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This paper addresses the total completion time minimization in a two-stage differentiation
flowshop where the sequences of jobs per type are predetermined. The two-stage
differentiation flowshop consists of a stage-1 common machine and m stage-2 parallel
dedicated machines. The goal is to determine an optimal interleaved processing sequence
of all jobs at the first stage. We propose an O (m2 ∏m

k=1 nm+1
k ) dynamic programming

algorithm, where nk is the number of type-k jobs. The running time is polynomial when m
is constant.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In most scheduling problems, schedules can be easily
derived if job/operation sequences on the machines are
known. It is however non-trivial for some problems. In
this paper, we consider a two-stage differentiation flow-
shop scheduling problem to minimize the total comple-
tion time, subject to the condition that job sequences
per type are known a priori. The two-stage differentia-
tion flowshop consists of a stage-1 common machine M0
and m stage-2 parallel dedicated machines, M1, . . . , Mm .
Jobs are categorized into m types. All jobs are required
to be processed on machine M0 first, and then jobs of
type l for 1 � l � m proceed to dedicated machine Ml for
their second-stage process. Since the processing sequence
of each job type is given, the goal is to find an inter-
leaving processing sequence of all jobs on machine M0
so as to minimize the sum of job completion times at
stage 2 of all jobs. The problem under study is denoted
by F (1,m)|fixed_seq|∑ C j , where F (1,m) stands for a two-
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stage differentiation flow shop with m parallel dedicated
machines at stage 2, fixed_seq for fixed sequences of jobs
per type, and

∑
C j for the total completion time min-

imization criterion. To solve F (1,m)|fixed_seq|∑ C j opti-
mally, we present a dynamic programming algorithm with
a running time that is polynomial when the number of
dedicated machines m is constant.

2. Literature review

Herrmann and Lee [4] first studied the F (1,2) model
(two job types) and showed the strong NP-hardness of
three objectives, namely the makespan, the number of
tardy jobs and the total completion time. An interest-
ing problem arising from the machine configuration is to
determine an optimal interleaving sequence on the stage-
1 machine from fixed sequences for the two types of
jobs. This interleaving problem of makespan minimization
was reduced to the problem of minimizing the maxi-
mum lateness, which can be solved by Jackson’s earliest
due date (EDD) first rule [6] in O (n log n) time. Kypari-
sis and Koulamas [7] and Mosheiov and Yovel [11] pro-
posed polynomial-time algorithms for the F (1,m) problem
of makespan minimization subject to the block assump-
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tion that jobs of the same type must be processed adja-
cently on the stage-1 machine. With the block assumption,
Mosheiov and Sarig [10] investigated the F (1,m) model
to minimize the weighted number of tardy jobs with
a common due date and proposed a pseudo-polynomial
dynamic programming algorithm to establish the ordi-
nary NP-hardness. Cheng and Kovalyov [1] considered the
F (1,2) model incorporating batching decisions on the
common machine, where setup times occur whenever
the machine switches processing from a job of one type
to a job of the other type. A polynomial-time dynamic
programming algorithm for makespan minimization was
presented. Cheng et al. [2] addressed a non-classical objec-
tive of minimizing the weighted sum of stage-2 machine
completion times. They proved the strong NP-hardness and
designed an O (n3) polynomial-time algorithm for the spe-
cial case with given sequences of both types of jobs.

As aforementioned, problem F (1,2)|fixed_seq|Cmax can
be solved in O (n log n) [4]. The solution approach devel-
oped by Hermann and Lee [4] actually can be further
extended for the general F (1,m)|fixed_seq|Cmax. Never-
theless, the objective of total completion time was not
previously addressed. Due to the strong NP-hardness of
the classical F 2||∑ C j (equivalent to F (1,1)||∑ C j ), the
F (1,m)||∑ C j problem is also intractable. We are inter-
ested in problem F (1,m)|fixed_seq|∑ C j , where job se-
quences on all dedicated machines are given beforehand.
Our preliminary study suggests that even
F (1,2)|fixed_seq|∑ C j cannot be solved using the ap-
proach developed in [4] for F (1,2)|fixed_seq|Cmax. In
this study, we investigate the general m-machine setting,
F (1,m)|fixed_seq|∑ C j , and propose a dynamic program-
ming algorithm.

The assumption of fixed job sequences is justified from
several aspects. Shafransky and Strusevich [13] considered
the machine setting where a predetermined job sequence
is retained on a specific machine in the manufacturing
process owing to technological or managerial decisions.
Another justification for the assumption of fixed job se-
quences is due to the Fist-Come-First-Served (FCFS) prin-
ciple, which is regarded fair by customers [5]. Cheng et
al. [3] and Lin et al. [9] solved some restricted cases, in
which fixed job sequences are implied to derive lower
bounds. Other studies on scheduling problems with the
fixed-sequence assumption include [8] and [12].

3. Dynamic program for F (1,m)|fixed_seq|∑ C j

Denote Jl = { Jl,1, . . . , Jl,nl } the set of type-l jobs, 1 �
l � m. Job Jl, j requires a processing time pl, j and ql, j on
machine M0 and Ml , respectively. The processing sequence
of jobs per type is already predetermined. Assume without
loss of generality that the fixed sequence of type-l jobs is
( Jl,1, Jl,2, . . . , Jl,nl ).

Let us first consider a special case where each type con-
tains exactly one job, i.e. nl = 1 for all types l. In this case,
we denote pl and ql the processing times of the type-l job.
Consider a particular sequence σ = (σ1, σ2, . . . , σm). The
completion time of the j-th job is given by
∑ j

i=1 pσi +qσ j .
The total completion time is thus given by

m∑
j=1

( j∑
i=1

pσi + qσ j

)
=

m∑
j=1

j∑
i=1

pσi +
m∑

j=1

qσ j .

The second term is fixed once the instance is given. There-
fore, the problem is equivalent to minimizing∑m

j=1
∑ j

i=1 pσi , which can be solved in O (m log m) time
by the shortest processing time (SPT) first rule using pl .

For the general case, we propose a dynamic program-
ming algorithm in which two matrices, A and B are de-
signed. Define matrix A1×m = [a1,a2, . . . ,am] with 0 � al �
nl for 1 � l � m, where the element al is the number
of the type-l job(s) considered. Given A, the objective is
to find the optimal interleaving sequence of subsequences
( J1,1, . . . , J1,a1 ), . . . , ( Jm,1, . . . , Jm,am ). In a given schedule
of this problem, the last job having an idle time on its
machine at stage 2 inserted in prior to its dedicated op-
eration is called a critical job of its type. Matrix Bm×m is
defined with 0 � bl,r � ar for 1 � l, r � m, where the el-
ement bl,r is defined as the number of the type-r job(s)
arranged on machine M0 before the stage-1 completion
time of the critical job of type l. A schedule is associated
with a state (k,A,B) subject to the following conditions:
(a) Subsequences ( J1,1, . . . , J1,a1 ), . . . , ( Jm,1, . . . , Jm,am ) are
considered; (b) Job Jk,ak is the last job on machine M0 and
ak �= 0; (c) Job Jl,bl,l is the critical job of type l,1 � l � m,
and its completion on machine M0 is preceded by jobs of⋃m

r=1{ Jr,1, . . . , Jr,bl,r }; (d) If al �= 0, 1 � bl,l � al; otherwise
bl,r = 0. As depicted in Fig. 1, the configuration is aimed
at determining the stage-2 completion time of the job
scheduled last on M0. With the parameter specifications,
the completion time of job Jk,ak is calculated as Ck,ak =∑m

r=1
∑bk,r

j=1;bk,r �=0 pr, j + ∑ak
j=bk,k

qk, j . Consider an instance

with m = 3: (p1,1, p1,2, p1,3) = (2,5,4), (q1,1,q1,2,q1,3) =
(8,4,7), (p2,1, p2,2, p2,3, p2,4) = (4,5,5,3), (q2,1,q2,2,q2,3,

q2,4) = (8,4,17,3), (p3,1, p3,2, p3,3) = (3,4,6), (q3,1,q3,2,

q3,3) = (8,7,4). A schedule of the state with k = 2, A =
[3,4,3], and B =

[
3 2 0
3 3 0
3 3 1

]
is shown in Fig. 2, and we have

C2,4 = ∑3
r=1

∑b2,r
j=1;b2,r �=0 pr, j + ∑a2

j=b2,2
q2, j = 25 + 20 = 45.

The corresponding recursive function fk(A,B),1 � k �
m is defined as the minimum total completion time among
all schedules associated with the same state (k,A,B). From
the above definition, we give the recursive formulation of
our dynamic program as follows. Note that given a ma-
trix A, the range of possible vales of bl,r for 1 � l, r � m
can be obtained.

Algorithm DP. Initialization: For all k ∈ {1, . . . ,m}, all ma-
trices A, and all matrices B,

fk(A,B) =
{

0, if A and B both are zero matrices;

∞, otherwise.

Recursion: For 1 � k � m, each matrix A satisfying 1 � ak �
nk , and 0 � al � nl for 1 � l �= k � m, and each possible
matrix B corresponding to A, perform the recursion by re-
moving the last job Jk,a .
k
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Fig. 1. Configuration of state (k,A,B).

Fig. 2. A schedule of the state (2,A,B) in the instance with m = 3.
Define the updated matrix A′ by letting a′
k = ak −1, and

a′
l = al for 1 � l �= k � m.

Case 1 (bk,k = ak):
In this case, Jk,ak is the critical job of its type. Af-

ter each recursive call, the critical job of type k needs
to be updated. Construct the updated matrix B′ by letting
b′

l,r = bl,r , 1 � l �= k � m and b′
k,r denote the number of the

type-r job(s) arranged on machine M0 before the stage-1
completion time of the updated critical job of type k for
1 � r � m.

Subcase 1-1 (bk,k = ak > 1):
Denote the set D = {[b′

k,1,b′
k,2, . . . ,b′

k,m]: 1 � b′
k,k <

bk,k, and 0 � b′
k,r � bk,r for 1 � r �= k � m}. In this sub-

case, we have the k-th row of B′ , [b′
k,1,b′

k,2, . . . ,b′
k,m] ∈ D.

The configuration of the subcase is presented in Fig. 3.

fk(A,B) = min
1�l�m;D

{
fl
(
A′,B′):

m∑
r=1

a′
r∑

j=b′
k,r+1;b′

k,r �=a′
r

pr, j

>

a′
k∑

j=b′
k,k

qk, j

}
+ Ck,ak .

Subcase 1-2 (bk,k = ak = 1):
In this subcase, Jk,ak is the unique job of its type as

well. After removing Jk,ak for recursion, there exists no
critical job of type k, i.e. a′

k = 0. By virtue of the afore-
mentioned condition (d), we have b′ = 0 for 1 � r � m.
k,r
fk(A,B) = min
1�l�m

{
fl
(
A′,B′)} + Ck,ak .

Case 2 (bk,k < ak):
For this case, Jk,ak is not the critical job of its type. As

illustrated in Fig. 4, we simply remove Jk,ak in the recur-
sion.

fk(A,B) = min
1�l�m

{
fl
(
A′,B

)
:

m∑
r=1

a′
r∑

j=bk,r+1;bk,r �=a′
r

pr, j

�
a′

k∑
j=bk,k

qk, j

}
+ Ck,ak .

Goal: Let al = nl for 1 � l � m. Find min1�k�m{ fk(A,B): 0 �
bl,r � nr and 1 � bl,l � nl for 1 � l, r � m, r �= l}.

As for the complexity of Algorithm DP, the running
times for Subcase 1-1, Subcase 1-2, Case 2, and the Goal
phase are analyzed as follows. For Case 1, bk,k = ak implies
that bk,r = ar , 1 � r � m. Hence, there are O (m

∏m
k=1nm

k )

states, each of which takes O (m
∏m

k=1nk) time in Sub-

case 1-1. The running time is O (m2 ∏m
k=1nm+1

k ). In Sub-
case 1-2, ak = 1 implies that bl,k = 0, 1 � l �= k � m, and
there are less than O (m

∏m
k=1nm

k ) states, each of which
takes O (m) time. The running time is thus O (m2 ∏m

k=1nm
k ).

In Case 2, the size of the state space is O (m
∏m

k=1nm+1
k )

and the computation required for each state takes O (m)
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Fig. 3. Recursion for the case bk,k = ak .

Fig. 4. Recursion for the case bk,k < ak .
time. It results in a total running time of O (m2 ∏m
k=1nm+1

k )

for the Recursion phase. When the Recursion phase is
done, the Goal phase requires O (m

∏m
k=1nm

k ) comparisons,
each of which takes constant time. Therefore, the overall
running time of Algorithm DP is O (m2 ∏m

k=1nm+1
k ), which

is polynomial when m is not part of the input. For the spe-
cific case of m = 2, the complexity is O (n3

1n3
2).

4. Concluding remarks

A two-stage differentiation flowshop scheduling prob-
lem with predetermined job sequences per type for the
minimization of total completion time has been addressed
in this study. For the minimization of the total comple-
tion time, we designed an O (m2 ∏m

k=1nm+1
k )-time dynamic

programming algorithm, where nk is the number of type-k
jobs. The running time is polynomial when the number of
dedicated machines m is constant.

Two directions are suggested for further extensions of
our research. First, since the stage-1 machine is common
for all product types, in the aspect of mass customization
the processing is mostly carried out in batches. It would
be interesting to consider different batching modes, includ-
ing max-batch (parallel-batch) and sum-batch (sequential-
batch) on the common machine. Second, we can consider
the reverse model that has two dedicated machines in
stage one and a common machine in stage two. The dif-
ferentiation flowshop and its reverse model are equivalent
for makespan minimization, but exhibit different charac-
teristics for total completion time minimization.
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