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Hula-hoop motion refers to the spinning of a ring around a human
body; it is made possible by the interactive force between the
moving ring and the body. Inspired by the generic concept of
hula-hoop motion, this study proposes a novel motion transformer
design that consists of a main mass sprung in one translational
direction and a free-moving mass attached at one end of a rod, the
other end of which is hinged onto the center of the main mass. It
is expected that the transformer is capable of transforming linear
reciprocating motion into rotational motion. In addition, the
transformer could be integrated with coils, magnets, and electric
circuits to form a portable energy scavenging device. A thorough
dynamic analysis of the proposed transformer system is conducted
in this study in order to characterize the relationships between the
varied system parameters and the chance of hula-hoop motion
occurrence. The governing equations are first derived with
Lagrange’s method, which is followed by the search for steady-
state solutions and the corresponding stability analysis via the
homotopy perturbation method and the Floquet theory. Direct nu-
merical simulation is simultaneously performed to verify the cor-
rectness of the approximate analysis. In this manner, the feasibility
of the proposed design and the occurrence criteria of hula-hoop
motion are assessed. [DOI: 10.1115/1.4001839]

1 Introduction

Inspired by the generic concept of hula-hoop motion, which
occurs due to the interactive forces between the moving ring and
the human body, this study proposes a novel motion transformer
design that is capable of transforming linear vibro-motions into
rotary motions. The proposed transformer consists of a main mass
sprung in one translational direction and a free-moving mass at-
tached at one end of a rod, the other end of which is hinged onto
the main mass. Yoshitake et al. [1] developed a similar device
consisting of a hula hoop and a generator for quenching the vi-
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bration of a structure or a machine while generating electric en-
ergy. By composing the resonance curve of rotating and nonrotat-
ing hula hoops, the operating curve revealed the performance of
hula-hoop motion. Hatwal et al. [2] presented a dynamic analysis
of a system with a very similar dynamic structure, but the analysis
concentrated on the small-amplitude oscillatory motions of the
free mass. In contrast, the free mass is expected to exhibit spin-
ning motion, that is, rotational hula-hoop motion in this study
when the rotational and oscillation frequency match. Additionally,
Garira and Bishop [3] investigated the properties of different
steady-state rotational solutions of a parametrically excited pen-
dulum. Lenci et al. [4] presented rotational solutions and its sta-
bility of parametric pendulum via the perturbation method. Wu [5]
proposed a rotational pendulum vibration absorber with a spinning
support for decreasing vibrations. Furthermore, the phenomena of
rotating behavior of the model with an unbalanced rotor were also
investigated by researchers via the method of averaging [6-10],
the Tikhonov method [11], and the multiple-scale perturbation
technique [12].

The equations governing the motions of the main and free
masses are first formulated based on the physical model. Because
the equations are nonlinear, the search for steady-state solutions
and the corresponding stability conditions is conducted in se-
quence. Since, in this study, the free mass is anticipated to revolve
in the hula-hoop motion rather than the small-amplitude oscilla-
tory motion, we adopt the homotopy perturbation method to solve
the nonlinear dynamic equations for obtaining better approximate
solutions [13-15]. After the approximate solutions are attained,
the corresponding stability conditions are evaluated using the Flo-
quet theory. On the basis of the obtained results, the design guide-
lines for determining transformer parameters to ensure the occur-
rence of hula-hoop motion are determined.

2 Physical Model and Governing Equation

Mimicking the hula-hoop motion, this study proposes a novel
motion transformer design, as shown in Fig. 1(a), which consists
of a main mass sprung in the y-direction and a free-moving mass
attached at one end of a rod, the other end of which is hinged onto
the center of the main mass.

In Fig. 1(a), M, m, k, ¢, ¢,,, R,,, and F denote the main mass,
free mass, coefficient of the spring, damping capacity of the
damper, rotational damping due to the friction between the pin
and the hole, rotational radius between the center of the free mass
and the pin, and the excitation force applied in the y-direction,
respectively. The main mass is confined to move only in the
y-direction. The free mass is assumed to be a point mass in Fig.
I(a) or a semicircle thin plate in Fig. 1(h). The main and free
masses move parallel to the ground; no gravitational force acts on
them. On the basis of the dynamic characteristics of the model,
the motion of free mass is defined as xy=R,, cos § and y,=y
+R,, sin 6. x; and y; denote the absolute displacements of the free
mass in the x- and y-directions, respectively; y denotes the recip-
rocating motion of the main mass, and 6 denotes the rotational
angle of the free mass. By differentiating x and y; with respect to
time, the velocity of free mass in the x- and y-directions can be
obtained as x;= —Rmé sin 6 and y,=y +Rm9 cos 6.

Then, the kinetic energy, 7, and potential energy, V, caused by
the deformation of the spring are expressed as

T= MY+ 3m(if +37) + 5107 = 3M3+ 3m(3* + 2R,,y0 cos 6
+RL0P) + 316 (1)
V= %ky2 ()

where [ is the mass moment of inertia of the semicircle free mass.
With the kinetic energy, potential energy, and generalized forces,
the equations describing the motion of the system can be derived
by using Lagrange’s equations:
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Fig. 1

Physical model of hula-hoop motion with (a) a point mass and (b) a

semicircular thin plate as the free masses
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where ©@=F cos(w)—cy and U=—c,,0 are the generalized non-

conservative forces. Thus, the equations governing the motion of
the main mass and free mass are written as

(4)

(M +m)y +mR,,(6 cos 0— 6 sin 6) + ¢y + ky = F cos(wr) (5)

and

(6)

where [ is the mass moment of inertia of the semicircular thin
plate. Equations (5) and (6) are expressed in nondimensional
forms for conveniently analyzing the dynamic behaviors of the
system:

q"(D) +2pq' (1) + q(7) + e[ 0" (Dcos O(7) — (6 (7))%sin 6(7)]

(mR2 +1)0+ c,,0=—mR,,j cos 0

=Fey(7) (7
and
(1+ qu) 0'(7)+&,0 +q"(7)cos (1) =0 (8)
where
=w,t =1/ k (1) =y()/R
7'—(1)", (1)"— M+m’ qT—y m»
q'(D=y()/R,w,, O7=01, 6(1)= é(t)/wn,
m F cos(ar)
= —, F = —’ = / ns
€ M+m el (M +m)mei aswe
— ¢ — Cm L = 9L72 1
P oM me, " mRw, 9T 32

The prime denotes the derivative with respect to the nondimen-
sional time 7. w, and w are the natural frequency of the system
and the excitation frequency, respectively. In addition, « is the
nondimensional frequency of excitation.

3 Approximate Solutions

3.1 Homotopy Perturbation Method. The homotopy pertur-
bation method proposed by He [14] possesses the advantages of
the traditional perturbation methods and those of the homotopy
technique, which will be described briefly. One can employ this
method to solve nonlinear differential equations. A general non-
linear equation can be in the form of
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AV)=f(1)=0 )

where A is a general differential operator with the linear part, L,
and the nonlinear part, N, and f(7) is a known analytic function. A
homotopy V(7,p):QX[0,1]—R can be constructed with this
method to satisfy

H(V.p)=(1-p)IL(V) - L(Uy)] + plA(V) - f(n)]=0 (10)

or

H(V.p) = L(V) = L(Up) + pL(Up) + p[N(V) = f(7)] =0 (11)

where p €[0,1] is an embedding parameter and 7€ R. U, is an
initial approximation of Eq. (11). When the embedded parameter
p is zero, the equation is of the linear system; as p is unit, it
recovers to the original one, which are shown as follows:

H(V,0)=L(V) - L(Uy) =0 (12)

H(V,1)=A(V) - f(1) =0

Herein, the process is termed deformation in topology, and Eqgs.
(12) and (13) are homotopic. After the homotopy deformation, Eq.
(10) or Eq. (11) is termed the perturbation equation with an em-
bedding parameter p considered as a small parameter.

(13)

3.2 Solution Procedures. This study employs the homotopy
perturbation method [15] to solve the nonlinear differential Eqgs.
(7) and (8). We first establish these two equations as the homotopy
V,(7,p): QX[0,1]—R, which satisfies

L(V,) = L(Uy,) + pL(Uy,) + pN(Vy) = pf(7) =0 (14)

L(Vy) = L(Upg) + PN(V ) + pL(Upg) = 0 (15)

When the hula-hoop motion occurs, i.e., the free mass continu-
ously spins around the center of the main mass, the initial approxi-
mations of Egs. (7) and (8) can be assumed in the following forms
with four unknowns ¢, u;, 3, and y:

Uoy = ¢ cos(fy7— ) (16)

Ugp= at+u; cos(f,7— ) (17)

where f,=a and f,=2a.

Since p is an embedded parameter through the homotopy tech-
nique from Eq. (11), one can assume that the approximate solution
of Egs. (14) and (15) have the form

V,=Vo,+pVig+p° Vo + (18)

Vg=Vog+pVig+p*Vag+ (19)

Then, substituting Egs. (18) and (19) into Eq. (14) yields the
approximate solution of Eq. (14),
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L(Vo,) = L(Up,) + p[L(V,,) + L(Uy,) + N(Vy) = f(D]+ p*[L(Vy,)
+N(V19)]+"’=0 (20)

Equating the terms with identical powers of p, the following re-
lations can be derived:

L(Vog) = L(Uyy) =0 (21)
L(Vy,) + N(Vyg) + L(Up,) = f(7) =0 (22)

From Eq. (21), one has
V()q = U()q =41 COS(qu_ ﬁ) (23)

From Eq. (22), the nonlinear terms, N(V,), include £(8')? sin 6
and €6 cos 6 of Eq. (7), in which & is the mass ratio of the
system, and others belong to linear terms except that the excita-
tion F is an analytic function, f(7). Then, substituting the initial
approximation Eq. (17) into the nonlinear terms yields

£(0')%sin 0= e[a—u,f, sin(f,7— ) ]* sinfar+ u, cos(f,7— )]
= e{a® = 2au,f, sin(f,7— ) + [u,f, sin(f, 7= I}
X{sin a7 cos[u; cos(f,7— y)]
+cos a7 sin[u; cos(f,7— )]} = e{{a?
= 2au,f, sin(f,7— y) + [u,f, sin(f,7
— ) P}sin ar cos[u; cos(f,7— y)]+{a?
= 2au,f, sin(f,7— ) + [u.f, sin(f, 7
- M Pcos arsin[u, cos(f,7— )]}
With Neumann’s expansion [16], the equation becomes
£(0')%sin 0= e{{a? — 2u,f, sin(f,7— y) + [u,f, sin(f, T
— Y Psin a1y - 2J, cos 2(f,7— y) + 2J, cos 4(f,T

(24)

- 7) - ] + {aZ - 2u1fu Sin(fuT_ ’}’) + [ulfu sin uT
— Y P}eos ar2J, cos(f, 7~ ) - 2J5 cos 3(f, 7~ 7)
+2J5cos 5(f,7—y) -1} (25)
where J’s represent the Bessel’s coefficients as
-4
R e §
U
J =0,1,2,3,4,5,... (26
) = ( )Eok,(n+k), n (26)
The Bessel function is simplified as
Jo(uy) = (27)

2”'

where k=0 with the consideration of |u;|<0.5.

The equation can be expanded with trigonometric function, but
for simplicity, the harmonic function with the lowest frequency a
is kept in the derivation; furthermore, there are no harmonic func-
tions with frequency 2« in the expansion. After the above, we can
equate the nonlinear term £(0')? sin 0 with sin a7 and cos ar as

follows:
2.0 2.2
ulzfu)Jo+( 2 ug“)], sin y

e(0')%sin f=¢ sin(ar)[( 2

Jo+J uifs
+ (= 2au,f,) 02 2sin y—( 12 )Jz

2
J-J
+ (— %) 12 L Sin 7} +e cos(am')[(a2

22
u;
sz )Jl cos y+ (- 2au1fu)

+J,
cos y
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(28)

+( uy u)‘ll J3COS
2 ) 2 Y

According to Eq. (24)’s derivation, the nonlinear term 6" cos
can be as follows:

86" cos 0= e[—u,f> cos(f,7— y)]cos[ar+ u; cos(f,7— )]
= &[— u,f> cos(f,7— y)H{cos arcos[u; cos(f,7— )]
—sin arsin[u; cos(f,7— )]} = e{[— u,f> cos(f, 7
— y)]cos arcos[u; cos(f,7— y)] - [- u,f> cos(f, 7
— ) Isin a7 sin[u; cos(f,7— y)]} (29)

With Neumann’s expansion [16], the equation becomes
£6' cos 0= e{[—u,f> cos(f,7— y)]cos ar cos[u; cos(f,7— )]
— [~ uyf2 cos(f, 7= y)Jsin a7 sin[u, cos(f,7— )]}
= &{[— uyf2 cos(f, 7= y)]cos alJy— 2J, cos 2(f,7— ¥)
+2J, cos 4(f,7— ) = -] = [= u,f> cos(f, T
— y)]sin @r{2J; cos(f,7— y) — 2J5 cos 3(f,7— )
+2J5cos 5(f,7—y)— -]} (30)

where J’s represent the Bessel’s coefficients as the above. The
equation can be expanded with trigonometric function, and the
expanding harmonic terms with the lowest frequency are kept.
Also, there are no harmonic functions with frequency 2« existed
in the expansion. Thus, the nonlinear term &(6”)cos 6 is equated
with sin @7 and cos a7 as follows:
). ]
sin y

A ]
cos
> Y

Substituting Egs. (16) and (17) together with Egs. (28) and (31)
into Eq. (22) yields
22 )

L(Vy,) ¢ sin(ar)[<a2+ u12“>J0+( 2 ulzf">1, sin
Jo+ty _( uife )1

2 Y 2 )7

20

+< ulzf ) > 1 Sin y] - cos(a7)[<a2+ Mle”)Jl cos y

+J2 ( M% u
cos y+ —T

2)11—13
5 cosy

g6’ cos O=¢ sin(ar)[(ul A+ (= uy fg)JO

+e cos(ar)[(— uyf%) %o (31)

+ (_ 2au1fu)

+ (_ 2a/ulfu)‘lo

Jp .
sin y | + & cos(a7)

s sin(ar)[(ulfi)fl + (- '41fi)10 =

Jo—J
x[(—ulfﬁ) S cos y] - g1 cos(at— )

—2pgq a sin(at— B) +q; cos(at— B) = Fey(7) =0 (32)
where Jo=1, J,=u,/2, J,=~0, and J3=0 if |u;| <0.5. Then, after
equating the harmonic function with the same frequency, Eq. (32)
becomes

L(V,,) + (—ea? = q,a” sin B—2pg,a cos B+ g, sin B)
Xsin a7+ (- ga?J; cos y—q,a® cos B+2pga sin B
Feg(1)=0 (33)

Meanwhile, because 2 of Eq. (33) can
be ignored. After that, Eq. (33) can be solved using the variational
method [17]:

+ ¢, cos B)cos aT—
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Vi ()= f sin(z — r){[(l - a?)q, sin B—2pq, cos B
0

— ea”]sin ardt + [(1 —a?)q, cos B+2pg asin B

1 1
- Esazul cos y]cos at—Fequ(T)}dl‘= - az{[(l

— a?)q, sin B-2pq,a cos B— ea’][- sin(a7) + a sin(7)]

2

1
+ [(1 - a?)q, cos B+2pgq asin B— 8@t cos y]

X[~ cos(aT) + cos(7)] - R 5[~ cos(a7)
Wn

(M +m)

+ cos(r)]} (34)
In order to prevent the secular terms from occurring in the next
iteration [14], we set the coefficients of cos 7 and sin 7 to zero to
yield

(1-a?)q, sin B—2pg a cos B—ea’=0 (35)
(1 —a?)q, cos B+2pq a sin B— %sazul cos Y= Feq=0
(36)
Herein, the first-order approximation is obtained,
V(1) =g, cos(ar—p) (37)

Similar to the above manipulation for obtaining the approxi-
mate solution for Eq. (7), with the initial approximation of Eq.
(17), two equations can be obtained from Eq. (15) as follows:

L(Voe) - L(UO(;) =0 (38)
L(Vy) + N(Vyge) + L(Upp) =0 (39)

From Eq. (38), we have
Voo=Upp= at+u, cosLar— ) (40)

For Eq. (39), the nonlinear term includes ¢” cos 6 of Eq. (8), and
others belong to linear terms. The nonlinear term can be written
based on the above similar derivation as

q" cos §=sinan{1(~ g~ Jy sin(~ B) + J, sin(8~27)
+J; cos(— B—y) = J; cos(B— )]} + cos(2a7)
X{3(= qufDUy cos(= B) = J cos(B-27) +,
Xsin(= 8= ) = J sin(B= Y)} + 3(= w1y

Xcos(— B) +J; sin(8-v)] (41)

with J’s representing the Bessel’s coefficients as Eq. (27). Substi-
tuting Egs. (17) and (41) into Eq. (39) yields

LV, +sinan{3 (= q )= J sin(= B) + J, sin(B~2)
+J, cos(= B- ) = J; cos(B— ]} +cosan{(- ¢,/
X[Jy cos(— B) = J, cos(B—27v) +J, sin(— B—y) = J, sin(B
=PI+ 5 qfPlo cos(= B) +Jy sin(B= ]+ (1 + 1)
X (= uyf2)cos y cos(2ar) + (1 + Iog)(= uyf2)sin y sin(2ar)
+ S +S,,(— u,f,)cos y sin(2ar)
= (= uyf)sin ycos(ar) =0 (42)

After equating the same trigonometric function, Eq. (42) becomes

014501-4 / Vol. 133, FEBRUARY 2011

LVig) + [(1+ 1) (= w f)sin y+5,,(- uyf,)cos y+5q,0°
Xsin(= B) Jsin(2an) + [ (1 + L) (= uyf2)cos y
= Su(=wf,)sin y = 5q 0% cos(- B) Jeos(2a) + 3 (- g,f) ]y
Xcos(= B) + 5(— quf)J; sin(B-y) +5,a=0 (43)

where Jy=1 and J,=u,/2 from Eq. (25) with |u;|<0.5. Simi-
larly, because [u;|<0.5, the terms with u] of Eq. (43) can be
ignored. Then, with the expansion and simplification of equations,
there is one equation left without the harmonic term of frequency
2a

%(— qlf;)JO cos(=B) + %(— Clle)Jl sin(B- ) +s,2=0
(44)

Hence, the rest solution for Eq. (43) can be derived using the
variational method [17]:

Vlb’(t) = f Sil’l([— T){ |:(1 +qu)(_ ulfi)Sin Y+ gm(_ leu)COS Y
0

1
+ quaz sin(- ,B)]sin 2ar+ [(1 + 1) (= uf2)cos y
. 1 2
= Spu(—uyf,)sin y— Jan cos(— B) |cos 2at (dt
1 P
=1 (1 +I.g) (= 4a”uy)sin y = 2s,,u;a cos y
L . .
e sin(= B) [[2a sin 7—sin 2a7]| (1 +1,,)
2 . L,
X (=4a’u;)cos y+ 2s,u a sin y— S cos(- B)

X[~ cos 2aT+ cos 7']} (45)

To prevent the secular terms that may occur in the next iteration
[14], the coefficients of cos 7 and sin T are set to zero to yield

(1 +1Iy)(= 40’uy)sin y— 25,1, cos y+ %qlaz sin(— 8) =0
(46)

(1 + 1) (= 40Pu;)cos y+ 25, a sin y— %qlaz cos(-B)=0
(47)
Thus, the first-order approximation is obtained
(48)

On the basis of the four Egs. (35), (36), (46), and (47), the four
unknowns ¢, u;, 3, and vy can be solved as

V(1) = at+ u; cosQar— )

q1="Tu, (49)
2
e
u = 2 . (50)
(1= a”)T sin B—2paT cos B
2 2 L
ea’| (1 -a”)T- Eea cos ¢ | +2Fpal
=t -1
ptn 2 Lo 2
ea’| = 2paT+ S5 sin |+ Fe(1 =a”)T
(51)
y=B-¢ (52)

where
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2

S
T=—47/4(1+1,)* + 2

a

-1 Sm
¢=tan <2a(1 +qu))

4 Stability Analysis

Having derived the first-order approximate steady-state solu-
tions of the reciprocating main mass and the rotational free mass,
the solutions are accompanied with the Newton method for ac-
quiring the accurate values. Subsequently, the stability analysis is

initiated by providing small perturbations g and 6 to the solutions,
yielding

q=q, cos(f,7=B)+q (53)

0= ar+u; cos(f,7—y)+ 0 (54)

Substituting the perturbed ¢ and 6 of Egs. (53) and (54) into Egs.
(7) and (8) yields the equations with the linear parts in terms of

the perturbations g and 6 as

G +207 +G+p, 0 +p.0 +py6=0 (55)
T+ —2F 4 p,0+psg’ =0 (56)
1+1 PabU+Ppsq =

eq
where the expressions of p, are used for presentation simplicity.
They are

p1 =g cos 6, (57)
pa==2¢[(—u,f,)sin ¢+ alsin 6, (58)
p3=—ell&® + (- u,f,)’sin> g+ 2a(=uyf,)sin ¢lcos 6,

+ (= uyf2)cos rsin 6} (59)

(q1f>)cos 7sin 6,
= 60
P4 1+ Ig (60)

cos 6,

ps I+ (61)

with

0,=at+u; cos i
lﬂ:fuT_ Y
71=qu—5

Equations (55) and (56) are, in fact, linearized state equations

with periodic coefficients. The well-known Floquet theory [18] is,
therefore, employed to investigate the stabilities of the solved ap-

proximate steady-state solutions [19]. By assuming §'=Q and

§'=0, the two second-order Eqgs. (55) and (56) could be trans-
formed into four first-order equations as

X' =A(nxX (62)

where A(7) is the so-called transition matrix, which is computed
over one period. On the basis of the magnitudes of eigenvalues of
the transition matrix, the stability of each solved steady-state so-
lution is determined. If the magnitudes of eigenvalues of the tran-
sition matrix are >1, then the solved solutions are unstable and
cannot be observed at the steady state. However, if the magnitudes
of eigenvalues of the transition matrix are <1, then the solved
solutions are stable and the hula-hoop motion will appear.

Journal of Vibration and Acoustics
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Fig. 2 (a) Amplitude of the main mass, (b) angular displace-
ment, and (c) angular velocity of the free mass. All were solved
by the homotopy perturbation method.

5 Results and Discussion

When the main mass vibrates harmonically, the ideal hula-hoop
motion is defined as follows: The free mass is continuously spin-
ning around the center of the main mass in one direction without
oscillation. Here, we first examine the accuracy of the physical
model by observing the dynamic response of the main mass as
well as the free mass based on the approximate solutions obtained
by applying the homotopy perturbation method, i.e., Egs. (37) and
(48), and the direct numerical simulation of Egs. (5) and (6).
Second, stability analysis is performed to confirm the existence of
the hula-hoop motion. To emphasize the effect of the mass mo-
ment of inertia of the free mass on the existence of hula-hoop
motion, Figs. 2-5 are plotted based on the results without the
mass moment of inertia of the free mass.

5.1 Dynamic Responses of the Main and Free Masses. The
system parameters and initial conditions (ICs) employed in the
simulation are listed in Table 1. Taking the frequency of 3 Hz and
amplitude of 60 N of the excitation force as an example, the
results are first obtained on the basis of the approximate solutions
and are shown in Fig. 2. Figure 2(a) shows the main mass recip-
rocating harmonically with a stable frequency, w, which is rel-
evant to the excitation force. Figure 2(b) demonstrates that the
free mass spins continuously in the same direction; this figure also
illustrates that the slope of the angular variation is related to the
excitation frequency w but with small oscillations, which indicates
that the free mass has nonconstant angular velocity, as shown in
Fig. 2(c). The similar results shown in Figs. 3(a)-3(c) are attained
by numerical simulation with MATLAB. Except within the transient
state from O s to 1.5 s, the hula-hoop motion follows immediately.
From the figures, it can be seen that the main mass reciprocates
harmonically and the free mass is in continuous rotation but is
accompanied with small oscillation in a frequency doubling the
oscillating frequency of the main mass.

To this end, Figs. 2 and 3 confirm the accuracy of the physical
model of hula-hoop motion, the governing equations, and solution
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Fig. 6 Stability of the approximate solutions with the moment
of inertia of free mass

the approximate solutions and the Floquet theory [18]. Good
agreement between these two figures implies the feasibility of the
homotopy perturbation method. Figure 5 shows that the dynamic
system of region II, represented by blue o’s, is stable and the
hula-hoop motion occurs. However, the system of region I that is
represented by red X’s is unstable, which means that there is no
hula-hoop motion but with reversal motions instead. In addition,
there are certain transition regions represented by cyan +’s be-
tween regions | and II where the free mass of the system has no
hula-hoop motion but exhibits repeated reversals. Note that the
system in region III that is represented by the cyan o’s demon-
strates hula-hoop motion at the transient state and oscillates with a
different frequency. However, it becomes unstable at a steady-
state condition, i.e., no hula-hoop motion.

In Figs. 4 and 5, it can be seen that the stability analysis per-
formed using the approximate solutions from the homotopy per-
turbation method may be less accurate than that of direct numeri-
cal integration. The reason is that only the « oscillation term in
Eq. (7) and the 2a term in Eq. (8) are evaluated. Thus, the effect
of high frequency oscillation terms is omitted in the stability
analysis for simplicity. Moreover, the oscillation term of the free
mass u; cos(f,7—y) may cause reversals if [u;|=0.5 when the
free mass revolves. Hence, the design engineer should keep u; as
small as possible to ensure that the free mass rotates smoothly
with small vibrations.

Figure 6 presents the stability of hula-hoop motion attained by
using the homotopy perturbation method as the mass moment of
inertia of free mass is taken into consideration. It shows three
unstable regions, I, III, and IV, with decreased areas in compari-
son with those of Fig. 4. The left section of the unstable zone I is
decreased when compared with Fig. 4, where there exists a down-
ward zone extending into the stable region. Under the same con-
ditions, the slim unstable zone III also decreases. Figure 7 shows
the results with consideration of the moment of inertia of free
mass by using direct numerical integration. Good agreement be-
tween Figs. 6 and 7 is also achieved. In Fig. 7, it can be seen that
the unstable region III diminishes compared with that of Fig. 5,

@

and the left part of region I also reduces. The zone with cyan “o
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Fig. 7 Occurrence of hula-hoop motion obtained from direct
numerical simulation with the moment of inertia of free mass

in region I, compared with that of Fig. 5, decreases, and it has
hula-hoop motion at the transient state but not at the final steady
state. Therefore, from the result, it is determined that the hula-
hoop motion is obtained more easily when the free mass has the
mass moment of inertia.

6 Conclusion

This paper presents a thorough dynamic analysis for the pro-
posed motion transformer mimicking a hula hoop. The physical
model of the system was first constructed, and the governing
equations were then derived by using Lagrange’s method. By em-
ploying the homotopy perturbation method, the approximate solu-
tions were attained, which was followed by stability analysis us-
ing the Floquet theory. The dynamic response and stability
diagram were simultaneously acquired from direct numerical
simulation using MATLAB. Good agreement between the results
obtained from these two methods implies that the approximate
solutions are adequate for the dynamic analysis of the proposed
model. Furthermore, via the analysis based on the Floquet theory,
the stability of the desired solution remains over a large set of
combinations of excitation frequencies and amplitudes. Finally,
the proposed motion transformer can be applied to energy scav-
enging systems, and the results may provide design guidelines for
this class of systems.
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Appendix

Table 1 lists the system parameters and ICs.
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