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Abstract—In large-scale fingerprinting localization systems, fine-grained location estimation and quick location determination are

conflicting concerns. To achieve finer grained localization, we have to collect signal patterns at a larger number of training locations.

However, this will incur higher computation cost during the pattern-matching process. In this paper, we propose a novel discriminant

minimization search (DMS)-based localization methodology. Continuous and differentiable discriminant functions are designed to

extract the spatial correlation of signal patterns at training locations. The advantages of the DMS-based methodology are threefold.

First, with through slope of discriminant functions, the exhaustive pattern-matching process can be replaced by an optimization search

process, which could be done by a few quick jumps. Second, the continuity of the discriminant functions helps predict signal patterns at

untrained locations so as to achieve finer grained localization. Third, the large amount of training data can be compressed into some

functions that can be represented by a few parameters. Therefore, the storage space required for localization can be significantly

reduced. To realize this methodology, two algorithms, namely, Newton-PL and Newton-INT, are designed based on the concept of

gradient descent search. Simulation and experiment studies show that our algorithms do provide finer grained localization and incur

less computation cost.

Index Terms—Discriminant function, fingerprinting localization, gradient descent search, mobile computing, pattern-matching

localization, wireless network.

Ç

1 INTRODUCTION

LOCATION tracking is a critical issue in location-based
services (LBSs). Although GPS [1] has been widely used,

it has some inherent limitations, such as unavailability in
indoor environments and accuracy concerns. Therefore,
many techniques have been developed by relying on
existing wireless or telecommunication infrastructures to
compensate the drawbacks of GPS [2], [3]. The cell-based
approach [4] is easy to implement. It is suitable for large-
scale environments and does not incur extra infrastructure
cost. However, such systems typically have accuracy
concerns. The multilateration approach [4] is based on some
parametric (propagational) models to measure distances
from signal sources. Such systems are more accurate when
the fading effect can be modeled accurately. However, in
most complex environments, such as indoor environments,
the fading effect is hard to predict.

In this work, we are interested in pattern-matching
localization based on the fingerprinting approach, such as
RADAR [5]. Unlike those localization methods based on
parametric models, such systems do not rely on preknow-
ledge of the locations of signal sources and do not rely on
calculating the signal fading factor. Instead, such systems
rely on a training phase to learn the received signal strength

(RSS) patterns at a set of training locations from those signal
sources [5], [6], [7], [8], [9], [10], [11], [12]. These signal
sources, or base stations, can be existing infrastructures,
such as IEEE 802.11, GSM, or WiMAX networks. In the
positioning phase, to locate a mobile device, the RSS pattern
measured by the mobile device is compared against the
data collected in the training phase. Such pattern-matching
process usually incurs a lot of computational cost. Concerns
of the pattern-matching schemes include the grain size of
training locations and the time complexity in the position-
ing phase. Recently, some works have addressed the grain
size issue [10], [13], [14], [15], [16], [17], [18], [19], [20].
Naively increasing the number of training locations is not
scalable because both the training and positioning over-
heads will increase significantly. To reduce the grain size of
training locations, some numerical methods are proposed to
infer some virtual training data from real training data.
Hence, the training overhead can be limited to a relatively
small number of real training locations. However, the
positioning overhead is still proportional to the total
number of real and virtual training locations. The authors
in [11], [21], [22], [23] try to reduce the positioning cost by
partitioning the training data into several subsets, each
characterized by a metafeature vector. Therefore, most
subsets can be eliminated after examining their metafeature
vectors. However, the grain size issue is not addressed.

Finer grained location estimation and quicker location
determination are typically conflicting concerns in finger-
printing localization systems. As far as we know, there is no
existing solution that can meet both goals at the same time. In
this paper, we propose a novel discriminant minimization
search (DMS)-based localization methodology, which relies
on a continuous and differentiable discriminant function
obtained by some numerical methods to stand for those
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discrete training data. In our design, the global minimizer of
the discriminant function is expected to be the real location of
the mobile device. Since the function is continuous, finer
location estimation can be achieved in an easier manner. Also,
the differentiability property of the discriminant function
provides slope information, and thus, a search direction in the
search space. This can greatly speed up the positioning
process for finding an optimizer by a few quick jumps.

Relying on the concept of gradient descent search, we
design two localization algorithms, called Newton-PL and
Newton-INT. They differ in their definitions of discriminant
functions. The former is based on a path loss model and the
latter is based on an interpolation technique. The Newton-
PL algorithm is close to a parametric positioning method
and has two main features. First, it is much quicker. Second,
it can extract a few scalars from the training data to
represent the gradients that are needed during the search
process. In fact, these scalars can be computed offline. So,
the large amount of the training data can be significantly
reduced to a few scalars. These features make Newton-PL
very suitable for implementation on those resource-limited
portable devices. On the other hand, the Newton-INT
algorithm is close to a pattern-matching technique and is
more complicated in its search process than Newton-PL.
However, it is still more efficient as compared to the classic
pattern-matching techniques and is more resilient to the
unpredictable signal fading problem in indoor environ-
ments than the parametric positioning techniques. Hence, it
is quite suitable for indoor applications.

To evaluate the performance of the proposed algorithms,
we have conducted both simulations and experiments. In
our simulations, we adopt the radio irregularity model (RIM)
[24], which has been shown to be able to better reflect the
physical reality, such as the influence of hardware
difference, nonisotropic propagation, and dynamic signal
fading effect. Besides, we further modify RIM to simulate
signal attenuation caused by obstacles. These features,
which make the indoor positioning problem more difficult,
are used to test our schemes. In our simulation study, we
tune the parameters of RIM to evaluate Newton-PL and
Newton-INT under different environmental conditions and
investigate the issues of training grain size, initial point
selection, and the cost for building positioning models. On
the other hand, we also implement a median-scale real
environment to verify the correctness of the proposed
algorithms by varying factors such as training location
density and user moving speed. These results prove that
our proposed algorithms do achieve finer grained and
efficient localization simultaneously.

The rest of this paper is organized as follows: Section 2
gives some preliminaries of fingerprinting localization.
Section 3 briefly presents the prior arts for finer grained
or efficient localization. The proposed DMS-based localiza-
tion algorithms are in Section 4. Performance studies are in
Section 5. Finally, Section 6 draws our conclusions.

2 PRELIMINARIES

A fingerprinting localization system generally works as
follows: We are given a set of base stations B ¼ fb1; b2; . . . ;
bng, each capable of transmitting radio signals periodically

in a field F � IR2, and a set of known training locations
L ¼ f‘1; ‘2; . . . ; ‘mg also in F . Each location ‘i is labeled by a
2D Cartesian coordinate ðxi; yiÞ. The system works in two
phases. In the training phase, at each training location ‘i,
i ¼ 1::m, we measure the signal strengths from base stations
for a period of time and create a feature vector �i ¼
½�i;1; �i;2; . . . ; �i;n� for ‘i, where �i;j 2 IR is the averaged RSS
from bj, j ¼ 1::n. The feature space of �i is written as
S � IRn. The set of feature vectors is collected in a database
V ¼ f�1; �2; . . . ; �mg. In the positioning phase, a mobile device
can estimate its location in F by measuring its RSS vector
ss ¼ ½s1; s2; . . . ; sn� and comparing ss against V. The position-
ing process can be modeled by a mapping function
loc : ðL;V; ssÞ 7! F , whose goal is to determine the location
of the mobile device in F . If the returned location is within a
finite number of locations (such as those in L), we regard loc
as a discrete positioning function. For example, in [5], given
ss, the Nearest Neighbor in Signal Space (NNSS) algorithm
suggests a distance function h:

hð‘iÞ ¼ kss; �ik ¼
Xn
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsj � �i;jÞ2

q
: ð1Þ

Then, the positioning result locðL;V; ssÞ ¼ arg min‘i2Lhð‘iÞ.
In NNSS, the result is obtained through an exhaustive
search, i.e., every �i 2 V is examined. On the contrary, if the
returned location can be any one in F , we regard loc as a
continuous positioning function. The proposed DMS-based
localization belongs to the continuous category.

3 RELATED WORKS

Most fingerprinting localization systems adopt a discrete
positioning function. The accuracy of estimated locations
thus depends on the density of training locations. To
achieve finer grained localization after training data have
been collected, one may try to generate some virtual
training locations from real ones. There are two approaches.
The first one is to build propagational models [5], [13], [14],
[15]. In [5], [15], an open space propagational model
considering wall attenuation factor is proposed to estimate
the signal patterns at each virtual training location.
However, these models do not consider the effects of signal
reflection. Hence, to more accurately estimate signal
attenuation caused by distinct features in an indoor
environment, a hidden environment model is proposed in
[14], which can measure an adjustment for each virtual
training location according to the spatial relationship
between itself and the surrounding training data. In [13],
using building layout and structure, a ray-tracing approach
is proposed to derive signal propagation considering
various possible transmission paths, including direct and
indirect ones. However, such approaches are still too simple
to predict detailed signal fading and propagation in small
areas for positioning purpose.

The second approach is by interpolation, such as linear
interpolation [16], [19], [25], Akima splines interpolation
[17], [20], and Shepard interpolation [18]. Through inter-
polation, we can more precisely guess the signal patterns at
those untrained locations by referring to nearby training
locations. However, prior arts related to interpolation do
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not consider the computation and storage requirements
incurred at the runtime. In this work, we do not try to
generate individual virtual training data. Instead, we define
discriminant functions to represent the search space. Fig. 1
compares our approach against existing ones. Our DMS-
based localization algorithm uses the model directly, so the
required amount of storage space can be much reduced. As
to be shown later on, it also significantly alleviates the
computation cost in the positioning phase. Therefore, our
scheme is more suitable for large-scale LBSs.

On the other hand, to reduce the pattern-matching cost,
several solutions have been proposed to partition a large
training set into smaller clusters [11], [21], [22], [26]. Hence,
the computational cost can be restricted to searching a
smaller set. In [22], training locations that see the same set of
base stations with the strongest signal strengths are grouped
together. This technique is easy to be implemented, but it is
hard to predict how many clusters will be generated. In [11],
[21], [23], clustering is done by the k-means algorithm, a
widely used technique to partition a set of objects through
an iterative process. The search effort is then reduced to
identifying a proper cluster and examining only the
members of that cluster (such as by a decision tree [21]). In
[26], training locations are clustered according to their
physical locations. Hence, in a continuous tracking scenario,
location search can be restricted in a set of clusters, including
the current cluster and its neighboring ones. In addition, the
clustering technique is also used in improving positioning
accuracy [23], which proposes to group those more likely
training locations together and choose their centroid as the
estimated location. Observing that building clusters also
takes time, Kushki et al. [27] propose not to cluster in the
training phase. Instead, it proposes a spatial filtering
technique to eliminate those training locations too far away
from the current RSS pattern ss in the positioning phase. The
filtering operation does a rough evaluation between ss and
each �i. This rough evaluation could simply be the number
of different base stations and is thus quite time-saving. After
pruning off most inadequate training locations, we can
conduct a more detailed pattern-matching procedure.
Compared to the clustering approach, this spatial filtering
is still more expensive computationally, but can better adapt
to dynamic environments. Our DMS methodology has the
advantages of both approaches. Through simulation studies,
we will show that our approach incurs even lower
computation cost than clustering in large-scale environ-
ments. Further, our model can easily be rebuilt or modified
as the environments change.

4 DISCRIMINANT MINIMIZATION SEARCH-BASED

LOCALIZATION

To motivate our work, we observe that many existing
pattern-matching localization algorithms [5], [6], [7], [12],
[15], [17], [18], [25], [28], [29] try to determine locations by
exhaustively searching the set V. This could be very time-
consuming when V is large. For example, in a wireless city,
thousands or millions of training locations may have to be
searched. To relieve this problem, we may exploit the spatial
correlation of the data set in V in the sense that training
locations in proximity should have similar feature vectors,
while those that are farther away should have a higher
degree of difference. For example, Fig. 2 draws hð‘iÞ for
2,500 training locations in a 50� 50 grid field with eight
base stations around the boundary and ss is the RSS at
location ð42; 42Þ. We can see that from any location in the
field, hð‘iÞ is smoothly decreasing as ‘i is closer to ð42; 42Þ.
Intuitively, if we use hð‘iÞ as the degree of difference
between ss and �i, then the slope between two ‘i and ‘j can
guide our search direction. By exploiting gradient search,
we can proceed with some quicker jumps in areas with
steeper slopes, and when it is closer to the target location
with gentler slopes, finer searches can be conducted. Based
on this concept, we design our scalable DMS-based
localization methodology.

The basic idea behind our DMS-based localization is to
construct a continuous and differentiable discriminant function
f : F 7! IRþ from the given L, V, and ss. We then apply an
optimization search algorithm to find the location in F that
minimizes f . The search algorithm is expected to quickly
find a location ‘est 2 F that is close to the optimal location
‘� ¼ arg min‘2Ffð‘Þ. Specifically, we will exploit the gradient
descent search [30] to find the optimizer of the discriminant
function. This scheme is an iterative process which can
quickly converge to the minimizer of the given discriminant
function. We propose two possible ways to define the
discriminant function: one based on a path loss model and
the other based on an interpolation technique. However,
both have the continuity and the differentiability properties.

4.1 Gradient Descent Search

The gradient descent search is a well-known technique to
find the optimizer of a given continuous and differentiable
objective function [30]. This technique is an iterative search

KUO AND TSENG: DISCRIMINANT MINIMIZATION SEARCH FOR LARGE-SCALE RF-BASED LOCALIZATION SYSTEMS 293

Fig. 1. Comparison of interpolation strategies.

Fig. 2. (a) The surface view and (b) the top view of the function hð‘iÞ for
all ‘i 2 L given ss measured at (42,42). White arrows denote potential
search directions. Longer arrows mean quicker jumps, while shorter
arrows mean finer searches.



process. In each iteration, we try to get closer to the
optimizer. Initially, a starting location ‘ð0Þ is randomly
selected. Then, we compute ‘ðiþ1Þ, i � 0,

‘ðiþ1Þ ¼ ‘ðiÞ þ �dðiÞ; ð2Þ

where � is a constant scalar and dðiÞ is a vector in F .

Generally, the gradient descent search is terminated when

one of the following two conditions is satisfied: 1) the

absolute difference of two successive results is less than a

predefined threshold �‘min, that is, k‘ðiþ1Þ � ‘ðiÞk < �‘min,

and 2) the number of iterations reaches a predefined bound

imax. The terminated point, written as ‘est, is regarded as the

minimizer ‘� of f .
There are several practices to determine a suitable

direction dðiÞ for each iteration i. One efficient search

technique is Newton’s method [30]. It iteratively uses the

minimizers of quadratic functions to approach the mini-

mizer of the original objective function. It assumes that the

first and second derivatives of the objective function can be

obtained. Hence, we can calculate fð‘ðiÞÞ, its gradient

rfð‘ðiÞÞ ¼ @

@x
fð‘ðiÞÞ; @

@y
fð‘ðiÞÞ

� �T
; ð3Þ

and its Hessian matrix

r2fð‘ðiÞÞ ¼
@2

@x2 fð‘ðiÞÞ @2

@x@y fð‘ðiÞÞ
@2

@y@x fð‘ðiÞÞ @2

@y2 fð‘ðiÞÞ

" #
; ð4Þ

for any given coordinate ‘ðiÞ ¼ ðxðiÞ; yðiÞÞ. According to the

discriminant function f , given ‘ðiÞ in the ith iteration, we

find a quadratic function qið‘Þ to approximate fð‘Þ such

that fð‘ðiÞÞ ¼ qið‘ðiÞÞ, rfð‘ðiÞÞ ¼ rqið‘ðiÞÞ, and r2fð‘ðiÞÞ ¼
r2qið‘ðiÞÞ.

With these constraints, instead of minimizing f directly,
we can minimize functions qi because they have the same
first-order necessary condition and second-order sufficient
condition [30]. In general, we can define

qið‘Þ ¼ fð‘ðiÞÞ þ rfð‘ðiÞÞð‘� ‘ðiÞÞ

þ 1

2
r2fð‘ðiÞÞð‘� ‘ðiÞÞ2:

ð5Þ

According to the first-order necessary condition, qi’s
minimizer appears when

rqið‘Þ ¼ rfð‘ðiÞÞ þ r2fð‘ðiÞÞð‘� ‘ðiÞÞ ¼ 0: ð6Þ

To satisfy this condition, we let ‘ ¼ ‘ðiþ1Þ. Hence,

‘ðiþ1Þ ¼ ‘ðiÞ � rfð‘
ðiÞÞ

r2fð‘ðiÞÞ
¼ ‘ðiÞ � r2fð‘ðiÞÞ�1rfð‘ðiÞÞ:

ð7Þ

The value of ‘ðiþ1Þ is the approximation function qi’s

minimizer. However, remember that our goal is to estimate

the minimizer of f . So, we need to verify if this value is

close enough to f’s actual minimizer ‘� or not. If the

termination conditions are not satisfied, we generate
another qiþ1ð‘Þ at ‘ðiþ1Þ and repeat this process again.
Note that the Hessian matrix r2fð‘ðiÞÞ may not be positive
definite, so the search direction may not point to a descent
direction, implying that the search process may be
divergent. Here, we use the Levenberg-Marquardt mod-
ification [31] to avoid this situation. The idea is quite
intuitive: if the Hessian matrix is not positive definite, we
add a small quantity �iI to it, where I is an identity matrix
and �i is a sufficiently large scalar to make r2fð‘ðiÞÞ þ �iI
positive definite. To sum up, comparing (7) against (2), we
define the search direction as

dðiÞ ¼ �ðr2fð‘ðiÞÞ þ �iIÞ�1rfð‘ðiÞÞ: ð8Þ

Generally, the step size � can be changed in every iteration.
However, deciding a good step size is time-consuming.1

Hence, we simply use a fixed � ¼ 1 here.
In our localization problem, the discriminant function

fð‘Þ will represent the degree of dissimilarity between ss
and the feature vector of location ‘ 2 F . Hence, the
minimizer of f will be the estimated location. To apply
the gradient descent search algorithm, this function is
required to be continuous and differentiable. The gradient
can be interpreted as the spatial correlation of locations.
Via the direction of gradient, we can quickly estimate the
most likely location ‘� of the observed signal ss. Here, it is
worth noting the local minimum problem during our search
for the global minimum. Fortunately, this can be effec-
tively avoided by selecting a good initial point. We will
discuss this issue in Section 4.4. Bellow, we introduce two
designs of f .

4.2 Newton’s Method Using Path Loss Model
(Newton-PL)

This design tries to estimate the channel fading. It intends to
model the amount of signal degradation, i.e., path loss, from
each base station at each location in F . In the training phase,
some path-loss-related parameters will be computed. In the
positioning phase, a discriminant function will be con-
structed according to these parameters and the measured ss.
From this function, we estimate ‘est as stated in Section 4.1.

We adopt the log-distance path loss model [32] to formulate

signal propagation. The path loss at a distance of d can be

written as

PLðdÞ ¼ PLðd0Þ þ 10� log
d

d0

� �
; ð9Þ

where d0 is the reference distance (here, we set d0 ¼ 1) and �

is the pass loss exponent. Hence, the RSS of bj at ‘ can be

expressed by

Prð‘; bjÞ ¼ Pt � PLðk‘; bjkÞ
¼ Pref � 10� logðk‘; bjkÞ;

ð10Þ

where Pt is the transmission power, Pref ¼ Pt � PLðd0Þ is
the reference power, and k‘; bjk denotes the euclidean
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additional 1D optimization search to obtain a better step size [30] (i.e., it
satisfies fð‘ðiþ1ÞÞ < fð‘ðiÞÞ in each iteration i).



distance between ‘ and bj in F . To obtain k‘; bjk, the location
of bj should be known. This could be obtained by
configuration or by inference from training data [33].

In (10), Pref and � are unknown environment and
hardware-dependent factors. We propose to estimate their
values for each base station bi independently. Specifically,
let Pj

ref and �j be these factors for bj. For each training
location ‘i, i ¼ 1::m, it is expected that

Pj
ref � 10�j logðk‘i; bjkÞ ¼ �i;j: ð11Þ

Let x ¼ ½Pj
ref ; �j�

T . Putting (11) for i ¼ 1::m together,

1 �10 logðk‘1; bjkÞ
..
. ..

.

1 �10 logðk‘m; bjkÞ

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

� Pj
ref

�j

� �
|fflfflfflffl{zfflfflfflffl}

x

¼
�1;j

..

.

�m;j

2
64

3
75

|fflfflfflffl{zfflfflfflffl}
C

: ð12Þ

By the least-squares analysis [30], x can be measured as

x ¼
�
Pj
ref ; �j

	T ¼ ðATAÞ�1ATC: ð13Þ

Note that when k‘i; bjk is too large, it makes no or little
sense to add the corresponding equation into (12). In this
case, the corresponding ith row in A and C can be removed
from (12). Also, note that the above computation is
independent of ss and can be done at the training stage.

Given ss, we define the discriminant function as

fð‘Þ ¼
Xn
j¼1

ðsj � Prð‘; bjÞÞ2: ð14Þ

Note that in (14), ‘ is a variable in F . To compute (2), we
derive

@

@x
fð‘Þ ¼ ð�2Þ

Xn
j¼1

sj � Prð‘; bjÞ

 � @

@x
Prð‘; bjÞ;

@

@y
fð‘Þ ¼ ð�2Þ

Xn
j¼1

sj � Prð‘; bjÞ

 � @

@y
Prð‘; bjÞ;

where

@

@x
Prð‘; bjÞ ¼ �10�j

@

@x
logðk‘; bjkÞ;

@

@y
Prð‘; bjÞ ¼ �10�j

@

@y
logðk‘; bjkÞ:

ð15Þ

To obtain the Hessian matrix, we have to compute @2

@x2 fð‘Þ,
@2

@y2 fð‘Þ, @2

@x@y fð‘Þ, and @2

@y@x fð‘Þ. For example,

@2

@x@y
fð‘Þ ¼ 2

Xn
j¼1

�
@

@x
Prð‘; bjÞ

@

@y
Prð‘; bjÞ

� ðsj � Prð‘; bjÞÞ
@2

@x@y
Prð‘; bjÞ

�
;

where

@2

@x@y
Prð‘; bjÞ ¼ �10�j

@2

@x@y
logðk‘; bjkÞ: ð16Þ

The rest of the localization process follows as stated in
Section 4.1. Complete steps of Newton-PL are listed in
Algorithm 1.

Note that in the positioning phase, no differentiation is

involved in (15) and (16) because they are precomputed.

After receiving ss, the only job we need to do is to plug in ss

and ‘ðiÞ into (15) and (16). Hence, the online search job can

be done efficiently. Furthermore, the search complexity

only depends on the number of base stations (i.e., jBj), but is

independent of the size of the training data (i.e., jLj). It is

expected that jLj � jBj in most practice.
Fig. 3 illustrates an example using the settings in Fig. 2. A

mobile device is located at ‘� ¼ ð42; 42Þ. Initially, ‘ð0Þ ¼
ð35; 12Þ. In each iteration, the gradient and Hessian matrix

are computed to determine the search direction, as shown

by arrows. In this example, Newton-PL only needs four

iterations to reach ‘ð4Þ, which is very close to ‘�. Hence,

compared to exhaustively examining hð‘iÞ for all ‘i 2 L, we

can expect that the overall computation cost of Newton-PL

in the positioning phase will be very limited.

4.3 Newton’s Method Using Interpolation
(Newton-INT)

The above Newton-PL scheme has an obvious limitation

that the path loss is likely unpredictable in indoor

environments. Specifically, (9) may not be suitable in an

environment with obstacles. Hence, positioning errors will

be propagated to (14). To relieve this limitation, Newton-

INT adopts the inverse distance weighted interpolation (a.k.a.

Shepard interpolation [34]), a numerical data fitting approach.

Similar to Newton-PL, Newton-INT also needs to infer

Prð‘; bjÞ for each bj from the training data. However,

Newton-PL has fixed parameters once (13) is computed in

the training phase, but Newton-INT has dynamically

changing parameters in its fð‘Þ as ‘ changes in the

positioning phase. For this reason, the fð‘Þ of Newton-

INT can continuously pass through hð‘iÞ at each training

location ‘i, e.g., fð‘iÞ ¼ kss; �ik for all ‘i 2 L.
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The main idea is to use a weighted function to predict the
signal strength at each ‘ 2 F . We define the expected RSS of
bj at ‘ as

Prð‘; bjÞ ¼
1X

‘i2L
wi
	
X
‘i2L

wi � �i;j

 �

; ð17Þ

where wi ¼ k‘; ‘ik��. The term 1=
P

‘i2L wi is for normal-

ization purpose and � is a system parameter (typically,

� > 0). In our experiments, we set � to a very small value,

say 0.01, because the adopted Shepard interpolation may

generate some suddenly changing gradients in areas with

dense training locations, resulting in misleading search

directions. With a smaller �, this can be effectively avoided.

Also, (17) guarantees continuity and differentiability prop-

erties [34]. Note that when ‘! ‘i, we have wi !1, leading

to Prð‘; bjÞ ¼ �i;j.
However, there are two concerns in (17). First, it has to

refer to all training data to compute Prð‘; bjÞ, thus causing

high computation cost. To relax this, we can restrict Prð‘; bjÞ
to be influenced only by a small group Nrð‘; �Þ, which is

defined as the set of the first � training locations in L nearest

to ‘, where � is a system parameter. Intuitively, we will not

refer to those feature vectors whose training locations are

too far from ‘. In practice, we set � ¼ 2 
 5. In our

implementation, we let � ¼ 2 due to the performance

consideration. Given any ‘, how to quickly identify

Nrð‘; �Þ can be efficiently solved by spatial indexing, such

as R-tree [35], which can perform a multivalue key search

with a few comparisons by a bounding box concept. For

example, in Fig. 4, we can use a bounding box Boxð‘Þ
centering at ‘ to search nearby training locations. The

queried training locations are sorted according to their

distances to ‘. Such a search is quite efficient because it only

involves 2D spatial queries and the number of the queried

training locations are very limited. The search time,

however, still depends on the number of training locations.

Hence, we have to conduct this operation as less frequently
as possible. Toward this goal, several literatures have
proposed efficient ways to search nearest neighbors when
queries are proceeded in a continuous manner [36], [37],
[38]. Here, we propose a simple strategy. First, we can reuse
the bounding box Boxð‘Þ as much as possible. In the
example of Fig. 4, for a new spatial query at ‘0, we can reuse
the training locations in the previous bounding box Boxð‘Þ
if ‘0 2 Boxð‘Þ. However, in the next query, since ‘00 62 Boxð‘Þ,
a new bounding box Boxð‘00Þ needs to be found. Second, we
can adaptively change the size of a bounding box according
to its contents. If it covers more than 2� training locations,
we will shrink it in the next iteration; on the other hand, we
will expand it if it only covers less than � training locations.

The second concern in (17) is that the gradient rPrð‘i; bjÞ
at each training location ‘i will be zero [39]. This flatness
property will result in unexpected termination of the
gradient descent search. To solve this problem, we can
guess an artificial gradient rPrð‘i; bjÞ ¼ ½Gxi;j;G

y
i;j�

T at each
training location ‘i for bj. Several literatures [34], [39] have
addressed this issue. We will build a tangent plane at each
training location ‘i ¼ ðxi; yiÞ as in [34]:

T i;jð‘Þ ¼ �i;j þ Gxi;jðx� xiÞ þ G
y
i;jðy� yiÞ: ð18Þ

This plane passes �i;j, that is, T i;jð‘iÞ ¼ �i;j. To compute Gxi;j
and Gyi;j, we first identify a setNgð‘iÞ � L of training locations

which are within a distance of � from ‘i (e.g., � can be 10 m).

For each ‘e ¼ ðxe; yeÞ 2 Ngð‘iÞ, we construct an equation:

Gxi;jðxe � xiÞ þ G
y
i;jðye � yiÞ ¼ �e;j � �i;j: ð19Þ

That is, we expect T i;jð‘Þ to be as closed to �e;j as possible.

Combining these 	 ¼ jNgð‘iÞj equations leads to

x1 � xi y1 � yi
..
. ..

.

x	 � xi y	 � yi

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

�
Gxi;j
Gyi;j

� �
|fflfflffl{zfflfflffl}

x

¼
�1;j � �i;j

..

.

�	;j � �i;j

2
64

3
75

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
C

: ð20Þ

By the least-squares analysis,

x ¼ rPrð‘i; bjÞ ¼ ðATAÞ�1ATC: ð21Þ

Finally, we store these derived gradients in a set

T ¼ fð‘i; �i;j;rPrð‘i; bjÞÞ j ‘i 2 L; bj 2 Bg: ð22Þ
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Fig. 4. Reuse of bounding boxes. A query location is marked by a
triangle (4) and a training location is marked by a dot (�).

Fig. 3. An example of Newton-PL. Locations ‘ðiÞ, i ¼ 0::4, are points
examined by the discriminant minimization search. Arrows indicate
search directions (the last iteration is omitted). The minimizer ‘� is
shown by a cross.



With the above modifications, we redefine (17) as

Prð‘; bjÞ ¼
1P

‘i2Nrð‘;�Þ wi
	
X

‘i2Nrð‘;�Þ
wi � T i;jð‘Þ

 �

; ð23Þ

where Prð‘; bjÞ is a function to which we can plug in any

value of ‘. To compute Prð‘; bjÞ quickly, we need to

maintain T in a spatial indexing after the training phase.

Then, in the positioning phase, given ss, we can define a
discriminant function similar to (14), except that now

Prð‘; bjÞ is as defined in (23). Following this definition, we

can derive

@

@x
fð‘Þ ¼ ð�2Þ

Xn
j¼1

sj � Prð‘; bjÞ

 � @

@x
Prð‘; bjÞ;

@

@y
fð‘Þ ¼ ð�2Þ

Xn
j¼1

sj � Prð‘; bjÞ

 � @

@y
Prð‘; bjÞ;

where

@

@x
Prð‘; bjÞ ¼

DX
j;1D

X
j;2 �DX

j;3D
X
j;4

DX
j;1D

X
j;1

;

@

@y
Prð‘; bjÞ ¼

DY
j;1D

Y
j;2 �DY

j;3D
Y
j;4

DY
j;1D

Y
j;1

;

and

DX
j;1 ¼ DY

j;1 ¼
X

‘i2Nrð‘;�Þ
wi;

DX
j;2 ¼

X
‘i2Nrð‘;�Þ

wi � Gxi;j þ T i;jð‘Þ
@

@x
wi

� �
;

DY
j;2 ¼

X
‘i2Nrð‘;�Þ

wi � Gyi;j þ T i;jð‘Þ
@

@y
wi

� �
;

DX
j;3 ¼ DY

j;3 ¼
X

‘i2Nrð‘;�Þ
T i;jð‘Þwi;

DX
j;4 ¼

X
‘i2Nrð‘;�Þ

@

@x
wi;

DY
j;4 ¼

X
‘i2Nrð‘;�Þ

@

@y
wi:

ð24Þ

Similarly, we can derive the second derivative

@2

@x@y
fð‘Þ ¼ 2

Xn
j¼1

�
@

@x
Prð‘; bjÞ

@

@y
Prð‘; bjÞ

� ðsj � Prð‘; bjÞÞ
@2

@x@y
Prð‘; bjÞ

�
;

where

@2

@x@y
Prð‘; bjÞ ¼

@

@y

DX
j;1D

X
j;2 �DX

j;3D
X
j;4

DX
j;1D

X
j;1
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DXY
j;1 D

X
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and

DXY
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X
‘i2Nrð‘;�Þ

@

@y
wi;

DXY
j;2 ¼

X
‘i2Nrð‘;�Þ
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@

@y
wi þ Gyi;j
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@

@x
wi þ T i;jð‘Þ

@2

@x@y
wi;

DXY
j;3 ¼

X
‘i2Nrð‘;�Þ

wi � Gyi;j þ T i;jð‘Þ
@

@y
wi;

DXY
j;4 ¼

X
‘i2Nrð‘;�Þ

@2

@x@y
wi:

ð25Þ

The other second derivatives @2

@x2 fð‘Þ, @2

@y2 fð‘Þ, and @2

@y@x fð‘Þ
can be obtained in the same manner.

Complete steps of Newton-INT are listed in Algorithm 2.
Line 6 searches the spatial indexing R for those training
locations nearest to a given location. These training
locations will be used to compute the following gradient
and Hessian matrix. Different from Newton-PL, Newton-
INT’s discriminant function is dynamically changed accord-
ing to the referenced training locations. This makes the
computation overhead of Newton-INT higher than that of
Newton-PL. However, Newton-INT is more suitable for
indoor environments.

In some cases, the selected set Nrð‘; �Þ may not have the
RSS patterns for a specific base station bj. That will make
calculating (24) and (25) impossible. To solve this problem,
we can just skip bj. Alternatively, we may increase � . The
third option is to adopt the path loss model in this
situation. We can build the path loss model for each base
station as stated in Section 4.2. If the RSS patterns of
Nrð‘; �Þ contain bj, we apply (24) and (25); otherwise, we
apply (15) and (16). These strategies can make Newton-INT
more practicable.
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4.4 Discussion

The DMS-based localization has several advantages over
traditional exhaustive-search-based schemes. First, it can
achieve fine-grained positioning as long as the correspond-
ing discriminant functions are continuous and differenti-
able. This also reduces the calibration labor cost due to
collecting less training data. Second, as to be shown in our
simulation studies, our algorithms normally run much faster
than exhaustive schemes, especially in large environments.
Table 1 compares the time complexities of NNSS [5],
k-means clustering [11], Newton-PL, and Newton-INT,
where CPM is the cost to compare two RSS vectors, and
CPL and CINT are the costs to perform one iteration of
Newton-PL and Newton-INT search, respectively. For a
simple RSS comparison, like (1), the complexity is only
dependent on the number of base stations, i.e.,
CPM ¼ OðjBjÞ. Newton-PL’s search cost CPL has the same
complexity as CPM , but the iteration bound imax is usually
much less than jLj or kþ jLjk . Hence, the overall time
complexity of Newton-PL is less than NNSS and k-means
algorithms. As for Newton-INT, its search cost CINT does
depend on jLj because its spatial indexing contributes a
logarithmic complexity, i.e., CINT ¼ Oðlog jLj þ � jBjÞ. How-
ever, in practice, it would perform better than the NNSS and
k-means algorithms as jLj becomes larger. Note that
k-means and Newton-INT may involve a dynamic memory
loading cost CDL to load training data from database when
memory space is limited. If memory space is not essential,
loading all data into memory would be more efficient, but
the space requirement will become OðjLj � jBjÞ.

The third advantage is on space complexity. As shown
in Table 1, the storage requirements of Newton-PL and
Newton-INT are much lower than those of NNSS and
k-means because in most practical applications, we have
jLj � jBj. Interestingly, for Newton-PL, it does not need
the training database during the positioning phase,
because it has been transformed to the parameters of the
discriminant function. For Newton-INT, only those neigh-
boring training data are needed during the positioning
phase. This would be beneficial to enable positioning by
portable devices themselves.

However, our DMS-based solution has an inherent
limitation, i.e., the local minimum problem. According to
our simulation studies in Section 5.1.4, falling into a local
minimum is not rare if the initial point is not selected
carefully, especially in a complex environment. Several
literatures have discussed this issue [40], [41]. Fortunately,
for the localization problem, the local minimum problem
can easily be avoided because in most LBSs, continuous

locations are needed, which means that the previous
location estimation can be used as the initial point of the
next gradient search.

5 SIMULATION AND EXPERIMENT RESULTS

5.1 Simulation Results

We consider a field of size 250� 250 m2 with 169 base
stations placed at ð20� i; 20� jÞ, i ¼ 0::12 and j ¼ 0::12, and
2 m above the ground. All of these base stations will emit
signals used for the localization purpose. To complicate the
situation, some vertical and horizontal walls are given along
line segments ðð20� i; 0Þ; ð20� i; 250ÞÞ and ðð0; 20� iÞ;
ð250; 20� iÞÞ, i ¼ 0::12. Training locations are at integer grid
points, where the grain size is a parameter. At each training
location, 50 training data are collected and their average is
taken. We modify the RIM [24] to model RSSs:

Prð‘; bjÞ ¼ PVSP
t ðbjÞ � PLDOIð‘; bjÞ
� PLWAF ð‘; bjÞ þNð0; 
Þ;

ð26Þ

where PVSP
t ðbjÞ is to model the transmit power (which may

vary among different hardware), PLDOIð‘; bjÞ is to model
the path loss (which has nonisotropic and continuous
properties), PLWAF ð‘; bjÞ is to simulate the signal attenua-
tion caused by obstacles, and Nð0; 
Þ is a zero-mean normal
random variable with a standard deviation 
 to represent
dynamic noise. Signal sensitivity is bounded by smin, i.e.,
any Prð‘; bjÞ less than smin is ignored.

In RIM, VSP stands for variance of sending power and is
formulated by

PVSP
t ðbjÞ ¼ Pt � 1þNð0; VSPÞð Þ; ð27Þ

where Pt is a constant transmit power and Nð0; VSPÞ is a
zero-mean normal random variable with a standard
deviation VSP. In the beginning of a simulation, each base
station bj randomly selects its PVSP

t ðbjÞ as its transmit
power. DOI stands for degree of irregularity to control the
amount of path loss in different directions and is formu-
lated by

PLDOIð‘; bjÞ ¼ PLðk‘; bjkÞ �Ki; ð28Þ

where PLðk‘; bjkÞ is the obstacle-free path loss equal to (9)
and Ki is to model the level of irregularity at degree i
(i ¼ 0::359) such that

Ki ¼
1; if i ¼ 0;
Ki�1 �Wð0; �; �Þ � DOI; if i ¼ 1::359;

�
ð29Þ

where jK0 �K359j  DOI and Wð0; �; �Þ is a zero-mean
Weibull random variable with a slope parameter � and a
scale parameter �. Here, we let � ¼ 1 and � ¼ 0:1. To model
the complicated partitions in an environment and the
related signal attenuation, WAF stands for wall attenuation
factor and is formulated by [5]:

PLWAF ð‘; bjÞ ¼ minðNobs;NmaxÞ � WAF; ð30Þ

where Nobs is the number of obstacles (walls) on the line-of-
sight path from bj to ‘, Nmax is the maximum number of
obstacles which can influence PLWAF ð‘; bjÞ, and WAF is the
amount of signal attenuation caused by one wall.
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A mobile device moving by a random waypoint model is

simulated. It switches between moving and pausing states. In

the moving state, it uniformly selects a destination in F and

moves to it at 1 m/sec. After reaching the destination, it

switches to the pausing state and stays there for 3 sec. The

mobile device measures RSS from all base stations every

1 sec. The total simulation time is 10,000 sec. Note that for

simplicity, we assume that the mobile device can walk

through the above obstacles. (Refer to [42] for mobility

models which can route around obstacles.) The default

simulation parameters are Pt ¼ 15 dBm, d0 ¼ 1 m, PLðd0Þ ¼
37:3 dBm, � ¼ 4, smin ¼ �96 dBm, 
 ¼ 3, VSP ¼ 0:2,

DOI ¼ 0:01, WAF ¼ 3, Nmax ¼ 4, �‘min ¼ 1 m, � ¼ 2, � ¼ 0:01,

� ¼ 10 m, and training grain size ¼ 5 m.
We compare our algorithms against NNSS with a spatial

filtering mechanism (denoted as SF-NNSS) and the

k-means clustering algorithm (denoted as k-MEANS) [11],

[21]. In SF-NNSS, it only considers those ‘i whose �i
contains at least jssj � 1 base stations in ss, where jssj denotes

the number of the actually received base stations. If all

training locations are filtered out, we will loosen the

condition and consider ‘i containing at least jssj � 2 base

stations in ss and so on. The k-MEANS algorithm is a well-

known technique to separate a set of data into k subsets. It

is an iterative process. Each iteration has a regrouping step

and a cluster centroid computation step. Initially, k cluster

centroids are randomly selected from the feature set V.

Then, in the regrouping step, each training location ‘i is

grouped to the nearest cluster by measuring the distance

between �i and each centroid. After regrouping, the

centroid of each new-born cluster is calculated by aver-

aging the feature vectors of all training locations in this

cluster. This process will be repeated until convergence is

reached. During the positioning phase, only the training

locations in the cluster whose centroid is closest to ss are

compared to ss. Its computation cost depends on two

factors: jLj and k. In our simulation, we set k around
ffiffiffiffiffiffi
jLj

p
.

Two performance metrics are considered: positioning

error and processing time. The processing time is measured

by the actual CPU cycles consumed from the first to the last

positioning tasks (i.e., 10,000 rounds). In our simulation, we

adopt a PC with an Intel Core 2 Qual (Q6600 at 2.40 GHz).

5.1.1 Study of Maximum Iteration

For Newton-PL and Newton-INT algorithms, imax indicates

the largest number of iterations that the algorithms can run.

Fig. 5 compares Newton-PL and Newton-INT under

different imax values. Fig. 5a shows that Newton-INT is

quite insensitive to imax in terms of positioning error. So, a

small imax is sufficient. Newton-PL reaches a stable error

after imax � 50. Fig. 5b shows the incurred processing time.

We observe that Newton-INT has a steeper increasing trend

than Newton-PL. This is because CINT is much larger than

CPL. So, we can allow a larger imax for Newton-PL to

converge. Considering both Figs. 5a and 5b, we will set imax
to 100 and 10 for Newton-PL and Newton-INT, respec-

tively, in the rest of the simulations and experiments.

5.1.2 Influence of Training Grain Size

In Fig. 6, we vary the density of training locations. A finer

grain size incurs longer processing time for both SF-NNSS

and k-MEANS. However, changing grain sizes does not

have dramatic influence on Newton-PL. As for Newton-

INT, its processing time slightly increases as the grain size

decreases. So, the proposed spatial indexing and search

strategy work quite well. In general, jLj should be quite

large, making our DMS-based algorithms more attractive in

terms of computation cost.
As to positioning error, SF-NNSS, k-MEANS, and New-

ton-INT all benefit from finer grain sizes because they can
better capture the signal fading trend as more training data
are given. However, without sufficient training data, SF-
NNSS and k-MEANS will be much worse than our
algorithms due to low resolution of training locations.
Among all, Newton-INT performs the best in most cases
because it can predict signal patterns quite well.

5.1.3 Parameters of the Radio Model

Parameter DOI is to control the signal irregularity. As
shown in Fig. 7, DOI has little impact on processing time
for all algorithms. However, a larger DOI incurs a much
larger positioning error on Newton-PL because it makes a
strong assumption that the decay of signals follows a
logarithmic function, which usually does not hold in
indoor environments. On the other hand, SF-NNSS,
k-MEANS, and Newton-INT are all quite insensitive to
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Fig. 5. Comparisons of (a) positioning error and (b) processing time for Newton-PL and Newton-INT under different imax values.



DOI in terms of positioning error. In all cases, Newton-INT
performs the best.

Different from DOI, parameter WAF is to model the impact

of obstacles on signals. We can expect a dramatic change in

our discriminant function values whenever a wall is

encountered. These steeps increase the difficulty of our

search job because the derived gradients might be unsuitable.

As shown in Fig. 8a, a larger WAF is a disadvantage to all

algorithms. But Newton-PL is most sensitive to this change.

Interestingly, as compared to Fig. 7a, sudden changes of

signals (WAF) trouble Newton-INT more than continuous

changes (DOI). On the contrary, WAF impacts SF-NNSS and

k-MEANS from a different angle. A larger WAF reduces the

number of base stations that a device can see. This makes
training locations less distinguishable, thus increasing the
positioning error. This also reduces computation costs for
SF-NNSS and k-MEANS, as shown in Fig. 8b. Contrarily, the
processing time of Newton-PL and Newton-INT remains
quite flat as WAF increases because less distinguishable
environments also induce more search iterations.

Parameter VSP is to model the variance of transmission

powers among base stations due to hardware differences.

However, for pattern-matching localization, this factor

contributes little influence because we do not make any

assumption about hardware consistency. Fig. 9 verifies

this fact.
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Fig. 7. Comparisons of (a) positioning error and (b) processing time under different DOI values.

Fig. 8. Comparisons of (a) positioning error and (b) processing time under different WAF values.

Fig. 6. Comparisons of (a) positioning error and (b) processing time under different training grain sizes.



In Fig. 10, we conduct evaluations under different noise
levels. Fig. 10a shows that all algorithms suffer from higher
noise levels. SF-NNSS and k-MEANS are constrained by
the grain size, so even with low noise levels, their
positioning accuracy cannot be improved much. However,
when 
 > 3, the noise level becomes the major factor of
positioning errors.

5.1.4 Influence of Initial Point Selection

Here, we select a random initial point for our DMS-based
algorithms and run multiple “rounds” of localization. The
first few rounds may fall into local minimum areas, and we
are interested in observing how continuous rounds may
relieve this problem (each round uses the positioning result

of the previous round as its initial point). In our simulation,
the initial point of the first round is set to ðx� þ d� cos ;
y� þ d� sin Þ, where ðx�; y�Þ is the actual initial location, 
is randomly distributed in ½0; 360Þ, and d is a normal
random variable Nðdist; 5Þ. Here, a larger dist means less
knowledge about the initial location of the target. Fig. 11
illustrates the average error distances from the 1st to the
25th rounds for dist ¼ 0, dist ¼ 10, dist ¼ 20, and “random”
(in “random,” the initial point of the first round is randomly
selected from F ).2 We observe that Newton-PL converges
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Fig. 10. Comparisons of (a) positioning error and (b) processing time under different noise levels.

Fig. 11. Simulation studies of convergence rate of (a) Newton-PL and (b) Newton-INT when the initial location of the first round is randomly selected.

Fig. 9. Comparisons of (a) positioning error and (b) processing time under different VSP values.

2. Note that each value in Fig. 11 represents the average of multiple
simulations, including those encountering and not encountering the local
minimum problem. However, accurately distinguish these two situations
by programs is difficult, if not impossible.



quicker than Newton-INT. However, after entering a steady
state, Newton-INT has better accuracy than Newton-PL.
This is because the discriminant function of Newton-PL can
better express a global trend to find where the actual
location is, but is weaker in expressing the detailed signal
patterns in small regions.

Although the initial point of the current round can be set
to the estimated location of the previous round, the user’s
moving speed may worsen the problem. When the speed is
high, the adopted initial point may already deviated a lot
from the user’s current location. From Fig. 12, we see that
Newton-PL and Newton-INT both suffer from higher
moving speeds. However, this is not the case for SF-NNSS
and k-MEANS. Fortunately, moving speed over 5 m/sec is
already quite unlikely for pedestrians.

5.1.5 Model Building Time

Here, we study the (offline) cost to build a localization model.
Rebuilding the model is needed when the environments or
the locations of base stations change. SF-NNSS takes a lazy
strategy, so it has no building cost (except collecting training
data). Fig. 13 compares the model building time under
different training grain sizes. Newton-PL can calculate its
path loss model very quickly, so it has the lowest cost.
Newton-INT is about two order more costly than Newton-
PL, but is about one order less costly than k-MEANS.
Although both Newton-INT and k-MEANS are more costly
than Newton-PL, they have a difference. The k-MEANS
algorithm is an iterative process. When an environment

changes, it has to repeat the iterative process again.
However, the spatial indexing in Newton-INT allows us to
add or delete training data easily.

5.2 Experiment Results

Next, we further verify our results in a median-scale real
environment, as show in Fig. 14. Training data are collected
through Atheros AR5007EG NICs from 124 training
locations, each separated by 2 m, in the public corridor.
At each training location, 50 samples are collected at a
sampling rate of 7-9 samples per second. Since this building
is heavily deployed with WiFi APs, each sample contains
about 30 base stations in average. Overall, we discover
131 base stations. However, locations of these base stations
cannot be precisely identified since this environment is not
strictly controlled. We cannot even identify their hardware
specifications. We also collect data at 117 testing locations,
each separated by 1 m, for testing purpose (along the dotted
line in Fig. 14). In our experiment, we evaluate a user
walking back-and-forth between the two ends (�A and�B) of
the corridor. Whenever a testing location is traversed, one
random pattern from that location is picked. This brings
some randomness to walking traces. Below, we only
measure the positioning accuracy. The processing time is
relatively underrepresented because the testing environ-
ment is not large.

Fig. 15 draws positioning error against the amount of
training data (we randomly pick some percentage of the
124 training locations for experiment; note that this also
makes the pattern of training locations irregular). Natu-
rally, the error reduces as there are more training locations.
Newton-PL performs the worst because correctly predict-
ing path loss is hard. Through real tests, we find that signal
quality can easily be interfered by room partitions and
moving people. Besides, the locations of base stations are
estimated from the given training data, resulting in further
errors. This result confirms our intuition that propagational
models are not suitable for indoor localization. Overall,
Newton-INT has the smallest positioning error (below 2 m
even if we pick 10 percent of training locations). The results
generally conform to Fig. 6a.

Fig. 16 further tests the impact of moving speed. In Fig. 15,
we sequentially choose testing locations between �A and �B,
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Fig. 12. Simulation studies of positioning error under different moving

speeds.

Fig. 13. Simulation studies of model building time under different training

grain sizes.

Fig. 14. Our experiment environment at the Computer Science Building,
National Chiao Tung University. Training locations are labeled by dots
(�). Testing data are collected along the dotted line between �A and �B.



each separated by 1 m. Here, we adopt the same trace, but

pick testing locations with some gap. This gives a higher

moving speed. Fig. 16 shows the result. Moving speed

does not have much impact on positioning error, except

Newton-PL. The results generally conform to our simulation

results in Fig. 12, except that Newton-INT is quite insensitive

to moving speed. One possible reason is that our experiment

environment is not as complex as the simulation environ-

ment because the traces do not cross walls.

6 CONCLUSIONS

In this paper, we have presented a novel DMS-based

localization methodology. It is scalable to large environ-

ments for three reasons. First, it does not scale or scales up at

a slower speed with the increase of training locations. Most

time-consuming work can be done offline at the training

stage. The online positioning work is quite lightweight.

Second, DMS-based localization has higher positioning

accuracy due to the continuity property of the discriminant

functions. Third, its space complexity for gradient search is

quite low because training data can be abstracted by a few

scalars of the discriminant function at the offline stage. We

believe that these are enabling features of large-scale LBSs

[43]. Future research directions may include:

. Development of more efficient discriminant func-
tions.

. Dynamic adjustment of the parameters of discrimi-
nant functions when part of the training data is
changed.

. Server-based versus client-based localization: tradi-
tional fingerprinting localization systems rely on the
localization server to conduct the online search job.
Since our DMS-based solutions are quite light-
weight, the online search job may be conducted by
the mobile devices themselves. It deserves to study
how to trade the computation with the communica-
tion cost. This may even enhance privacy because
localization is done locally.

. Integration of the DMS-based solutions with other
technologies, such as Kalman filter [44], particle
filter [45], averaging method [46], and scrambling
method [12], to further improve the accuracy.
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[31] J.J. Moré, “The Levenberg-Marquardt Algorithm: Implementation
and Theory,” Lecture Notes in Mathematics, vol. 630, pp. 105-116,
Springer, 1977.

[32] T.S. Rappaport, Wireless Communications: Principles and Practice.
Prentice Hall PTR, 1996.

[33] D. Han, D.G. Andersen, M. Kaminsky, K. Papagiannaki, and S.
Seshan, “Access Point Localization Using Local Signal Strength
Gradient,” Proc. Int’l Conf. Passive and Active Measurement, 2009.

[34] D. Shepard, “A Two-Dimensional Interpolation Function for
Irregularly-Spaced Data,” Proc. ACM Nat’l Conf., pp. 517-524, 1968.

[35] P. Rigaux, M. Scholl, and A. Voisard, Spatial Databases: With
Application to GIS. Morgan Kaufmann, 2001.

[36] Y. Tao and D. Papadias, “Time-Parameterized Queries in Spatio-
Temporal Databases,” Proc. ACM SIGMOD, pp. 334-345, 2002.

[37] Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest Neighbor
Search,” Proc. Int’l Conf. Very Large Data Bases, pp. 287-298, 2002.

[38] B. Zheng, W.-C. Lee, and D.L. Lee, “Search Continuous Nearest
Neighbors on the Air,” Proc. Int’l ICST Conf. Mobile and Ubiquitous
Systems: Computing, Networking and Services, pp. 236-245, 2004.

[39] W.J. Gordon and J.A. Wixom, “Shepard’s Method of ‘Metric
Interpolation’ to Bivariate and Multivariate Interpolation,” Math.
of Computation, vol. 32, no. 141, pp. 253-264, 1978.

[40] P.R. Chowdhury, Y.P. Singh, and R.A. Chansarkar, “Hybridiza-
tion of Gradient Descent Algorithms with Dynamic Tunneling
Methods for Global Optimization,” IEEE Trans. Systems, Man and
Cybernetics, Part A: System and Humans, vol. 30, no. 3, pp. 384-390,
May 2000.

[41] O. Maron and A. Moore, “Hoeffding Races: Accelerating Model
Selection Search for Classification and Function Approximation,”
Advances in Neural Information Processing Systems, vol. 6, pp. 59-66,
Morgan Kauffmann, Apr. 1994.

[42] A. Jardosh, E.M. Belding-Royer, K.C. Almeroth, and S. Suri,
“Towards Realistic Mobility Models for Mobile Ad Hoc Net-
works,” Proc. ACM MobiCom, pp. 217-229, 2003.

[43] S.-P. Kuo, S.-C. Lin, B.-J. Wu, Y.-C. Tseng, and C.-C. Shen,
“GeoAds: A Middleware Architecture for Music Service with
Location-Aware Advertisement,” Proc. IEEE Int’l Conf. Mobile Ad-
Hoc and Sensor Systems, 2007.

[44] I. Guvenc, C.T. Abdallah, R. Jordan, and O. Dedeoglu, “Enhance-
ments to RSS Based Indoor Tracking Systems Using Kalman
Filters,” Proc. GSPx and Int’l Signal Processing Conf., pp. 91-102,
2003.

[45] J. Letchner, D. Fox, and A. LaMarca, “Large-Scale Localization
from Wireless Signal Strength,” Proc. Nat’l Conf. Artificial
Intelligence, pp. 15-20, 2005.

[46] M. Youssef and A. Agrawala, “The Horus WLAN Location
Determination System,” Proc. ACM Int’l Conf. Mobile Systems,
Applications, and Services, pp. 205-218, 2005.

Sheng-Po Kuo received the BS and MS
degrees in computer science and information
engineering and the PhD degree in computer
science from the National Chiao Tung Univer-
sity, Hsinchu, Taiwan, in 2001, 2003, and 2008,
respectively. He is currently a senior scientist at
Telcordia Technologies. His current research
interests are primarily in applying machine
learning techniques to indoor localization, in-
cluding large-scale pattern-matching localization

algorithms, location tracking algorithms, and hybrid localization systems.

Yu-Chee Tseng received the PhD degree in
computer and information science from Ohio
State University in January 1994. He is a
professor (2000-present), the chairman (2005-
present), and an associate dean (2007-present)
in the Department of Computer Science, Na-
tional Chiao-Tung University, Taiwan. He is
currently an adjunct chair professor at Chung
Yuan Christian University (2006-present). He
received the Outstanding Research Award by

National Science Council, ROC, in both 2001-2002 and 2003-2005, the
Best Paper Award by International Conference on Parallel Processing in
2003, the Elite I.T. Award in 2004, and the Distinguished Alumnus
Award by Ohio State University in 2005. His research interests include
mobile computing, wireless communication, and parallel and distributed
computing. He serves on the editorial boards for Telecommunication
Systems (2005-present), the IEEE Transactions on Vehicular Technol-
ogy (2005-present), the IEEE Transactions on Mobile Computing (2006-
present), and the IEEE Transactions on Parallel and Distributed
Systems (2008-present).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

304 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 2, FEBRUARY 2011


