentralized batching, the operations on different machines
are grouped in different ways. While operations O11 and O12

are in different batches and have different completion times
14 and 28, operations O21 and O22 are in the same batch
and have the same completion time 14. Therefore, the com-
pletion times of jobs J1 and J2 are 14 and 28, respectively.
When centralized batching is adopted, all the machines have
the same grouping of jobs and the jobs of a batch have the
same completion time.

Note that decentralized batching does not necessarily mean
that we make an individually optimal decision on each

machine. A combination of individual optimal decisions may
turn out to be an unfavorable decision. For example, to min-
imize the number of tardy jobs, we can easily construct an
example in which all the machines have early operations,
but no job is early. Suppose there are two jobs J1 and J2

with p11 = 4, p12 = 7, p21 = 7, p22 = 4, and d1 = d2 = 7.
Applying Moore-Hodgson algorithm [21], we determine that
operation O11 is scheduled early on machine M1 and oper-
ation O22 is scheduled early on machine M2. Based on this
result, no job is early because one operation of each job is
completed later than the given due date. Here an operation
is early if it is completed on its dedicated machine no later
than the due date of the job it belongs to and a job is early if
all of its operations are completed no later than its due date.
Therefore, if we treat each machine as an individual deci-
sion maker, then the decision makers need to coordinate their
decisions so as to avoid causing trouble to one another. More-
over, similar to the relationship between an integer program
and its corresponding linear program, the solution space of
centralized batching is a subset of that of decentralized batch-
ing. For any specific objective function studied in this article,
the optimal solution value for centralized batching cannot be
better than that for decentralized batching.

The first study of scheduling in the concurrent open shop
appears to be due to Ahmadi and Bagchi [2]. The assembly-
type flowshops proposed by Lee et al. [13] and Potts et al. [25]
are a generalization by including a second-stage assembly
machine. Wagneur and Sriskandarajah [29] studied the same
model using the term “concurrent open shops with job over-
laps.” Wang and Cheng [30] and Cheng et al. [5] provided
another interpretation: jobs and operations are replaced by
orders and products, respectively. An order specifies a set of
product items that can be produced simultaneously and the
order is fulfilled when all the product items are produced.
We refer the reader to [26] for an up-to-date and compre-
hensive summary of results on scheduling in the concurrent
open shop. To the best of our knowledge, scheduling in
the concurrent open shop consisting of batching machines
has not been studied in the literature. The critical issue
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concerning centralized or decentralized batching decisions
across concurrent machines is new and reflects realistic man-
ufacturing environments. If we extend the notion of machines
to companies, then the model can deal with coordination
of suppliers in supply chain management. Under the cir-
cumstances where a company that is relatively dominant
in the supply chain places orders (jobs) with manufacturers
(machines) for different products, the company can dictate
the production rates of the manufacturers. Or the company,
intending to optimize its own operations performance, can
pay the manufacturers to offset their losses resulting from
coordination Li and Xiao [17]. The batching issue consid-
ered in Kovalyov et al. [11] is probably the most relevant
to our model. They investigated an assembly-type flowshop
in which the stage-one machines are assumed to produce
components in batches. The objective is to minimize the max-
imum completion time, i.e., the makespan. They considered
two different types of batching, namely sequential and paral-
lel batching. For the parallel-batching mode, the processing
length of a batch is defined as the maximum of the process-
ing times of the jobs in it. Cheng et al. [4] and Potts and
Kovalyov [24] are two excellent reviews on scheduling with
batching and related results.

The rest of this article is organized as follows: We study
the problem to minimize the maximum lateness in Section 2.
We discuss previous works, along with the development of
dynamic programming algorithms for the studied problems.
In Section 3, we study the problem to minimize the weighted
number of tardy jobs. In Section 4, we discuss the problem to
minimize the total weighted completion time. In Section 5,
we conclude the paper and suggest potential research topics
for further study.

2. PRELIMINARIES AND ID|batch∗|Lmax

In this section we study the concurrent open shop batch
scheduling problem to minimize the maximum lateness,
i.e., ID|batch∗|Lmax. We start by presenting some known
related results on concurrent open shop scheduling and batch
scheduling.

2.1. Preliminary Properties

We assume that the cost function fj (Cj ) is defined for job
Jj , where fj is nondecreasing in Cj . The following results
are fundamental to concurrent open shop scheduling.

LEMMA 1: [29] For concurrent open shop scheduling
with the max-objective max1≤j≤n fj (Cj ), as well as the sum-
objective

∑n
j=1 fj (Cj ), there is an optimal schedule in which

all the machines have the same processing sequence.

In view of Lemma 1, we only need to consider permuta-
tion schedules, in which all the machines process operations

in the same sequence of job indices, for concurrent open
shop scheduling with separable functions of the “sum” and
“max” types. It is not hard to see that Lemma 1 holds for
any regular objective function (to minimize). When batch-
ing is incorporated, the order of operations in the same batch
is immaterial. Nevertheless, a sequence of operations is still
required for each dedicated machine. The next lemma reveals
the implication of the property of identical sequence for
ID|batch∗|γ .

LEMMA 2: It suffices to consider only permutation sched-
ules for ID|batch∗|γ , where γ is an arbitrary regular
objective function to minimize.

PROOF: Assume that there is an optimal schedule for the
ID|batch∗|γ problem that is nonpermutational. There exist
two jobs Ji and Jj that do not abide by the requirement
of a permutation schedule. Assume that Ci ≤ Cj and that
Cj = Ckj , i.e., the last operation of job Jj is completed on
machine Mk . We then have two operations Oli and Olj such
that operation Olj precedes Oli on machine Ml . Operation
Olj is moved to the batch containing operation Oli and make
operation Olj the immediate successor of operation Oli . The
processing sequences of jobs Ji and Jj are now the same
on machines Mk and Ml , and the completion time of any
operation will not be increased by the move. Repeating the
above process, if necessary, we eventually come up with a per-
mutation schedule without increasing the optimal objective
value. �

With Lemma 2, we can determine a single sequence of job
indices that is applied across all the machines for the three
objectives Lmax,

∑
wiUi , and

∑
wiCi studied in this article.

2.2. Lmax with Decentralized Batching

In what follows, we introduce some known results on
minimizing the maximum lateness in the concurrent open
shop.

LEMMA 3: [15] The earliest due date (EDD) rule solves
the ID||Lmax problem.

LEMMA 4: [31] There is an optimal schedule for the
1|batch∗|Lmax problem in which the jobs are sequenced in
the EDD order.

Based upon Lemma 4, Webster and Baker [31] devel-
oped a backward dynamic programming algorithm for the
1|batch∗|Lmax problem. Assume that the jobs are indexed in
non-decreasing order of their due dates. Let G(i) denote the
optimal maximum lateness of the single-machine problem for
jobs Ji , Ji+1, . . . , Jn. The dynamic program defines a recur-
sive formulation to derive G(i) from G(j), 1 ≤ i < j ≤ n,
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by inserting a batch of jobs {Ji , . . . , Jj−1} in front of the
schedule associated with G(j). The algorithm is given as
follows:

ALGORITHM WB

Initialization:
Set G(n + 1) = −∞.

Recursion: Compute the recursion in the order of i: i =
n, n − 1, . . . , 1.

G(i) = min
i+1≤j≤n+1

{
s1 +

j−1∑
r=i

p1r + max{−di , G(j)}
}

. (1)

The optimal maximum lateness is G(1). Algorithm WB
has a time complexity ofO(n2). To study the ID|batch∗|Lmax

problem, we generalize Lemma 4 to the concurrent open shop
model.

LEMMA 5: There is an optimal schedule for the
ID|batch∗|Lmax problem, regardless of whether centralized
or decentralized batching is in effect, in which the jobs are
sequenced in the EDD order.

PROOF: Assume that in some optimal schedule there are
two consecutive jobs violating the EDD rule. When cen-
tralized batching is in effect, the proof is similar to that of
Lemma 4 because the operations of a job follow the same
way as batching. For decentralized batching, let Ji and Jj be
the first pair of such jobs. Consider operations Oki and Okj on
machine Mk . If they are in the same batch, we can swap their
positions without increasing the maximum lateness. Without
loss of generality, let di < dj and the batch containing Okj

precede that containing Oki . Since Ji and Jj are the first pair
of such jobs, the two batches must be consecutive and Okj

is the last operation of its batch and Oki is the first operation
of its batch. We move operation Okj to the batch containing
operation Oki . The lateness of all the jobs, except Jj , will not
increase. The completion time Cj could increase due to the
movement of operation Okj . Since di < dj , the lateness of
job Jj after the movement is less than the lateness of job Ji .
Therefore, the maximum lateness will not increase after the
movement. Continuing the process of operation movements
until the EDD order emerges, we obtain the result. �

With Lemma 5, we can re-index the jobs in the EDD order.
While the job ordering issue is resolved, the grouping issue
remains to be addressed. We need to determine how the jobs
are partitioned into batches on the machines. In the follow-
ing, we first develop a solution algorithm for decentralized
batching.

Algorithm DB-Lmax for decentralized batching:

Step 1: Apply Algorithm WB to the n operations on each
machine Mk , 1 ≤ k ≤ m, individually.

Step 2: Return max1≤k≤m{Lk,max}, where Lk,max is the opti-
mal lateness obtained for machine Mk in Step 1.

THEOREM 1: Algorithm DB-Lmax optimally solves in
O(mn2) time the ID|batch∗|Lmax problem subject to decen-
tralized batching.

PROOF: Let L∗
ki denote the lateness of operation Oki in

an optimal schedule. Denote the optimal objective value as
L∗

max = max1≤k≤m,1≤i≤n{L∗
ki}. Let Lki be the lateness of oper-

ation Oki returned by Algorithm DB-Lmax. By the optimality
of Algorithm WB, we have

max
1≤i≤n

{Lki} ≤ max
1≤i≤n

{L∗
ki}

on each machine Mk . The solution value given by Algorithm
DB-Lmax is

Lmax = max
1≤i≤n

{ max
1≤k≤m

{Lki}}.

We re-write the above expression to obtain the following
inequality

Lmax = max
1≤k≤m

{ max
1≤i≤n

{Lki}} ≤ max
1≤k≤m

{ max
1≤i≤n

{
L∗

ki

}} = L∗
max.

With regard to the computational time, since Algorithm
WB is invoked just m times, the total running time of the
algorithm is O(mn2). �

2.3. Lmax with Centralized Batching

When centralized batching is in effect, we need to make
decisions jointly across all the machines. The first idea to
approach this problem is to modify Algorithm WB. Unfor-
tunately, this approach will not work. In the backward for-
mulation of Algorithm WB, no detailed information on each
machine is revealed to determine the completion times of
the jobs. Therefore, the lateness cannot be determined in the
backward recursive process. To acquire and keep track of
the necessary information, we circumvent this difficulty by
designing a dynamic program using forward chaining. We
need to know the exact completion time of the last batch,
so we incorporate two extra parameters into our algorithm,
namely the number of batches formed and the size of the last
batch. The proposed algorithm therefore has a higher com-
plexity than that of Algorithm WB. However, our algorithm
solves the case subject to centralized batching.

Recall that the jobs are indexed and sequenced in the EDD
order. Define function G(i, u, v), 0 ≤ u ≤ i, 0 ≤ v ≤
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i −u+ 1, as the optimal maximum lateness of the first i jobs
J1, J2, . . . , Ji , given that they are partitioned into exactly u

batches and the last batch contains exactly v jobs. When a
decision on job Ji is to be made, we either insert Ji in the
last batch or form a new batch containing only Ji . In the for-
mer case, we need to calculate the lateness of the first job in
the last batch. This goal is attainable because we know the
completion times of the last batches on all the machines and
the due date of the first job in the last batch. The dynamic
programming algorithm is given as follows:

Algorithm CB-Lmax for centralized batching:

Initialization:

G(i, u, v) =
{

0, if i = u = v = 0;
∞, otherwise.

Recursion: Compute the recursion for i = 1, . . . , n; u =
1, . . . , i; v = 1, . . . , i − u + 1:

G(i, u, v)

=




min
1≤v′≤i−u+1

{
max

{
G(i − 1, u − 1, v′), Cu

i − di

}}
,

if v = 1;
max

{
G(i − 1, u, v − 1), Cu

i − di−v+1
}
,

if v > 1,

where Cu
i = max1≤k≤m{usk + ∑i

r=1 pkr}.
The optimal maximum lateness subject to centralized

batching is

min{G(n, u, v) : 1 ≤ u ≤ n, 1 ≤ v ≤ n − u + 1}.
We justify the algorithm as follows: When the last batch
consists of a single job Ji , the recursion will proceed to
G(i − 1, u − 1, v′) for all the feasible v′ and the lateness
of job Ji can be determined by its due date di and completion
time Cu

i . On the other hand, v > 1 implies that including job
Ji in the last batch will increase the lateness of any job con-
tained in the last batch. Specifically, the leading job Ji−v+1 in
the last batch has the largest lateness within this batch. There-
fore, we take the maximum between G(i − 1, u, v − 1) and
Li−v+1, which is equal to Cu

i − di−v+1. The minimum value
is selected from among all the feasible g(n, u, v) values.

To determine the time complexity of the above algorithm,
we first note that in the formulation, function G(·, ·, ·) con-
sists of O(n3) entries. Once the input instance is given, the
partial sums

∑i
r=1 pkr for all i and a fixed k can be incre-

mentally computed in O(n) time. Therefore, for all i and
k, we can derive all the partial sums

∑i
r=1 pkr in O(mn)

time. Knowing
∑i

r=1 pkr , we can further compute Cu
i in

O(m) time for a fixed i and a fixed u. In other words, an
O(mn + mn2) = O(mn2) preprocessing procedure can cal-
culate Cu

i for all i and u. With all Cu
i known in advance, the

time required to determine the value of each entry G(i, u, v)

is O(n) by examining different v′ values when v = 1 and
O(1) when v > 1. There are O(n2) entries for v = 1
and O(n3) entries for v > 1. Therefore the overall running
time of the algorithm, including the preprocessing step, is
O(max{n3, mn2}). The result is summarized in the following
theorem.

THEOREM 2: The ID|batch∗|Lmax problem subject to
centralized batching can be solved in O(n2 max{m, n}) time.

3. WEIGHTED NUMBER OF TARDY JOBS

In this section, we address another due-date related objec-
tive function—the weighted number of tardy jobs. Hochbaum
and Landy [7] proposed a pseudo-polynomial time dynamic
programming algorithm for the 1|batch∗| ∑ wiUi prob-
lem. The running time is O(n2W), where W = ∑n

j=1 wj .
The algorithm solves the case where the jobs have equal
weights in O(n3) time. Brucker and Kovalyov [3] devel-
oped a dynamic programming algorithm for the general case.
By scaling the weights used in the dynamic programming
algorithm, they proposed a fully polynomial time approxima-
tion scheme, each (1+ ε)-approximation algorithm of which
requires O(n3ε + n3logn) time. The algorithm solves the
unit-weighted case in O(n3) time. In the context of the con-
current open shop, Wagneur and Sriskandarajah [29] showed
that ID|| ∑ wiUi is NP-hard in the ordinary sense even if
m = 2, di = d, and wi = 1. Ng et al. [22] proved the
strong NP-hardness of the PD|pki ∈ {0, 1}, di = d| ∑ Ui

problem.
From the above review, we see that scheduling with the

objective function Lmax and scheduling with the objective
function

∑
wiUi exhibit different computational complexity,

although the optimal solutions for both problems are based on
the EDD rule (as will be shown in this section for the second
function). The

∑
Ui problem remains intractable because

of the difficulty from not only sequencing but also select-
ing jobs. A simple proof of the strong NP-hardness of the
ID|pki ∈ {0, 1}, di = 1| ∑ Ui problem by a reduction from
three-Dimensional Matching [19] reflects the intractability
of the job selection issue. As a generalization of ID|| ∑ Ui ,
the ID|batch∗| ∑ wiUi problem of interest in this paper is
strongly NP-hard, too. In the following we develop solu-
tion algorithms, which have exponential running times, for
scheduling with different batching policies. The following
properties inspire the development of our algorithms.

LEMMA 6: [5] There exists an optimal solution for the
ID|| ∑ wiUi problem in which the early jobs are sequenced
in the EDD order and the late jobs are sequenced in an
arbitrary order.
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LEMMA 7: Regardless of whether centralized or decen-
tralized batching is in effect, there is an optimal solution for
the ID|batch∗|F(U1, . . . , Un) problem in which the early
jobs are sequenced in the EDD order, where F(U1, . . . , Un)

is any regular function.

PROOF: Assume in some optimal schedule there are two
early jobs Ji and Jj such that di < dj and Jj precedes Ji on all
the machines. We move operationOkj , for each k, 1 ≤ k ≤ m,
to make it the immediate successor of Oki in the same batch.
The completion times of all the operations, except opera-
tions {Okj }, do not increase by the move. Furthermore, since
New Cj = New Ci = Ci ≤ di < dj , the equality Uj = 0
remains true. In other words, no early job will become late
after the move. Repeating the same process, we eventually
obtain a schedule in which all the early jobs are arranged by
the EDD rule, and no early job in the original schedule will be
tardy in the new schedule. We thus complete the proof. �

Common examples of the objective functionF(U1, . . . , Un)

specified in Lemma 7 include
∑

i wiUi , maxi wiUi ,
max{∑n/2

i=1 wiUi ,
∑n

i=n/2+1 wiUi}, etc.

3.1.
∑

wiUi with Centralized Batching

We now tackle the ID|batch∗| ∑ wiUi problem subject to
centralized batching. For convenience of description, we seek
to maximize the weighted number of early jobs instead. Again
recall that the jobs are first sequenced in non-decreasing order
of their due dates. The recursive function G(i, t1, . . . , tm, j)

for max1≤k≤m{tk} ≤ dj is defined as the maximum weighted
number of early jobs out of the first i jobs {J1, J2, . . . , Ji},
subject to the conditions that the completion time of the last
early job on machine Mk , 1 ≤ k ≤ m, is exactly tk and
that the leading job in the last batch on all the machines is
Jj , 0 ≤ j ≤ i. The recursion proceeds by considering job Ji .
If max1≤k≤m{tk} ≤ di and Ji solely constitutes the last batch,
then in the recursion we consider the first i − 1 jobs with
different leading jobs in the last batch. On the other hand, if
job Ji does not form the last batch alone, then it can be in the
last batch or discarded as tardy. The dynamic programming
algorithm is given as follows:

Algorithm CB-Sum-of-wiUi for centralized batching:

Initialization:

G(i, t1, . . . , tm, j) =
{

0, if i = t1 = · · · = tm = j = 0;
−∞, otherwise.

Recursion: Compute the recursion for i = 1, . . . , n; j =
1, . . . , i; tk = 1, . . . , dj (1 ≤ k ≤ m):

(i, t1, . . . , tm, j)

=




max{G(i − 1, t1 − p1i , . . . , tm − pmi , j) + wi ,
G(i − 1, t1, . . . , tm, j)}, if j < i;

max
0≤j ′<i

G(i − 1, t1 − s1 − p1i , . . . ,

tm − sm − pmi , j ′) + wi , if j = i.

The maximum weighted number of early jobs is

max{G(n, t1, . . . , tm, j) :0 ≤ tk ≤ dj , 1≤ k ≤ m; 1≤ j ≤ n}.

We justify the formulation as follows: In the recursion, the
condition “j < i” dictates that job Ji can be early if it is
included in the last early batch but it is not the leading job in
the last batch. Subject to this condition, we can either select
job Ji for processing or discard it. The second condition is
given for the scenario that job Ji is early and solely forms the
last batch. For further recursion, we need to consider all the
possible jobs Jj ′ acting as the leading job in the last batch
after removing job Ji .

With regard to the required running time, we note that each
state needs O(m) time to calculate tk −pki or tk −s−pki , 1 ≤
k ≤ m, for the recursions. For the case j < i, there are
O(n2dm

max) states, each of which can be computed in O(1)

time. On the other hand, for the case j = i, there are
O(ndm

max) states, each of which requires O(n) time to con-
sider different leading jobs Jj ′ . The overall running time is
thus O(mn2dm

max), which becomes pseudo-polynomial when
the number of machines m is fixed or is not part of the input.
We thus have the following theorem.

THEOREM 3: The ID|batch∗| ∑ wiUi problem subject
to centralized batching can be solved in pseudo-polynomial
time if the number of dedicated machines is constant. �

As discussed before, Brucker and Kovalyov [3] used the
rounding technique to design an O(n3/ε+n3 log log n) algo-
rithm with a performance ratio of 1+ε for 1|batch∗| ∑ wiUi ,
which is ordinary NP-hard. Although Algorithm CB-Sum-
of-wiUi solves problem IDm|batch∗| ∑ wiUi in pseudo-
polynomial time for a fixed m, it cannot be improved to
be a polynomial time algorithm, since Lin and Kononov
[20] proved that unless NP = P , there exists no FPTAS
for ID2|di = d| ∑ Ui . Therefore, the above algorithm
gives a tight result on the computational complexity of
IDm|batch| ∑ wiUi subject to centralized batching and a
fixed number of machines. It is also tight in another sense:
when the number of machines is part of the input, there is no
pseudo-polynomial time solution, due to Theorem 3.
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3.2.
∑

wiUi with Decentralized Batching

In this subsection, we modify Algorithm CB-Sum-of-wiUi
to cope with the decentralized case. Here we need such
detailed information as the completion time of each machine
and the leading job in the last batch on each machine. Define
G(i, t1, . . . , tm, j1, . . . , jm) for tk ≤ djk

, 1 ≤ k ≤ m, as the
optimal weighted number of early jobs for the first i jobs
{J1, . . . , Ji}, subject to the conditions that the completion
time of the last early job on machine Mk is exactly tk and
that the leading job in the last batch on machine Mk is Jjk

.
The most crucial part in the design of an exact algorithm is
to handle the situation in which job Ji must be included in
the solution when Ji is considered for recursion and it solely
forms the last batch on some machine Mk , i.e., i = jk .

Algorithm DB-Sum-of-wiUi for decentralized batching:

Initialization:

G(i, t1, . . . , tm, j1, . . . , jm)

=
{

0, if i = t1 = · · · = tm = j1 = · · · = jm = 0;
−∞, otherwise.

Recursion: Compute the recursion for i = 1, . . . , n; jk =
1, . . . , i; tk = 1, . . . , djk

(1 ≤ k ≤ m):

G(i, t1, . . . , tm, j1, . . . , jm)

=




max{G(i − 1, t1 − p1i , . . . , tm − pmi , j1, . . . , jm) + wi ,
G(i − 1, t1, . . . , tm, j1, . . . , jm)}, if jk < i for all k;

maxD G
(
i − 1, t ′1, . . . , t ′m, j ′

1, . . . , j ′
m) + wi ,

if i = jk for some k;

where D is the set of feasible 2m-tuple vectors (t ′1, . . . ,
t ′m, j ′

1, . . . , j ′
m) defined in the following way:

If jk < i, then t ′k = tk − pki , j ′
k = jk .

If jk = i, then t ′k = tk−sk−pki , j ′
k ∈ {0, 1, . . . , i−1}.

The maximum weighted number of early jobs subject to
decentralized batching is

max{G(n, t1, . . . , tm, j1, . . . , jm) : 0 ≤ tk ≤ djk
, 1

≤ jk ≤ n, 1 ≤ k ≤ m}.

In the first case of the recursion formula, job Ji does not
form the last batch alone on any machine so we either accept
job Ji as early or discard it. The size of the space with such
states is O(nm+1dm

max) and the value of each state can be
computed in O(m) time, which is required for computing
the values t1 − p1i , . . . , tm − pmi . In the second case, job Ji

solely forms the last batch on at least one machine and it
is anyway accepted as an early job. Set D contains all the

admissible combinations of (t ′1, . . . , t ′m, j ′
1, . . . , j ′

m) for fur-
ther recursions. There are O(

(
m

l

)
nm−l+1dm

max) states where
exactly l jk’s are equal to i and the cardinality of set D is
O(nl). Therefore, the total (over all the states) time complex-
ity is O(m2mnm+1dm

max), which is exponential and becomes
pseudo-polynomial when the number of machines m is
constant. We conclude the result in the following theorem.

THEOREM 4: The ID|batch∗| ∑ wiUi problem subject
to decentralized batching can be solved in pseudo-polynomial
time if the number of dedicated machines is constant. �

4. TOTAL WEIGHTED COMPLETION TIME

In the context of batch scheduling, Albers and Brucker [1]
proved that the single-machine problem to minimize the total
weighted completion time, i.e., 1|batch∗| ∑ wiCi , is NP-
hard in the ordinary sense. If the job sequence is fixed, an
O(n) dynamic program can be designed to optimally solve
the problem. The case with equal processing times can be
solved by sequencing the jobs in non-increasing order of their
weights. Coffman et al. [6] investigated the unit-weighted
version 1|batch∗| ∑ Ci and obtained the following result.

LEMMA 8: [6] There exists an optimal schedule for the
1|batch∗| ∑ Ci problem in which the jobs are sequenced in
the shortest processing time (SPT) order.

In view of this property, for the unweighted single-machine
case, we can re-index the jobs in the SPT order. Based
upon this property, Coffman et al. [6] proposed a backward
dynamic programming algorithm. They defined G(i) as the
optimal total completion time of the jobs Ji , Ji+1, . . . , Jn and
sought the value of G(1). The algorithm is outlined in the
following:

Algorithm CYMS

Initialization:

Set G(n + 1) = 0.

Recursion: Compute the recursion for i = n, n − 1, . . . , 1:

G(i) = min
i+1≤j≤n+1

{
G(j) + (n − i + 1)

(
s1 +

j−1∑
r=i

p1r

)}
.

The optimal total completion time is given by G(1). The
algorithm is justified by considering the increase in the total
completion time caused by a prefix batch {Ji , . . . , Jj−1} to
all of the jobs in the schedule. The overall running time of
the algorithm is O(n2). Coffman et al. [6] provided an effi-
cient O(n log n) implementation by using a queue to store the
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candidate jobs that can start the next batch. As reviewed in
Potts and Kovalyov [24], the geometric approach developed
by van Hoesel et al. [8] can attain the same reduction in time
complexity.

With regard to the minimization of the total comple-
tion time in concurrent open shop scheduling, Wagneur and
Sriskandarajah [29] first showed that the ID|| ∑ Ci prob-
lem is strongly NP-hard. Due to the intractability of the
problem, Lann et al. [12] proposed a simple heuristic and
proved its asymptotic optimality in a probabilistic sense.
Sung and Yoon [28] studied the weighted case of the two-
machine problem, i.e., ID2|| ∑ wiCi , and showed that the
worst case performance ratio of the weighted shortest pro-
cessing time (WSPT) rule is 2. Nevertheless, Leung et al.
[16] gave a counter-example to the proof of Wagneur and
Sriskandarajah [29]. Leung et al. [14] further showed that
the problem is strongly NP-hard for m ≥ 3. Roemer [26]
further sharpened the complexity boundary by showing that
the problem remains strongly NP-hard even if there are only
two machines. Therefore, the ID|batch∗| ∑ Ci problem is
hard to solve, too.

In this article, we assume that a job sequence is given
and the decision is how to group the jobs into batches. A
fixed sequence of the jobs can be admitted by, e.g., an agree-
able condition that for any two jobs Ji , Jj ∈ J , p1i ≤
p1j ⇔ p2i ≤ p2j ⇔ · · · ⇔ pmi ≤ pmj . In most sched-
uling problems, schedules are easily implied from sequences
for most scheduling problems. However, for some prob-
lems it is nontrivial to determine the optimal solution to the
instance associated with a given job sequence. The assump-
tion of a fixed job sequence has been considered in several
scheduling problems. Due to technical constraints on specific
machines, Shafransky and Strusevich [27] investigated open
shop scheduling problems subject to the condition that the
job sequence on each machine is fixed. Studies on schedul-
ing problems with fixed job sequences also inspire different
theoretical interests. Lin and Cheng [18] proposed an algo-
rithm to determine the optimal makespan of a sequence
of jobs in a two-machine flowshop with conditional stage-
two processing times. Solving the special case with a fixed
job sequence facilitates the development of lower bounds.
Ng and Kovalyov [23] proposed a dynamic programming
algorithm for batch scheduling in a flowshop with a given
sequence of jobs. Hwang et al. [9] studied three flowshop
scheduling problems with decisions of batching and idle
time insertion subject to a given job sequence. The devel-
opment of dynamic programs demands the exploration of
several theoretical properties. Based upon the concept of
optimal blocks, they developed polynomial-time dynamic
programming algorithms. Hwang and Lin [10] introduced
several intriguing properties of coupled-task scheduling sub-
ject to a fixed job sequence. In this paper we denote the
problem to minimize the total weighted completion time as

ID|batch∗, f ixed_seq| ∑ wiCi , where “fixed_seq” in the
second field indicates that a job sequence is given.

4.1.
∑

wiCi with a Fixed Sequence and
Centralized Batching

Our discussion begins with centralized batching. An
attempt to deploy Algorithm CYMS to solve the problem
may fail because the increase in the total completion time
caused by the insertion of a prefix batch cannot be determined.
Consider a partial schedule of the jobs {Jj , Jj+1, . . . , Jn}.
Jobs Ji , Ji+1, Jj−1 constitute a batch to be added in front of
the partial schedule. While the completion times of the jobs
Ji , Ji+1, Jj−1 are easily determined, there is no information
on how the completion times of the jobs Jj , Jj+1, . . . , Jn will
increase because the operation completion times of any job
are different on different machines and they are not recorded
along with each state. Thus the contribution to the objec-
tive value made by the new batch cannot be calculated.
To circumvent this difficulty, we adopt forward recursion.
Define G(i, u) as the optimal total weighted completion time
of the jobs J1, . . . , Ji , given that the jobs are grouped into
exactly u, 1 ≤ u ≤ i, batches. To find the value of G(i, u),
we consider different numbers of jobs (or sizes) in the last
batch of the associated partial schedule of jobs J1, . . . , Ji .
If Jj+1, . . . , Ji constitute the last batch, then the problem
reduces to solving G(j , u − 1). The increase in the total
weighted completion time caused by the jobs in this batch
can be calculated as follows:

max
1≤k≤m

{
usk +

i∑
r=1

pkr

}
×

i∑
r=j+1

wr ,

where max1≤k≤m{usk +∑i
r=1 pkr} calculates the completion

time of the last batch. Therefore, we can develop the following
dynamic program accordingly.

Algorithm CB-WTCT for centralized batching:

Initialization:

G(i, u) =
{

0, if i = u = 0;
∞, otherwise.

Recursion: Compute the recursion for i = 1, . . . , n; u =
1, . . . , i:

G(i, u) = min
max{0,u−1}≤j<i


G(j , u − 1)

+ max
1≤k≤m

{
usk +

i∑
r=1

pkr

}
×

i∑
r=j+1

wr


 .
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The total weighted completion time is min{G(n, u) : 1 ≤
u ≤ n}. The partial sums

∑i
r=1 pkr for all i and a fixed

k can be incrementally computed in O(n) time in a pre-
processing procedure. With these partial sums, the terms
max1≤k≤m{usk + ∑i

r=1 pkr} can be computed for all i and
for all u by an O(mn2)-time preprocessing procedure. Simi-
larly, for all i and j , the terms

∑i
r=j+1 wr can be derived in

O(n2) time. The preprocessing step requires O(mn2) time
in all. To compute for each state G(i, u), O(n) iterations
are required to examine all the different jobs Jj and each
iteration takes O(1) time. The main body of Algorithm CB-
WTCT depends on O(n2) states for all the possible values of
i and u. Therefore, the overall running time of the algorithm
is O(n2 max{m, n}).

THEOREM 5: The ID|batch∗, f ixed_seq| ∑ wiCi prob-
lem subject to centralized batching can be solved in
O(n2 max{m, n}) time.

4.2.
∑

wiCi with Decentralized Batching

We proceed to deal with the decentralized case. The suc-
cess of the solution approach for the ID|batch∗|Lmax prob-
lem suggests the use of Algorithm CYMS for scheduling
operations on each machine. Unfortunately, this approach
fails to work for the ID|batch∗| ∑ Ci problem subject
to decentralized batching. Consider a two-machine, 10-job
instance defined by s1 = 5, p1,1 = · · · = p1,9 = 2, p1,10 =
3; s2 = 10, p2,1 = · · · = p2,10 = 2. Optimally solving
for each machine individually, we have the optimal batching
{J1, . . . , J6}, {J7, . . . , J10} on M1 and {J1, . . . , J10} on M2.
Taking the maximum completion time of each operation on
the two machines, the total completion time is calculated as
6 × 30 + 4 × 31 = 304. On the other hand, if we group the
operations on each machine into a single batch, then all the
operations have a completion time of 26 on M1 and a com-
pletion time of 30 on M2, thus achieving a total completion
time of 300, which is smaller than 304.

To deal with the decentralized case, we first note that
there are

(
n−1
uk−1

)
ways to group n operations into uk batches

on machine Mk . Therefore the total number of possible
solutions is

∏m
k=1

∑n
uk=1

(
n−1
uk−1

)
, which grows exponentially.

Without the successful development of a polynomial time
approach, we again resort to the design of a dynamic pro-
gramming algorithm, which however exhibits an exponential
time complexity when the number of machines m is a vari-
able. The dynamic program runs using backward chaining.
Define G(i, u1, . . . , um, j1, . . . , jm) as the optimal contribu-
tion of the jobs Ji , . . . , Jn to the total weighted completion
time, given that there are exactly uk , 1 ≤ uk ≤ i − 1, setups
before operation Oki and that operation Okjk

is the last oper-
ation in the batch containing operation Oki . Note that here
we use the term “optimal contribution” instead of the optimal

total weighted completion time of the jobs Ji , . . . , Jn because
function G does not compute their optimal total weighted
completion time. A dummy job Jn+1 with wn+1 = 0 and
pk,n+1 = 0 for all k is added to define the boundary condition.

Subject to the scenario defining G(i, u1, . . . , um, j1, . . . ,
jm), operations Oki and Okjk

have the same completion time
uksk +∑jk

r=1 pkr . Therefore, the completion time of job Ji is
given by

max
1≤k≤m

{
uksk +

jk∑
r=1

pkr

}
.

The recursion of the dynamic programming algorithm pre-
sented below proceeds by jobs, instead of by batches as in
the centralized case.

Algorithm DB-WTCT for decentralized batching:

Initialization:

G(n + 1, u1, . . . , um, j1, . . . , jm)

=



0, if 1 ≤ uk ≤ n + 1, 1 ≤ k ≤ m;
j1 = · · · = jm = n + 1;

∞, otherwise.

Recursion: Compute the recursion for i = n, . . . , 1; uk =
1 . . . , i; jk = 1, . . . , i − uk + 1 (1 ≤ k ≤ m):

G(i, u1, . . . , um, j1, . . . , jm)

= wi × max
1≤k≤m

{
uksk +

jk∑
r=1

pkr

}

+ min
D

{
G

(
i + 1, u′

1, . . . , u′
m, j ′

1, . . . , j ′
m

)}
,

where D is the set of feasible 2m-tuple vectors
(u′

1, . . . , u′
m, j ′

1, . . . , j ′
m) defined in the following way:

If i < jk , then u′
k = uk , j ′

k = jk .
If i = jk , then u′

k = uk +1, j ′
k ∈ {i+1, i+2, . . . , n+1}.

The optimal total weighted completion time subject to
decentralized batching is

min{G(1, 1, . . . , 1, j1, . . . , jm) : 1 ≤ jk ≤ n for 1 ≤ k ≤ m}.

For each jk , the sum
∑jk

r=1 pkr can be computed by an O(mn)

preprocessing procedure before the dynamic program starts.
Under the specifications i, u1, . . . , um, j1, . . . , jm, the first
term wi ×max1≤k≤m{uksk +∑jk

r=1 pkr} calculates the contri-
bution of job Ji to the total weighted completion time, which
can be derived in O(m) time. There are O(

(
m

l

)
n2m−l+1) dif-

ferent states of function G where there are exactly l jks equal
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Table 1. Summary of the results.

Objective,
batching mode DP’s complexity Remark

Lmax, decentralized O(mn2) Theorem 1
Lmax, centralized O(n2 max{m, n}) Theorem 2∑

wiUi , centralized O(mn2dm
max) Theorem 3: Pseudo-

polynomial for fixed m∑
wiUi , O(m2mnm+1dm

max) Theorem 4: Pseudo-
decentralized polynomial for fixed m∑
wiCi(fixed_seq), O(n2 max{m, n}) Theorem 5
centralized∑
wiCi(fixed_seq), O(2mn2m+1) Theorem 6
decentralized Polynomial for fixed m

to i and the cardinality of set D is O(nl). The overall running
time of Algorithm DB-WTCT is O(2mn2m+1).

THEOREM 6: The ID|batch∗, fixed_seq| ∑ wiCi prob-
lem subject to decentralized batching can be solved in
O(2mn2m+1), which is polynomial if the number of dedicated
machines is constant.

Before closing this section, we note that using the same
design scheme of Algorithm DB-WTCT, we can design a
backward chaining dynamic programming algorithm for the
case subject to centralized batching. Nevertheless, we cannot
use the forward scheme of Algorithm CB-WTCT to design
an algorithm for the case subject to decentralized batching.
Without the information on the last operation in the batch
containing the current operation Oki , we cannot determine
the contribution of job Ji .

5. CONCLUSIONS

In this article, we considered a new model that includes
batching decisions in concurrent open shop scheduling.
Batching decisions can be centralized or decentralized. We
studied three objectives, namely the maximum lateness, num-
ber of tardy jobs, and total weighted completion time. We
proposed polynomial time exact algorithms to minimize the
maximum lateness subject to either centralized or decentral-
ized batching. When the objective is to minimize the number
of tardy jobs, the problem remains strongly NP-hard even if
a fixed job sequence is given. To minimize the total weighted
completion time of a fixed or predetermined job sequence,
we presented a polynomial time algorithm for the case where
centralized batching is in effect. The algorithm designed for
decentralized batching however has an exponential running
time. When the number of dedicated machines is constant,
the time complexity becomes polynomial. We summarize the
results of this article in Table 1.

For further study, it will be interesting to determine the
complexity status of the ID|batch∗, f ixed_seq| ∑ wiCi

problem subject to decentralized batching with a vari-
able number of machines. Moreover, at present we
cannot find approximation approaches admitting perfor-
mance analysis. Another complexity issue is related
to ID|batch∗, agr| ∑ Ui . While the restricted problem
ID2|di = d,pik ∈ {0, 1}| ∑ Ui is strongly NP-hard, prob-
lem ID|agr| ∑ Ui with agreeable conditions, which were
defined in Section 4 on

∑
wiUi , can be solved in polyno-

mial time [15]. If the agreeable conditions are satisfied, then
an optimal schedule can be obtained by first scheduling the
jobs in the EDD order. It will be interesting to investigate
the complexity status of ID|batch∗, agr| ∑ Ui . The reduc-
tion from 3DM used in the proof of Lin and Kononov [19]
does not work here because the constructed instance does not
meet the agreeable condition. Extending the study of the con-
current open shop to simultaneously include other batching
models, such as simultaneous batch processing, is another
direction worthy of research.
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