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ula-hoop motion refers to the spinning of a ring around a human
ody; it is made possible by the interactive force between the
oving ring and the body. Inspired by the generic concept of
ula-hoop motion, this study proposes a novel motion transformer
esign that consists of a main mass sprung in one translational
irection and a free-moving mass attached at one end of a rod, the
ther end of which is hinged onto the center of the main mass. It
s expected that the transformer is capable of transforming linear
eciprocating motion into rotational motion. In addition, the
ransformer could be integrated with coils, magnets, and electric
ircuits to form a portable energy scavenging device. A thorough
ynamic analysis of the proposed transformer system is conducted
n this study in order to characterize the relationships between the
aried system parameters and the chance of hula-hoop motion
ccurrence. The governing equations are first derived with
agrange’s method, which is followed by the search for steady-
tate solutions and the corresponding stability analysis via the
omotopy perturbation method and the Floquet theory. Direct nu-
erical simulation is simultaneously performed to verify the cor-

ectness of the approximate analysis. In this manner, the feasibility
f the proposed design and the occurrence criteria of hula-hoop
otion are assessed. �DOI: 10.1115/1.4001839�

Introduction
Inspired by the generic concept of hula-hoop motion, which

ccurs due to the interactive forces between the moving ring and
he human body, this study proposes a novel motion transformer
esign that is capable of transforming linear vibro-motions into
otary motions. The proposed transformer consists of a main mass
prung in one translational direction and a free-moving mass at-
ached at one end of a rod, the other end of which is hinged onto
he main mass. Yoshitake et al. �1� developed a similar device
onsisting of a hula hoop and a generator for quenching the vi-
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bration of a structure or a machine while generating electric en-
ergy. By composing the resonance curve of rotating and nonrotat-
ing hula hoops, the operating curve revealed the performance of
hula-hoop motion. Hatwal et al. �2� presented a dynamic analysis
of a system with a very similar dynamic structure, but the analysis
concentrated on the small-amplitude oscillatory motions of the
free mass. In contrast, the free mass is expected to exhibit spin-
ning motion, that is, rotational hula-hoop motion in this study
when the rotational and oscillation frequency match. Additionally,
Garira and Bishop �3� investigated the properties of different
steady-state rotational solutions of a parametrically excited pen-
dulum. Lenci et al. �4� presented rotational solutions and its sta-
bility of parametric pendulum via the perturbation method. Wu �5�
proposed a rotational pendulum vibration absorber with a spinning
support for decreasing vibrations. Furthermore, the phenomena of
rotating behavior of the model with an unbalanced rotor were also
investigated by researchers via the method of averaging �6–10�,
the Tikhonov method �11�, and the multiple-scale perturbation
technique �12�.

The equations governing the motions of the main and free
masses are first formulated based on the physical model. Because
the equations are nonlinear, the search for steady-state solutions
and the corresponding stability conditions is conducted in se-
quence. Since, in this study, the free mass is anticipated to revolve
in the hula-hoop motion rather than the small-amplitude oscilla-
tory motion, we adopt the homotopy perturbation method to solve
the nonlinear dynamic equations for obtaining better approximate
solutions �13–15�. After the approximate solutions are attained,
the corresponding stability conditions are evaluated using the Flo-
quet theory. On the basis of the obtained results, the design guide-
lines for determining transformer parameters to ensure the occur-
rence of hula-hoop motion are determined.

2 Physical Model and Governing Equation
Mimicking the hula-hoop motion, this study proposes a novel

motion transformer design, as shown in Fig. 1�a�, which consists
of a main mass sprung in the y-direction and a free-moving mass
attached at one end of a rod, the other end of which is hinged onto
the center of the main mass.

In Fig. 1�a�, M, m, k, c, cm, Rm, and F denote the main mass,
free mass, coefficient of the spring, damping capacity of the
damper, rotational damping due to the friction between the pin
and the hole, rotational radius between the center of the free mass
and the pin, and the excitation force applied in the y-direction,
respectively. The main mass is confined to move only in the
y-direction. The free mass is assumed to be a point mass in Fig.
1�a� or a semicircle thin plate in Fig. 1�b�. The main and free
masses move parallel to the ground; no gravitational force acts on
them. On the basis of the dynamic characteristics of the model,
the motion of free mass is defined as xf =Rm cos � and yf =y
+Rm sin �. xf and yf denote the absolute displacements of the free
mass in the x- and y-directions, respectively; y denotes the recip-
rocating motion of the main mass, and � denotes the rotational
angle of the free mass. By differentiating xf and yf with respect to
time, the velocity of free mass in the x- and y-directions can be

obtained as ẋf =−Rm�̇ sin � and ẏ f = ẏ+Rm�̇ cos �.
Then, the kinetic energy, T, and potential energy, V, caused by

the deformation of the spring are expressed as

T = 1
2 Mẏ2 + 1

2m�ẋf
2 + ẏ f

2� + 1
2 I�̇2 = 1

2 Mẏ2 + 1
2m�ẏ2 + 2Rmẏ�̇ cos �

+ Rm
2 �̇2� + 1

2 I�̇2 �1�

V = 1
2ky2 �2�

where I is the mass moment of inertia of the semicircle free mass.
With the kinetic energy, potential energy, and generalized forces,
the equations describing the motion of the system can be derived

by using Lagrange’s equations:
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d

dt
� �T

� ẏ
� −

�T

�y
+

�V

�y
= � �3�

d

dt� �T

� �̇
� −

�T

��
+

�V

��
= U �4�

here �=F cos��t�−cẏ and U=−cm�̇ are the generalized non-
onservative forces. Thus, the equations governing the motion of
he main mass and free mass are written as

�M + m�ÿ + mRm��̈ cos � − �̇2 sin �� + cẏ + ky = F cos��t� �5�

nd

�mRm
2 + I��̈ + cm�̇ = − mRmÿ cos � �6�

here I is the mass moment of inertia of the semicircular thin
late. Equations �5� and �6� are expressed in nondimensional
orms for conveniently analyzing the dynamic behaviors of the
ystem:

q���� + 2�q���� + q��� + �������cos ���� − �������2sin �����

= Feq��� �7�

nd

�1 + Ieq������ + �m�� + q����cos ���� = 0 �8�

here

� = �nt, �n =� k

M + m
, q��� = y�t�/Rm,

q���� = ẏ�t�/Rm�n, ���� = ��t�, ����� = �̇�t�/�n,

� =
m

M + m
, Feq��� =

F cos����
�M + m�Rm�n

2 , � = �/�n,

� =
c

2�M + m��n
, 	m =

cm

mRm
2 �n

, Ieq =
9
2

32
− 1

he prime denotes the derivative with respect to the nondimen-
ional time �. �n and � are the natural frequency of the system
nd the excitation frequency, respectively. In addition, � is the
ondimensional frequency of excitation.

Approximate Solutions

3.1 Homotopy Perturbation Method. The homotopy pertur-
ation method proposed by He �14� possesses the advantages of
he traditional perturbation methods and those of the homotopy
echnique, which will be described briefly. One can employ this

ethod to solve nonlinear differential equations. A general non-

Fig. 1 Physical model of hula-hoop
semicircular thin plate as the free m
inear equation can be in the form of
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A�V� − f��� = 0 �9�

where A is a general differential operator with the linear part, L,
and the nonlinear part, N, and f��� is a known analytic function. A
homotopy V�� , p� :�� �0,1�→R can be constructed with this
method to satisfy

H�V,p� = �1 − p��L�V� − L�U0�� + p�A�V� − f���� = 0 �10�

or

H�V,p� = L�V� − L�U0� + pL�U0� + p�N�V� − f���� = 0 �11�

where p� �0,1� is an embedding parameter and ��R. U0 is an
initial approximation of Eq. �11�. When the embedded parameter
p is zero, the equation is of the linear system; as p is unit, it
recovers to the original one, which are shown as follows:

H�V,0� = L�V� − L�U0� = 0 �12�

H�V,1� = A�V� − f��� = 0 �13�

Herein, the process is termed deformation in topology, and Eqs.
�12� and �13� are homotopic. After the homotopy deformation, Eq.
�10� or Eq. �11� is termed the perturbation equation with an em-
bedding parameter p considered as a small parameter.

3.2 Solution Procedures. This study employs the homotopy
perturbation method �15� to solve the nonlinear differential Eqs.
�7� and �8�. We first establish these two equations as the homotopy
Vq�� , p� :�� �0,1�→R, which satisfies

L�Vq� − L�U0q� + pL�U0q� + pN�V�� − pf��� = 0 �14�

L�V�� − L�U0�� + pN�V�q� + pL�U0�� = 0 �15�

When the hula-hoop motion occurs, i.e., the free mass continu-
ously spins around the center of the main mass, the initial approxi-
mations of Eqs. �7� and �8� can be assumed in the following forms
with four unknowns q1, u1, 
, and �:

U0q = q1 cos�fq� − 
� �16�

U0� = �� + u1 cos�fu� − �� �17�

where fq=� and fu=2�.
Since p is an embedded parameter through the homotopy tech-

nique from Eq. �11�, one can assume that the approximate solution
of Eqs. �14� and �15� have the form

Vq = V0q + pV1q + p2V2q + ¯ �18�

V� = V0� + pV1� + p2V2� + ¯ �19�

Then, substituting Eqs. �18� and �19� into Eq. �14� yields the

tion with „a… a point mass and „b… a
es
mo
approximate solution of Eq. �14�,
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L�V0q� − L�U0q� + p�L�V1q� + L�U0q� + N�V0�� − f���� + p2�L�V2q�

+ N�V1��� + ¯ = 0 �20�

quating the terms with identical powers of p, the following re-
ations can be derived:

L�V0q� − L�U0q� = 0 �21�

L�V1q� + N�V0�� + L�U0q� − f��� = 0 �22�

rom Eq. �21�, one has

V0q = U0q = q1 cos�fq� − 
� �23�

rom Eq. �22�, the nonlinear terms, N�V0��, include �����2 sin �
nd ��� cos � of Eq. �7�, in which � is the mass ratio of the
ystem, and others belong to linear terms except that the excita-
ion F is an analytic function, f���. Then, substituting the initial
pproximation Eq. �17� into the nonlinear terms yields

�����2sin � = ��� − u1fu sin�fu� − ���2 sin��� + u1 cos�fu� − ���

= ���2 − 2�u1fu sin�fu� − �� + �u1fu sin�fu� − ���2	

��sin �� cos�u1 cos�fu� − ���

+ cos �� sin�u1 cos�fu� − ���	 = ����2

− 2�u1fu sin�fu� − �� + �u1fu sin�fu�

− ���2	sin �� cos�u1 cos�fu� − ��� + ��2

− 2�u1fu sin�fu� − �� + �u1fu sin�fu�

− ���2	cos �� sin�u1 cos�fu� − ���	 �24�

ith Neumann’s expansion �16�, the equation becomes

����2sin � = ����2 − 2u1fu sin�fu� − �� + �u1fu sin�fu�

− ���2	sin ���J0 − 2J2 cos 2�fu� − �� + 2J4 cos 4�fu�

− �� − ¯� + ��2 − 2u1fu sin�fu� − �� + �u1fu sin�fu�

− ���2	cos ���2J1 cos�fu� − �� − 2J3 cos 3�fu� − ��

+ 2J5 cos 5�fu� − �� − ¯�	 �25�

here J’s represent the Bessel’s coefficients as

Jn�u1� = �u1

2
�n



k=0

� �−
u1

2

4
�k

k!�n + k�!
, n = 0,1,2,3,4,5, . . . �26�

he Bessel function is simplified as

Jn�u1� �
u1

n

2nn!
�27�

here k=0 with the consideration of �u1��0.5.
The equation can be expanded with trigonometric function, but

or simplicity, the harmonic function with the lowest frequency �
s kept in the derivation; furthermore, there are no harmonic func-
ions with frequency 2� in the expansion. After the above, we can
quate the nonlinear term �����2 sin � with sin �� and cos �� as
ollows:

�����2sin � = � sin����
��2 +
u1

2fu
2

2
�J0 + ��2 +

u1
2fu

2

2
�J1 sin �

+ �− 2�u1fu�
J0 + J2

2
sin � − �−

u1
2fu

2

2
�J2

+ �−
u1

2fu
2

2
� J1 − J3

2
sin �� + � cos����
��2

+
u1

2fu
2�J1 cos � + �− 2�u1fu�

J0 + J2cos �

2 2
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+ �−
u1

2fu
2

2
� J1 − J3

2
cos �� �28�

According to Eq. �24�’s derivation, the nonlinear term ��� cos �
can be as follows:

��� cos � = ��− u1fu
2 cos�fu� − ���cos��� + u1 cos�fu� − ���

= ��− u1fu
2 cos�fu� − ����cos �� cos�u1 cos�fu� − ���

− sin �� sin�u1 cos�fu� − ���	 = ���− u1fu
2 cos�fu�

− ���cos �� cos�u1 cos�fu� − ��� − �− u1fu
2 cos�fu�

− ���sin �� sin�u1 cos�fu� − ���	 �29�

With Neumann’s expansion �16�, the equation becomes

��� cos � = ���− u1fu
2 cos�fu� − ���cos �� cos�u1 cos�fu� − ���

− �− u1fu
2 cos�fu� − ���sin �� sin�u1 cos�fu� − ���	

= ���− u1fu
2 cos�fu� − ���cos ���J0 − 2J2 cos 2�fu� − ��

+ 2J4 cos 4�fu� − �� − ¯� − �− u1fu
2 cos�fu�

− ���sin ���2J1 cos�fu� − �� − 2J3 cos 3�fu� − ��

+ 2J5 cos 5�fu� − �� − ¯�	 �30�

where J’s represent the Bessel’s coefficients as the above. The
equation can be expanded with trigonometric function, and the
expanding harmonic terms with the lowest frequency are kept.
Also, there are no harmonic functions with frequency 2� existed
in the expansion. Thus, the nonlinear term �����cos � is equated
with sin �� and cos �� as follows:

��� cos � = � sin����
�u1fu
2�J1 + �− u1fu

2�
J0 − J2

2
sin ��

+ � cos����
�− u1fu
2�

J0 − J2

2
cos �� �31�

Substituting Eqs. �16� and �17� together with Eqs. �28� and �31�
into Eq. �22� yields

L�V1q� − � sin����
��2 +
u1

2fu
2

2
�J0 + ��2 +

u1
2fu

2

2
�J1 sin �

+ �− 2�u1fu�
J0 + J2

2
sin � − �−

u1
2fu

2

2
�J2

+ �−
u1

2fu
2

2
� J1 − J3

2
sin �� − � cos����
��2 +

u1
2fu

2

2
�J1 cos �

+ �− 2�u1fu�
J0 + J2

2
cos � + �−

u1
2fu

2

2
� J1 − J3

2
cos ��

+ � sin����
�u1fu
2�J1 + �− u1fu

2�
J0 − J2

2
sin �� + � cos����

�
�− u1fu
2�

J0 − J2

2
cos �� − q1�2 cos��� − 
�

− 2�q1� sin��� − 
� + q1 cos��� − 
� − Feq��� = 0 �32�

where J0�1, J1�u1 /2, J2�0, and J3�0 if �u1��0.5. Then, after
equating the harmonic function with the same frequency, Eq. �32�
becomes

L�V1q� + �− ��2 − q1�2 sin 
 − 2�q1� cos 
 + q1 sin 
�

�sin �� + �− ��2J1 cos � − q1�2 cos 
 + 2�q1� sin 


+ q1 cos 
�cos �� − Feq��� = 0 �33�

Meanwhile, because �u1��0.5, the terms with u1
2 of Eq. �33� can

be ignored. After that, Eq. �33� can be solved using the variational

method �17�:
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V1q�t� =�
0

�

sin�t − �����1 − �2�q1 sin 
 − 2�q1� cos 


− ��2�sin �tdt + 
�1 − �2�q1 cos 
 + 2�q1� sin 


−
1

2
��2u1 cos ��cos �t − Feqa����dt =

1

1 − �2���1

− �2�q1 sin 
 − 2�q1� cos 
 − ��2��− sin���� + � sin����

+ 
�1 − �2�q1 cos 
 + 2�q1� sin 
 −
1

2
��2u1 cos ��

��− cos���� + cos���� −
F

�M + m�Rwn
2 �− cos����

+ cos����� �34�

n order to prevent the secular terms from occurring in the next
teration �14�, we set the coefficients of cos � and sin � to zero to
ield

�1 − �2�q1 sin 
 − 2�q1� cos 
 − ��2 = 0 �35�

�1 − �2�q1 cos 
 + 2�q1� sin 
 − 1
2��2u1 cos � − Feq = 0

�36�

erein, the first-order approximation is obtained,

Vq��� = q1 cos��� − 
� �37�
Similar to the above manipulation for obtaining the approxi-
ate solution for Eq. �7�, with the initial approximation of Eq.

17�, two equations can be obtained from Eq. �15� as follows:

L�V0�� − L�U0�� = 0 �38�

L�V1�� + N�V0�q� + L�U0�� = 0 �39�

rom Eq. �38�, we have

V0� = U0� = �� + u1 cos�2�� − �� �40�

or Eq. �39�, the nonlinear term includes q� cos � of Eq. �8�, and
thers belong to linear terms. The nonlinear term can be written
ased on the above similar derivation as

q� cos � = sin�2���� 1
2 �− q1fq

2��− J0 sin�− 
� + J2 sin�
 − 2��

+ J1 cos�− 
 − �� − J1 cos�
 − ���	 + cos�2���

�� 1
2 �− q1fq

2��J0 cos�− 
� − J2 cos�
 − 2�� + J1

�sin�− 
 − �� − J1 sin�
 − ���	 + 1
2 �− u1fu

2��J0

�cos�− 
� + J1 sin�
 − ��� �41�

ith J’s representing the Bessel’s coefficients as Eq. �27�. Substi-
uting Eqs. �17� and �41� into Eq. �39� yields

L�V1�� + sin�2���� 1
2 �− q1fq

2��− J0 sin�− 
� + J2 sin�
 − 2��

+ J1 cos�− 
 − �� − J1 cos�
 − ���	 + cos�2���� 1
2 �− q1fq

2�

��J0 cos�− 
� − J2 cos�
 − 2�� + J1 sin�− 
 − �� − J1 sin�


− ���	 + 1
2 �− q1fq

2��J0 cos�− 
� + J1 sin�
 − ��� + �1 + Ieq�

��− u1fu
2�cos � cos�2��� + �1 + Ieq��− u1fu

2�sin � sin�2���

+ 	m� + 	m�− u1fu�cos � sin�2���

− 	m�− u1fu�sin � cos�2��� = 0 �42�
fter equating the same trigonometric function, Eq. �42� becomes
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L�V1�� + ��1 + Ieq��− u1fu
2�sin � + 	m�− u1fu�cos � + 1

2q1�2

�sin�− 
��sin�2��� + ��1 + Ieq��− u1fu
2�cos �

− 	m�− u1fu�sin � − 1
2q1�2 cos�− 
��cos�2��� + 1

2 �− q1fq
2�J0

�cos�− 
� + 1
2 �− q1fq

2�J1 sin�
 − �� + 	m� = 0 �43�

where J0�1 and J1�u1 /2 from Eq. �25� with �u1��0.5. Simi-
larly, because �u1��0.5, the terms with u1

2 of Eq. �43� can be
ignored. Then, with the expansion and simplification of equations,
there is one equation left without the harmonic term of frequency
2�:

1
2 �− q1fq

2�J0 cos�− 
� + 1
2 �− q1fq

2�J1 sin�
 − �� + 	m� = 0

�44�

Hence, the rest solution for Eq. �43� can be derived using the
variational method �17�:

V1��t� =�
0

�

sin�t − ���
�1 + Ieq��− u1fu
2�sin � + 	m�− u1fu�cos �

+
1

2
q1�2 sin�− 
��sin 2�t + 
�1 + Ieq��− u1fu

2�cos �

− 	m�− u1fu�sin � −
1

2
q1�2 cos�− 
��cos 2�t�dt

=
1

1 − 4�2�
�1 + Ieq��− 4�2u1�sin � − 2	mu1� cos �

+
1

2
q1�2 sin�− 
���2� sin � − sin 2���
�1 + Ieq�

��− 4�2u1�cos � + 2	mu1� sin � −
1

2
q1�2 cos�− 
��

��− cos 2�� + cos ��� �45�

To prevent the secular terms that may occur in the next iteration
�14�, the coefficients of cos � and sin � are set to zero to yield

�1 + Ieq��− 4�2u1�sin � − 2	mu1� cos � + 1
2q1�2 sin�− 
� = 0

�46�

�1 + Ieq��− 4�2u1�cos � + 2	mu1� sin � − 1
2q1�2 cos�− 
� = 0

�47�

Thus, the first-order approximation is obtained

V���� = �� + u1 cos�2�� − �� �48�
On the basis of the four Eqs. �35�, �36�, �46�, and �47�, the four

unknowns q1, u1, 
, and � can be solved as

q1 = Tu1 �49�

u1 =
��2

�1 − �2�T sin 
 − 2��T cos 

�50�


 = tan−1� ��2
�1 − �2�T −
1

2
��2 cos �� + 2Feq��T

��2
− 2��T +
1

2
��2 sin �� + Feq�1 − �2�T�

�51�

� = 
 − � �52�
where
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T = − 4�4�1 + Ieq�2 +
	m

2

�2

� = tan−1� 	m

2��1 + Ieq�
�

Stability Analysis
Having derived the first-order approximate steady-state solu-

ions of the reciprocating main mass and the rotational free mass,
he solutions are accompanied with the Newton method for ac-
uiring the accurate values. Subsequently, the stability analysis is

nitiated by providing small perturbations q̃ and �̃ to the solutions,
ielding

q = q1 cos�fq� − 
� + q̃ �53�

� = �� + u1 cos�fu� − �� + �̃ �54�

ubstituting the perturbed q and � of Eqs. �53� and �54� into Eqs.
7� and �8� yields the equations with the linear parts in terms of

he perturbations q̃ and �̃ as

q̃� + 2�q̃� + q̃ + p1�̃� + p2�̃� + p3�̃ = 0 �55�

�̃� +
	m

1 + Ieq
�̃� + p4�̃ + p5q̃� = 0 �56�

here the expressions of ps� are used for presentation simplicity.
hey are

p1 = � cos �b �57�

p2 = − 2���− u1fu�sin � + ��sin �b �58�

p3 = − ����2 + �− u1fu�2sin2 � + 2��− u1fu�sin ��cos �b

+ �− u1fu
2�cos � sin �b	 �59�

p4 =
�q1fq

2�cos � sin �b

1 + Ieq
�60�

p5 =
cos �b

1 + Ieq
�61�

ith

�b = �� + u1 cos �

� = fu� − �

� = fq� − 


Equations �55� and �56� are, in fact, linearized state equations
ith periodic coefficients. The well-known Floquet theory �18� is,

herefore, employed to investigate the stabilities of the solved ap-

roximate steady-state solutions �19�. By assuming q̃�= Q̃ and

�= Õ, the two second-order Eqs. �55� and �56� could be trans-
ormed into four first-order equations as

x̃� = A���x̃ �62�

here A��� is the so-called transition matrix, which is computed
ver one period. On the basis of the magnitudes of eigenvalues of
he transition matrix, the stability of each solved steady-state so-
ution is determined. If the magnitudes of eigenvalues of the tran-
ition matrix are �1, then the solved solutions are unstable and
annot be observed at the steady state. However, if the magnitudes
f eigenvalues of the transition matrix are �1, then the solved

olutions are stable and the hula-hoop motion will appear.
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5 Results and Discussion
When the main mass vibrates harmonically, the ideal hula-hoop

motion is defined as follows: The free mass is continuously spin-
ning around the center of the main mass in one direction without
oscillation. Here, we first examine the accuracy of the physical
model by observing the dynamic response of the main mass as
well as the free mass based on the approximate solutions obtained
by applying the homotopy perturbation method, i.e., Eqs. �37� and
�48�, and the direct numerical simulation of Eqs. �5� and �6�.
Second, stability analysis is performed to confirm the existence of
the hula-hoop motion. To emphasize the effect of the mass mo-
ment of inertia of the free mass on the existence of hula-hoop
motion, Figs. 2–5 are plotted based on the results without the
mass moment of inertia of the free mass.

5.1 Dynamic Responses of the Main and Free Masses. The
system parameters and initial conditions �ICs� employed in the
simulation are listed in Table 1. Taking the frequency of 3 Hz and
amplitude of 60 N of the excitation force as an example, the
results are first obtained on the basis of the approximate solutions
and are shown in Fig. 2. Figure 2�a� shows the main mass recip-
rocating harmonically with a stable frequency, �, which is rel-
evant to the excitation force. Figure 2�b� demonstrates that the
free mass spins continuously in the same direction; this figure also
illustrates that the slope of the angular variation is related to the
excitation frequency � but with small oscillations, which indicates
that the free mass has nonconstant angular velocity, as shown in
Fig. 2�c�. The similar results shown in Figs. 3�a�–3�c� are attained
by numerical simulation with MATLAB. Except within the transient
state from 0 s to 1.5 s, the hula-hoop motion follows immediately.
From the figures, it can be seen that the main mass reciprocates
harmonically and the free mass is in continuous rotation but is
accompanied with small oscillation in a frequency doubling the
oscillating frequency of the main mass.

To this end, Figs. 2 and 3 confirm the accuracy of the physical

Fig. 2 „a… Amplitude of the main mass, „b… angular displace-
ment, and „c… angular velocity of the free mass. All were solved
by the homotopy perturbation method.
model of hula-hoop motion, the governing equations, and solution
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ethods. Although the angular velocity of the free mass oscillates
t the transient state, it still possesses continuous rotation at the
teady state.

5.2 Approximate and Numerical Integrated Results. Fig-
re 4 shows the stability of the approximate solutions obtained by
sing the homotopy perturbation method. The zone with blue o’s
n region II is stable; it is where the hula-hoop motion exists.

ig. 3 „a… Amplitude of the main mass, „b… angular variation,
nd „c… angular velocity of the free mass. All were solved by
irect numerical simulation.

Blue
(�)

Red
(�)

Black
(�)

1u 1u <0.5 1u <0.5 1u �0.5

Hula-hoop motion Yes No No

(a)

(b)
Fig. 4 Stability of the approximate solutions
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Within this zone, the main mass reciprocates in the y-direction
with frequency � and the free mass rotates continuously at the
speed �, which is accompanied by angular oscillation at a fre-
quency of 2�. The zones with red and black o’s in region I and the
zones with red o’s in regions III, IV, and V are unstable, indicating
that steady-state hula-hoop motion does not exist. Furthermore,
the unstable zones with red and black o’s feature �u1��0.5 and
�u1��0.5, respectively. Hence, it is essential to maintain the value
of �u1��0.5 under certain combinations of frequencies and ampli-
tudes of excitations to ensure the existence of hula-hoop motion.

At the red zone, even with �u1��0.5, the system has no hula-
hoop motion because the free mass moves alternatively; that is,
the free mass possesses reversal motion. In the same zone, as �u1�
increases, the free mass is accompanied with larger reversal mo-
tion. Thus, it is necessary to observe the effect of �u1� on the
motion of free mass. It appears that the system featuring larger
�u1� causes larger reversal motion.

Figure 5 shows the results obtained from direct numerical inte-
gration, which can be used to confirm the effectiveness of the
stability analysis, as shown in Fig. 4, which is conducted by using

Blue
(o)

Blue
(+)

Cyan
(o)

Cyan
(+)

Red
(×)

Hula-hoop motion Yes No No No No

Reversal No Yes No Yes Yes

Freq. � � 1� � 1� � 1� � 1� = 0�

Freq. fu � 2� � 2� � 2� � 2�

(a)

(b)

Fig. 5 Occurrence of hula-hoop motion obtained from direct
numerical simulation

Table 1 System parameters and ICs

Properties Symbol Value �Unit�

Main mass M 0.45 kg
Free mass m 0.045 kg
Mass ratio �m / �M +m�� � 0.09
Rotational radius of free mass Rm 0.05 m
Damping ratio C 0.1
Coefficient of spring K 1000 N/m
Damping ratio of free mass cm 0.01
IC of main mass y�0� 0 m
IC of main mass y��0� 0 m/s
IC of free mass ��0� 0.0 rad
IC of free mass ���0� 0.0 rad/s
Transactions of the ASME
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he approximate solutions and the Floquet theory �18�. Good
greement between these two figures implies the feasibility of the
omotopy perturbation method. Figure 5 shows that the dynamic
ystem of region II, represented by blue o’s, is stable and the
ula-hoop motion occurs. However, the system of region I that is
epresented by red �’s is unstable, which means that there is no
ula-hoop motion but with reversal motions instead. In addition,
here are certain transition regions represented by cyan +’s be-
ween regions I and II where the free mass of the system has no
ula-hoop motion but exhibits repeated reversals. Note that the
ystem in region III that is represented by the cyan o’s demon-
trates hula-hoop motion at the transient state and oscillates with a
ifferent frequency. However, it becomes unstable at a steady-
tate condition, i.e., no hula-hoop motion.

In Figs. 4 and 5, it can be seen that the stability analysis per-
ormed using the approximate solutions from the homotopy per-
urbation method may be less accurate than that of direct numeri-
al integration. The reason is that only the � oscillation term in
q. �7� and the 2� term in Eq. �8� are evaluated. Thus, the effect
f high frequency oscillation terms is omitted in the stability
nalysis for simplicity. Moreover, the oscillation term of the free
ass u1 cos�fu�−�� may cause reversals if �u1��0.5 when the

ree mass revolves. Hence, the design engineer should keep u1 as
mall as possible to ensure that the free mass rotates smoothly
ith small vibrations.
Figure 6 presents the stability of hula-hoop motion attained by

sing the homotopy perturbation method as the mass moment of
nertia of free mass is taken into consideration. It shows three
nstable regions, I, III, and IV, with decreased areas in compari-
on with those of Fig. 4. The left section of the unstable zone I is
ecreased when compared with Fig. 4, where there exists a down-
ard zone extending into the stable region. Under the same con-
itions, the slim unstable zone III also decreases. Figure 7 shows
he results with consideration of the moment of inertia of free

ass by using direct numerical integration. Good agreement be-
ween Figs. 6 and 7 is also achieved. In Fig. 7, it can be seen that
he unstable region III diminishes compared with that of Fig. 5,

(a)

(b)

Blue
(�)

Red
(�)

Black
(�)

1u 1u <0.5 1u <0.5 1u �0.5

Hula-hoop motion Yes No No

ig. 6 Stability of the approximate solutions with the moment
f inertia of free mass
nd the left part of region I also reduces. The zone with cyan “o”
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in region I, compared with that of Fig. 5, decreases, and it has
hula-hoop motion at the transient state but not at the final steady
state. Therefore, from the result, it is determined that the hula-
hoop motion is obtained more easily when the free mass has the
mass moment of inertia.

6 Conclusion
This paper presents a thorough dynamic analysis for the pro-

posed motion transformer mimicking a hula hoop. The physical
model of the system was first constructed, and the governing
equations were then derived by using Lagrange’s method. By em-
ploying the homotopy perturbation method, the approximate solu-
tions were attained, which was followed by stability analysis us-
ing the Floquet theory. The dynamic response and stability
diagram were simultaneously acquired from direct numerical
simulation using MATLAB. Good agreement between the results
obtained from these two methods implies that the approximate
solutions are adequate for the dynamic analysis of the proposed
model. Furthermore, via the analysis based on the Floquet theory,
the stability of the desired solution remains over a large set of
combinations of excitation frequencies and amplitudes. Finally,
the proposed motion transformer can be applied to energy scav-
enging systems, and the results may provide design guidelines for
this class of systems.
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Table 1 lists the system parameters and ICs.
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