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The integral form of the conventional HLL fluxes are presented by taking integrals around
the control volume centred on each cell interface. These integrals are demonstrated to
reduce to the conventional HLL flux through simplification by assuming spatially constant
conserved properties. The integral flux expressions are then modified by permitting the
analytical inclusion of spatially linearly varying conserved quantities. The newly obtained
fluxes (which are named HLLG fluxes for clarification, where G stands for gradient inclu-
sion) demonstrate that conventional reconstructions at cell interfaces are invalid and can
produce unstable results when applied to conventional HLL schemes. The HLLG method
is then applied to the solution of the Euler Equations and Shallow Water Equations for var-
ious common benchmark problems and finally applied to a 1D fluid modeling for an argon
RF discharge at low pressure. Results show that the correct inclusion of flow gradients is
shown to demonstrate superior transient behavior when compared to the existing HLL sol-
ver and conventional spatial reconstruction without significantly increasing computational
expense.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The finite volume method for solution to partial differential equations forms the mainstay of modern computational fluid
dynamics (CFD). The development of a conservative scheme for the solution of non-linear systems of hyperbolic conserva-
tion laws by Godunov [1] introduced a revelation in the approach to the computation of fluid flow. The resulting family of
solvers (known as Godunov type methods) discretizes the flow region into computational regions known as cells and use
solutions to the Riemann problem at cell interfaces to calculate fluxes of conserved quantities in and out of control volumes.

The original HLL method was developed by Harten et al. [2] as an approximate Riemann solver for use in a Godunov sol-
ver. Rather than solving the Riemann problem analytically with knowledge of the behavior of the system (in many cases, an
ideal gas), the HLL method solves for the flux in an intermediate region (or star region) between cells directly from the gov-
erning partial differential equations. A control volume centred on a cell interface is integrated over space and time assuming
spatially and temporally constant properties. Through the introduction of the star region bounded by two propagating waves,
the flux across the interface can be mathematically determined. This allows for the flexible solution of a various number of
conservative hyperbolic systems, such as the Shallow Water Equations and the Euler Equations.

The keystone for the HLL method is the assumption of the presence of a single intermediate state bounded to two prop-
agating waves. This is a valid assumption for two variable hyperbolic systems [3] and thus the HLL method is still used for
. All rights reserved.
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the solution of the Shallow Water Equations by various authors [3–5]. However, for solutions to other sets of governing equa-
tions, such as the Euler Equations, this assumption is invalid [3] due to the presence of two or more intermediate states, each
separated by a distinct propagating wave. One solution to this problem was proposed by Toro et al. [6] by the introduction of
a contact discontinuity in the HLL expressions. The HLLC (where C stands for Contact surface) provides results with less
numerical dissipation.

A conventional approach for the extension of the method to higher order spatial accuracy is performed through the inclu-
sion of spatially varying conserved quantities [3,4]. While this does not solve the fundamental problems associated with HLL,
it does aid in the removal of numerical dissipation. In such an approach, gradients are used to reconstruct conserved quan-
tities at cell interface locations, following which the ordinary flux expressions are employed for the solution to the Riemann
problem.

Presented here is a modification to the HLL method where allowance is made for the inclusion of gradient terms within
the flux expressions themselves. First, the original HLL fluxes are presented in integral form and shown to reduce to the ori-
ginal HLL expressions under the assumption of spatially constant properties. The integral form is then re-evaluated when
conserved quantities are permitted to vary linearly in space. The resulting fluxes are then combined with the traditional spa-
tial reconstruction concept to produce the HLLG scheme, where the G represents the inclusion of gradient terms. This meth-
od is then applied to the solution of the Shallow Water Equations, then the Euler Equations and finally the fluid modeling
equations for RF discharge at low pressure. The results show an improvement in the numerical diffusion associated with
the traditional HLL higher order extensions without significantly increasing computational expense.
2. Numerical method

2.1. Integral form of the original HLL flux expressions

The fluxes developed by Harten et al. [2] are presented here in their complete integral form. Fig. 1 shows a control volume
in x � t space covering the region between cells i and i + 1 centred on the interface separating the cells at x = 0. The region is
temporally bound by the limits t = 0 and t = T. At t = 0, waves moving at velocities SL(<0) and SR(>0) move away from the dis-
continuity between the cell interface. If the governing differential equation is given by
@U
@t
þ @FðUÞ

@x
¼ 0; ð1Þ
the conditions inside the control volume in the region between [0,T] and [xL,xR] can be described by the integral:
Z 0
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L dxþ
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0
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R dxþ
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where the subscripts L and R represent conditions in the left and right cells, respectively, while the superscript 0 and T rep-
resents conditions at time t = 0 and t = T, respectively. The subscript * represents conditions in the star region between the
propagating waves. Rearranging to solve in terms of this star region, we obtain:
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0
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R dx: ð3Þ
This equation assumes nothing regarding variation of fluxes F or conserved quantities U within space and time. The only
assumptions made are in the presence of the two propagating waves surrounding a single intermediate region at x = 0. Fig. 2
Fig. 1. Control volume bounded by the centre of cell i and cell i + 1, with the interface between each located at x = 0.
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shows the revised x � t diagram focusing on the left cell only. Using the same method of integrating conserved quantities
over space and fluxed quantities over time obtains:
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L dxþ

Z T

0
FL dt �

Z T

0
F� ¼

Z SLT

xL

UT
L dxþ

Z 0

SLT
UT
� dx: ð4Þ
We further assume that the average state over the region between x = SLT and x = SRT is the same as the average between
the region x = SLT and x = 0, or:
1
�SLT
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UT
� dx; ð5Þ
or:
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SR � SL

Z SRT

SLT
UT
� dx: ð6Þ
This assumption provides us the knowledge required to solve for our desired quantity, the flux F*. Combining Eqs. 3,4,6
provide the complete integral form of the total flux F* over time step T:
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: ð7Þ
2.2. Simplification of the integral form

The integral form of the HLL fluxes can be evaluated by making assumptions about the integral expressions. Assuming the
regions to the left of the left moving wave and to the right of the right moving wave remain untouched over the period of a
time step T, the following simplifications can be made:
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ð8Þ
Note these assumptions still permit spatially varying quantities of U and only assume that regions outside propagating
waves SL and SR. From a (more mathematical) perspective, this step represents a simple resizing of the control volume em-
ployed for the flux computation. Using these assumptions, the modified equation simplifies to:
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: ð9Þ
Fig. 2. Control volume centred bounded by the centre of cell Ui, the interface between cell i and cell i + 1 at x = 0, time t = 0 and t = T.



Fig. 3. Revised control volume between propagating waves moving with speeds SL and SR. The fluxes through the left and right surfaces of the control
volume are calculated using values of U at locations SRT and SLT thus allowing the assumption of constant FL and FR over time T.
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Notice now that the equation for the total flux across the interface is now only governed by integrals bounded by the left
and right moving waves. This control volume is shown together with the remaining cell topography in Fig. 3. By assuming
that the quantities U remain spatially constant (i.e. monotonic in nature) and the fluxes are temporally constant we find (for
example):
Fig. 4.
control
Z 0

SLT
UL dx ¼ �SLTUL;

Z T

0
FL dt ¼ FLT: ð10Þ
The consequence of the latter assumption is that the flux FL is not permitted to change over time (or alternatively, FL rep-
resents the average value of F at that location) and must be calculated accordingly. After applying the said simplifications and
evaluating the complete integral expression in Eq. (7), the original HLL flux expressions [2] are obtained.

2.3. Inclusion of spatial variation of conserved quantities

The assumption of constant conserved quantities U made in Eq. (10) results in spatially first order accuracy. We can in-
stead allow U to vary linearly in space such that:
ULðxÞ ¼ U
iþ1

2
L þ

dU
dx

� �
L
x; ð11Þ
where superscript i + 1/2 indicates conditions at the cell interface where x = 0 and subscript L refers to conditions on the left
side of the interface. This is demonstrated in Fig. 4. The gradient term is calculated using finite differences together with a
selected slope limiter to maintain positivity. A commonly used example is the MINMOD limiter [7]:
dU
dx

� �
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dU
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� �
F
;

dU
dx

� �
B

� �
; ð12Þ
Spatial reconstruction of conserved quantity U. The coordinate system must be consistent with that used in the HLL flux derivation. The revised
volume (shown) is bounded by SLDt < x < SRDt.
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where ‘‘eff” indicates an effective gradient, subscripts F and B are the forward and backward differences, respectively. The
MINMOD (or Minimum Modulus) function is given by:
MINMOD½a; b� ¼
0; IF SIGNðabÞ < 0;
a; IF ðSIGNðabÞ > 0Þ AND ðjaj < jbjÞ;
b; IF ðSIGNðabÞ > 0Þ AND ðjbj < jajÞ:

8><
>: ð13Þ
A general improvement to the MINMOD limiter is the Monotonized Central Difference (MC) limiter [8]. This has been
used in the previous applications of HLL applied to solutions of the Euler and Shallow Water equations [3,4] in addition
to the kinetic theory based Euler solver QDS (Quiet Direct Simulation) [9]. The MC limiter is defined as:
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: ð14Þ
The variable alpha is used to control dissipation in the scheme and is set to a = 1 or 2 to limit dissipation to a minimum
(setting a = 0 recreates a spatially first order scheme). Assuming a uniform cell width Dx, the interface values can be found
using the gradient information such that:
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Substituting these obtains the simple expressions:
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ð16Þ
This allows an alternate evaluation of the integral form of the HLL flux expressions. Substituting and evaluating the inte-
gral obtains the final flux:
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The average flux represented in Eq. (17) can be rewritten in terms of the original HLL flux expression:
F� �
F U1

L

� 	
SR � F U1

R

� 	
SL � SRSL U2

R � U2
L

� 	
SR � SL

; ð18Þ
where superscripts 1 and 2 indicate reconstruction at locations at distances ST and ST/2 away from the cell interface respec-
tively. Care must be taken with the reconstruction when SL > 0 or SR < 0 to avoid over-reconstruction in regions each respec-
tive cell when upwind fluxes are used.

2.4. Comparison against conventional higher order extension

The original HLL scheme assumes monotonic conditions across each cell and is thus first order accurate in space. In the
decades which have followed since HLL’s developments, a large family of methods for extension of spatial accuracy have
been developed. Many of these methods use cell-averaged states to compute gradients for use in reconstruction at cell inter-
faces [10–16]. For example, recent developments such as General Riemann Problem (GRP) schemes [14–16] employ spatial
reconstruction to determine conditions at the interface:
Un
jþ1=2;þ ¼ Un

j þ
dU
dx

� �n

j

Dx
2
; Un

jþ1=2;� ¼ Un
jþ1 �

dU
dx

� �n

jþ1

Dx
2
; ð19Þ
where superscript n indicates conditions at step n and +/� represents the left/right side of the interface at j + 1/2, respec-
tively. Following this reconstruction, GRP schemes differ only from conventional second order methods through employing
analytical expressions for dU

dt


 �n

jþ1=2 to advance the solution [15]:
Unþ1=2
jþ1=2 ¼ Un

jþ1=2 þ
dU
dt

� �n

jþ1=2

Dt
2
; ð20Þ
where Un
jþ1=2 ¼ RA Un

jþ1=2;þ;U
n
jþ1=2;�

� 	
is the solution to the Riemann problem at step n. These conditions are then used to com-

pute the fluxes across the interface. The inclusion of this step provides the extension to higher order temporal accuracy with-
out relying on more approximate temporal extensions as often employed in conventional MUSCL schemes [17]. In the
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absence of this additional step, such schemes are identical to (temporally first order accurate) MUSCL type extensions [15].
The integral (balance) approach demonstrated here is not applicable to the additional step employed by GRP type schemes
since investigations presented here are limited to first order temporal accuracy (refer to integrals given in Eq. (10)). Follow-
ing conventional reconstruction at cell interfaces and application of the original HLL fluxes upon reconstructed states, the
flux is:
Fig. 5.
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Although a trivial exercise in mathematics, comparison against Eqs. (17) and (21) reveals that conventional spatial recon-
struction (as employed by MUSCL and/or GRP schemes) is inconsistent when HLL is used for flux computation. The formal
inclusion of gradients in the HLL flux derivation reveals that two reconstructions are required, at distances ST and 0.5ST on
each side from the cell interface respectively, for the flux function evaluation and the U term typically associated with the
anti-diffusion component. This might seem trivial given the demonstrated performance of these schemes [3,4]. Indeed, when
using most popular limiting functions (e.g. MINMOD) the flaws associated with this oversight are very difficult to perceive
for some problems. However, demonstration of flaws resulting from this oversight is possible.

2.5. Implementation of HLLG fluxes

The calculation of the modified HLL (or HLLG) fluxes in one dimension is shown by the following steps and supplemented
by the diagram shown in Fig. 5:

1. Estimate the wave speeds SL and SR using the cell-centred values. The value of these wave speeds differ depending on the
system of equations solved. Review into the computation of wave speed estimates lies outside the scope of this investi-
gation – details can be found in [3–5].

2. Reconstruct U at the locations within the control volume shown in Fig. 5:
f 1
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� �
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� �
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ð22Þ
3. Calculate the flux across the interface. If either SL > 0 or SR < 0, the respective upwind fluxes are used
SL > 0 : F� ¼ F U1

L

� 	
; SR < 0 : F� ¼ F U1

R

� 	� 	
. Otherwise, the revised HLL (or HLLG) flux is used:
Reconstruction locations for the revised (HLLG) expressions showing the control volume employed during the analysis. Fluxes F are computed using
of U reconstructed at the edge of the control volume while the value of conserved quantities U employed in the HLLG flux expression are
ructed in the centre of each half of the control volume.
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F� �
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SR � SR � F U1
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SL � SRSL U2

R � U2
L

� 	
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: ð23Þ
3. Results and discussion

3.1. 2D shallow water equations – dam break

An ideal two dimensional circular dam break problem is considered. The two dimensional dam break simulation is per-
formed to test the shock capturing properties of HLLG. The governing equations employed are the Shallow Water Equations,
defined as:
@U
@t
þ @F
@x
þ @G
@y
¼ 0;
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/v

2
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75þ @
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/u2 þ /2

2
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2
64

3
75þ @
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/v
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/v2 þ /2

2

2
64

3
75 ¼ 0;

ð24Þ
where / = gh, g is gravitation acceleration (�9.81) and h is the water level. The values u and v are the velocity in the x and y
directions, respectively. A simple method for estimating the wave speeds is SL = MIN[VL � aL,VR � aR] and SR = MAX[VL + aL,V-
R + aR] [3–5] where aL ¼

ffiffiffiffiffi
/L

p
and aR ¼

ffiffiffiffiffiffi
/R

p
are the characteristic speeds of propagation and VL, VR are the velocities of flow

normal to the interface. A circular region of water of elevation hIN is elevated and separated from the surrounding water of
elevation hOUT by an infinitely thin separating dam. The initial water levels are:
h0ðxÞ ¼
hIN ¼ 2:5 m; ðx� xcÞ2 þ ðy� ycÞ

2
6 R;

hOUT ¼ 0:5 m; ðx� xcÞ2 þ ðy� ycÞ
2
> R;

(
ð25Þ
where R is the radius of the circular region R = 2.5 m and subscript c indicates the location of the centre of the elevated region
(xc,yc). The water is assumed to be at rest (u = v = 0). The computational domain extends over L = H = 40 m and results are
presented for a regular Cartesian computational grid of 200 by 200 cells after a flow time of 5 s. The time step is adaptive
to ensure a constant maximum CFL of 0.5. The results are expected to be radially symmetric in nature due to the radially
symmetric nature of the initial conditions.

Various figures of the resulting water level after 5 s are shown in Fig. 6. The oscillations shown in the HLL results strongly
affect the flow field. The oscillations are weaker along the horizontal (h = 0�) and vertical (h = 90�) lines. This may mislead one
to interpret the errors as due to poor mesh alignment. Indeed, employing a circular grid will remove most of these oscilla-
tions. However, these errors are not characteristic of errors resulting from direction decoupling [18] and are not consistent
with the HLLG results, as also demonstrated by the water levels shown in Fig. 6. There are major differences between the
diagonal and horizontal results shown in the HLLG solutions, thus ruling out direction coupling and poor grid alignment
as the cause of the oscillations present in the HLL results. The spatial reconstruction of conserved properties is performed
using finite differences with the MINMOD limiter [7], which is known to be diffusive. Thus, the same simulations are re-
peated using the Monotonized Central Difference (MC) limiter [8] with a = 2. The influence of the instabilities presented
in the HLL solution is dominant, as demonstrated in Fig. 7. However, the influence of the new limiting function has only min-
imal influence on the HLLG results, which still remain radially symmetric with only minor oscillations in regions where flows
are unaligned with the computational grid. The above shows that the use of HLLG scheme greatly improves the water shal-
low equation simulation and reduces sensitivity to the selected limiter when compared to the use of conventional HLL
reconstruction.
3.2. 1D Euler equations – shock/acoustic wave interaction

The one dimensional Euler Equations are applied to Shu and Osher’s simulation of a shock/acoustic wave interaction
[19,20]. The one dimensional Euler Equations, without source terms in conservation form, are:
@U
@t
þ @F
@x
¼ 0;

@

@t

q
qu

E

2
64

3
75þ @

@x

qu

qu2 þ p

uðEþ pÞ

2
64

3
75 ¼ 0;

ð26Þ
where q is the gas density, u is the velocity, p is the pressure computed from the ideal gas law (p = qRT) and the energy E is given
by E = q(1/2u2 + CVT) where Cv is the specific heat constant at constant volume and T is the temperature. The initial conditions
for the problem are [q,u,p] = [3.857143,2.629369,10.33333] in the region �5 6 x < �4 and ½q;u; p� ¼ ½1þ 0:2 sinð5xÞ;0;1� for



Fig. 6. Values of geopotential (U) taken from solutions to the 2D dam break problem as computed by HLL (left) and HLLG (right). Each simulation employed
200 � 200 cells and a constant maximum CFL of 0.5. Gradients employed for reconstruction are calculated by finite differences and limited by the MINMOD
limiter. Contours are displayed at levels of 0.5.
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�4 6 x < 5. The gas is inviscid and ideal (c = 1.4) and the flow is allowed to develop until flow time t = 1.8. Wave speed com-
putation is similar to that employed above except that the characteristic propagation speed is now the local speed of sound



Fig. 7. Values of geopotential (U) taken from solutions to the 2D dam break problem as computed by HLL (left) and HLLG (right). Each simulation employed
200 � 200 cells and a constant maximum CFL of 0.5. Gradients employed for reconstruction are calculated by finite differences and limited by the MC
limiter. Contours are displayed at levels of 0.5.
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a = (cRT)1/2. Resulting density contours from both the proposed HLLG solver and HLL solver are presented in Fig. 8. Each sim-
ulation uses 400 cells with a constant maximum CFL of 0.1 enforced. The MC limiter (a = 2) is employed by both solutions to



Fig. 8. One dimensional shock/acoustic wave interaction problem. Results show profiles of density for the conventionally extended HLL solver and the
proposed HLLG extension. All simulations employ 400 cells with an enforced maximum CFL = 0.1. HLL and HLLG simulations using 2000 cells are employed
as benchmark results.
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limit the spatial reconstruction to first order in spurious regions. It can be seen that the result obtained by HLLG provides a clo-
ser comparison to the benchmark solution shown than the conventionally reconstructed second order HLL results.

3.3. 2D Euler equations – blast wave

The two dimensional Euler Equations are applied to the simulation of a temperature driven radially symmetric blast wave
[18]. The two dimensional Euler Equations are:
@U
@t
þ @F
@x
þ @G
@y
¼ 0;

@

@t

q
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qv
E

2
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3
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quv
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2
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3
7775þ @
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qv2 þ p

vðEþ pÞ

2
6664

3
7775 ¼ 0;

ð27Þ
where q is the gas density, u and v are velocities in the x and y directions, respectively, and p is the pressure computed from
the ideal gas law (p = qRT). The internal energy E is given by E = q(1/2(u2 + v2) + CVT). A region of high temperature gas of
radius r = 0.1L is separated by an imaginary diaphragm and surrounded by a region of low temperature gas

THT�1
L ¼ 100

� 	
. At t = 0, the diaphragm is removed and the resulting blast wave propagates outwards in a radially symmetric

fashion. The resulting contours of density and velocity are shown in Fig. 9. Both solvers are shown to possess characteristic
direction decoupling errors with higher regions of density along the diagonal [18]. The conventional extension of HLL to sec-



Fig. 9. Two dimensional temperature driven blast wave problem contours of density [top], x velocity [center] and y velocity [bottom] from proposed HLLG
reconstruction [right] and conventional HLL reconstruction [left]. Gradients employed for reconstruction are calculated by finite differences and limited by
the MC limiter (a = 0). Both simulations employ 100 � 100 cells with an enforced maximum CFL number of 0.5. Results are shown after flow time t = 0.25.
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ond order spatial accuracy using the MC limiter results in a large number of asymmetric, spurious oscillations which are not
present in the HLLG results.
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3.4. 2D Euler equations – supersonic flow over a forward facing step

The proposed HLLG method is applied to the simulation of supersonic flow over a forward facing step [21]. The problem
geometry and boundary conditions are shown in Fig. 10. An ideal gas (c = 1.4) with an initial Mach number of M = 3 every-
where. This problem is commonly used to verify gas flow solvers. The density contours computed by both methods are pre-
sented in Fig. 11 after the flow has been advanced to flow time t ¼ 4:0. In this instance, the differences between the HLLG and
the conventionally extended HLL solution are negligible.
Fig. 10. Supersonic flow over a forward facing step problem. All surfaces are reflective with exception of the supersonic outflow located at x = 3,
0.2 6 y 6 1.0 and the inflow located at x = 0.0.

Fig. 11. Supersonic flow over a forward facing step problem after t = 4 showing contours of density computed by conventionally extended second order HLL
[top] and the proposed HLLG second order extension [bottom]. Contours of density are shown every 0.25. The simulation employs 300 � 100 cells with
CFL = 0.25.
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3.5. 2D Euler equations – shock bubble interaction

We apply the proposed reconstruction method to the simulation of a shock wave moving over a low density bubble [19].
The shock-bubble problem solved is shown in Fig. 12. The gas is assumed ideal (c = 1.4). Symmetry can be exploited along
y = 0 and only half the problem need be considered. The flow is advanced until flow time t ¼ 0:2. All simulations employed
200 � 200 cells with varying CFL numbers (0.5–0.75). Presented in Fig. 13 are numerical Schlierens (indicative of gradients of
density) demonstrating similar oscillatory instabilities in regions where flows are misaligned with the computational grid.
While the HLLG results demonstrate these errors (which are dependent on the CFL number employed), the numerical ‘‘wrig-
gles” present in the HLL solution are much more severe. Thus, for any given CFL number, the result provided by the HLLG
reconstruction will prove less-prone to numerical instability than the original extension of HLL to higher order accuracy.

3.6. 1D argon RF plasma simulation

Finally, the simulation of parallel-plate argon RF (f = 13.56 MHz) coupled capacitively discharge (CPC) is investigated
using the HLLG solver. The motion of charged and neutral species is governed by a series of general transport equations:
Fig. 12
exploit
@ne
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þ @Ce
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¼ Se;
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þ @Ci
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¼ Si;

@nn
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@x
¼ Sn;

@ðneheiÞ
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@x
¼ �e � CE � Eþ SE;

ð28Þ
where subscripts e, i and n represent the electron, ion and neutral species number density, respectively. By applying drift-
diffusion approximation [15], the flux expressions (C) for each equation are:
Ce ¼ �leEne � De
@ne

@x
;

Ci ¼ liEni � Di
@ni

@x
;

Ce ¼ �
5
3
leEnehei �

5
3

Di
@ðneheiÞ
@x

;

ð29Þ
where the coefficients of mobility (l) and diffusion coefficients (D) control the general motion of each species. The electron
mobility and diffusion coefficients are functions of the electron temperature, computed from the electron energy density
hei ¼ 3

2 kBTe, with values taken from BOLSIG [22]. Charged species are influenced by the presence of an electric field
E = �rU, where the potential field as predicted by the Poisson Equation:
@

@x
e
@U
@x

� �
¼ �e

X
ni �

X
ne

� 	
: ð30Þ
The potential field is solved implicitly using a conventional finite difference discretization and either a conjugate gradient or
GMRES solver. A semi-implicit formulation [23] is required for computation of the source terms in Eq. (30) – otherwise the
. Shock-Bubble interaction problem with a shock wave located at x = 0 propagating into a low-density bubble of equal pressure. All simulations
symmetry around y = 0.



Fig. 13. Numerical Schlierens taken from simulation results of HLL (left) and HLLG (right). Both simulations show results after t = 0.2 with CFL numbers of 0.5
(top) and 0.75 (bottom) using 200 � 200 cells. Gradients employed for reconstruction are calculated by finite differences and limited by the MINMOD limiter.
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solution (regardless of approach) quickly becomes unstable. The diffusivity of ions is given by the Einstein relation with coef-
ficients of mobility computed from [24]:
li ¼
0:574T
P
ffiffiffiffiffiffiffiffi
ma
p ; ð31Þ
where T and P are the background gas temperature and pressure, respectively, m is the reduced mass (given in AMU) and a is
the polarizability of the background gas (more details can be found in [24]). Neutral species use diffusion coefficients com-
puted from the Chapman–Enskog theory of gases [25]. The source terms present in the governing fluid modeling equations
(Eq. (28)) (for example, Se) describe the production of species resulting from plasma and chemical reactions. These reactions
considered here are [26–29]:
e� þ Ar ! e� þ Ar;

e� þ Ar ! 2e� þ Arþ;

e� þ Ar ! e� þ Arm;

e� þ Ar ! e� þ Arr ;

e� þ Arm ! 2e� þ Arþ;

e� þ Arm ! e� þ Arr ;

2Arm ! Ar þ Arþ þ e�;

Arr ! Ar;
Ar þ Arm ! 2Ar:

ð32Þ



Fig. 14. Schematic of simple 1D argon plasma layout. A sin wave potential is applied to the left plate (100 V, f = 13.56 MHz) while the right plate is
grounded. A sheath region is expected to exist near the electrodes where the net charge is non-zero.
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The investigated problem is described in Fig. 14 with a small region of space L = 2 cm separating two infinitely large
plates. One plate is grounded while another plate has an applied potential of 100 V oscillating according to a sinewave with
frequency of 13.56 MHz. The gas separating the plates is of pressure P = 10 (Torr) with temperature T = 300 (K) with initial
number densities (electrons and argon ions) of ne = np = 1E16 m�3. The applied potential varies according to a sin wave with
frequency 13.56 MHz. Boundary conditions depend on the species: neutral species are treated using Neumann across each
surface while charged species employ the following flux:
Ci ¼ a � liEni þ
1
4

niv i;th;

Ce ¼ a � leEne þ
1
4

neve;th;

v i;e;th ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBTe

pmi;e

s
;

ð33Þ
where a in this case is an integer dependent on the direction of the flux under the influence of the electric field (a = 1 if lE
points toward the boundary, a = 0 otherwise). The initial condition is advanced in an unsteady time-stepping procedure until
the pseudo-steady state is reached. This result is shown in Fig. 15 compared to a conventional second order TVD scheme
using the same solution parameters. The electrons, being very light and easily influenced by the electric field, tend to move
back and forth across the region between the plates. This motion can be demonstrated by examining the distribution of elec-
trons at various stages during the RF cycle.

Due to the very large electron convective velocities present (and resulting large Peclet numbers), the time step size must
be restricted to quite a low number to ensure electrons do not transverse more than one cell in any given time step. In addi-
tion, in the sheath regions where large electric fields are present, the upwind feature of HLLG is prevalent: usually only ever
the left or right flux is used directly since the convective speeds are so large. These two features of this flow reveal that the
pseudo-steady state for both the HLLG and the conventional second order TVD scheme are almost indistinguishable. How-
ever, the unsteady progression to steady state is not: the HLLG scheme requires more RF cycles to reach the pseudo-steady
state due to the reduced numerical dissipation in the scheme. In regions just outside the sheath region (where electric fields
are very low), the solution is diffusion-bound. In this instance, the accuracy of HLLG provides an excellent solution; however,
the increased number of RF cycles is required to reach the pseudo-steady state, despite the increase in accuracy. However,
HLLG may become important in several transient simulations of discharge problems.
4. Conclusion

Presented is the derivation of the integral form of the HLL flux expressions which are then applied with spatially recon-
structed values of conserved properties over cell widths. The obtained flux expressions, referred to as HLLG fluxes, proves
that conventional extension to higher order through reconstruction at cell interfaces is mathematically inconsistent with
the assumptions employed during the flux derivation and effectively results in an over-reconstruction of solution properties.
The resulting flux expressions demonstrate that several reconstruction locations are required within the cell width as op-
posed to the single reconstruction location at the cell interface. Through solutions of the Euler and shallow water equations,
conventional extension of HLL to second order using various limiting functions is demonstrated to produce oscillations while
the mathematically complete extension employed by HLLG is shown to be less prone to such oscillations. The method is fi-
nally applied to the simulation of Argon RF plasma and compared to a conventional second order TVD method. In the course
of the simulation, very large Peclet numbers are encountered in the sheath regions, causing the HLLG scheme effectively re-
duces to a conventional second order upwind scheme. Thus, the comparison between the HLLG and conventional scheme
shows virtually identical results, demonstrating that the additional accuracy present in HLLG flux expressions may not be



Fig. 15. Comparison of solutions from proposed HLLG scheme and a conventional second order TVD scheme applied to the solution of the fluid modeling
equations. Results are shown for the pseudo-steady state at various points during the RF cycle – 0 (top, left), p/2 (top,right), p (bottom, left) and 3p/2
(bottom,right). Results show number densities of Ar, Ar+, Arm and e� as a function of location between the plates, electron temperature and potential field.
The gradient of the potential field (i.e. the electric field) is very low in regions outside the sheath regions.
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essential for the pseudo-steady plasma simulations. However, this additional desired accuracy may be required for plasma
simulations of differing configuration outside the scope of this investigation.
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