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We show a constantly accelerated quark as a string solution of the Nambu-Goto action, which is

embedded in the bulk background dual to the N ¼ 2 supersymmetric confining Yang-Mills theory. The

induced metric of the world sheet for this string solution has an event horizon specified by the fifth

coordinate. By an extended Rindler transformation proposed by Xiao, we move to the comoving frame of

the accelerated quark string. Then we find that this horizon is transferred to the event horizon of the bulk

and the causal part of the accelerated quark is transformed to a static free quark in the Rindler coordinate.

As a result, the confinement of the Minkowski vacuum is lost in the Rindler vacuum. This point is assured

also by studying the potential between the quark and antiquark. However, the remnants of the original

confining force are seen in various thermal quantities. We also discuss the consistency of our results and

the claim that the Green’s functions will not be changed by the Rindler transformation.
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I. INTRODUCTION

An observer, who is accelerated with a constant accel-
eration, a, in the Minkowski space-time would observe a
thermal bath of particles with the temperature a=2� (the
Rindler temperature) [1–3]. This phenomenon is known as
the Unruh effect (see the review for example [4]). Recently,
a similar situation has been studied for the N ¼ 4 super-
symmetric Yang-Mills theory in the context of the holog-
raphy [5–8]. In the approach of [6,7], an accelerated quark
has been introduced as string solutions of the Nambu-Goto
action which are embedded in the AdS5 (anti-de Sitter)
background dual to the N ¼ 4 supersymmetric Yang-
Mills theory. The solution in this background has been
found by Xiao [6], and one finds an event horizon in the
induced metric (in its world sheet) of this string configu-
ration. The position of this horizon is specified by the fifth
coordinate of the bulk.

Xiao has proposed an extended form of Rindler trans-
formation (ERT) to move to a comoving frame of the
accelerated quark. Performing this ERT, the event horizon
appears in the bulk. Thus the theory dual to the geometry
after ERT is considered as a Yang-Mills theory with finite
temperature. The temperature is given by the Rindler
temperature a=2�ð¼ TRÞ. At the same time, the position
of the bulk horizon can be put at the same fifth-coordinate
point with the one of the world sheet horizon of the
accelerated string. As a result, in the new coordinate, one
finds a static string which connects the boundary and the
event horizon of the bulk.

This is nothing but a free quark-string configuration in
the Rindler vacuum. Since the theory dual to the AdS5 is
in the deconfinement phase, there is also a free quark in
the Minkowski vacuum at zero temperature. However we
should notice that the free quark in the one vacuum is not
the same as the one in the other vacuum, because the static
free quark in theMinkowski vacuum cannot be transformed
to the one of the Rindler vacuum by ERT, and vice versa.
Anyway, in both theories dual to AdS5 and to the one
transformed by ERT, the quarks are not confined and chiral
symmetry is not broken. So the confinement-deconfinement
transition or chiral symmetry restoration has not been dis-
cussed as the thermal effect in the Rindler vacuum. Thus, it
remains an important point to perform this analysis for the
gauge theory in the confinement phase and also for the
theory with the chiral symmetry broken in the Minkowski
vacuum. Up to now, there has been no such attempt.
Here we consider a confining Yang-Mills theory in the

Minkowski vacuum in order to examine properties of its
Rindler vacuum, which is obtained by performing ERT.
As a concrete model, we consider a supersymmetric back-
ground solution of type IIB theory. This background is dual
to the N ¼ 2 supersymmetric Yang-Mills theory, and the
quark is confined in this theory [9–11]. In other words,
it is impossible to find a free quark-string solution for the
Nambu-Goto action embedded in this background.
Then we solve the equation of motion for the Nambu-

Goto action to find a constantly accelerated quark-string
solution, which has a similar functional form to Xiao’s.
Actually, we could find such a solution. Then the original
coordinate with the Minkowski vacuum is transformed to
the comoving coordinate of the accelerated string solution
by ERT given by Xiao. After performing this transforma-
tion, we could find the free quark-string configuration in
the Rindler vacuum as in the case of AdS5. This implies
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that this Rindler vacuum is in the quark deconfinement
phase. However, we should again notice that the quark
in the Rindler vacuum is not the one in the Minkowski
vacuum. Then this phase change between the Minkowski
and Rindler vacuum cannot be interpreted as the phase
transition, which is seen in the usual finite temperature
theory. In the latter case, the quark is considered to be
common in both phases.

In the new coordinate vacuum, the dual theory can be
regarded as the thermal Yang-Mills theory with the Rindler
temperature. Its thermal properties are then examined
furthermore, and we could assure that the confinement
has been lost at any value of the finite Rindler temperature.
So, there is no critical temperature in this case. On the other
hand, some remnants of the confining force are seen in
various quantities. The situation is similar to the case of the
finite temperature theory dual to the AdS5-Schwarzschild
background.

One may consider that our result seems to be inconsis-
tent with the statement of [2]. There is a claim that the
quark deconfinement is not expected in the Rindler vac-
uum. This is based on the equivalence of the vacuum
expectation value of Green’s functions. However, it can
be understood that our calculations and the results derived
from them are not contradicting with the claim given
in [2] based on the Green’s functions since our results are
derived from the Wilson-loop calculation in each vacuum
for the corresponding quarks, which cannot be related by
the coordinate transformation as mentioned above. This
point is explained more in the Sec. V.

In Sec. II, we give the setting of our model for the
supersymmetric confining Yang-Mills theory. In Sec. III,
the accelerated string solutions for the supersymmetric
theory are given, and then the effect of the confining force
is examined by comparing with the solution given for AdS5
background. In Sec. IV, new coordinates are given by ERT,
and we find the same Rindler temperature with the one
given for AdS5. The thermal effects are studied to see that
the confinement is lost in the Rindler vacuum. However,
the remnant of the confining force has been observed in the
Wilson-loop calculation and the drag force. In Sec. V, a
brief comment related to the work of four-dimensional
(4D) field theory is given. The summary and discussions
are given in Sec. VI.

II. D3 MODEL FOR CONFINING
YANG-MILLS THEORY

We consider the 10D supergravity action based on the
type IIB superstring theory retaining the dilaton�, axion �
and self-dual five form field strength Fð5Þ. Under the

Freund-Rubin ansatz for Fð5Þ, F�1����5
¼ � ffiffiffiffi

�
p

=2��1����5

[9,10], and for the 10D metric as M5 � S5 or ds2 ¼
gMNdx

MdxN þ gijdx
idxj, we find the solution. The five

dimensional M5 part of the solution is obtained by solving
the following reduced five-dimensional (5D) action,

S ¼ 1

2�2

Z
d5x

ffiffiffiffiffiffiffi�g
p �

Rþ 3�� 1

2
ð@�Þ2 þ 1

2
e2�ð@�Þ2

�
;

(1)

which is written in the string frame and taking
�0 ¼ gs ¼ 1.
The solution is obtained under the ansatz,

� ¼ �e�� þ �0; (2)

which is necessary to obtain supersymmetric solutions.
And the solution is expressed as

ds210 ¼ GMNdX
MdXN ¼ e�=2

8<
:
r2

R2
A2ðrÞð�dt2

þ ðdxiÞ2Þ þ R2

r2
dr2 þ R2d�2

5

9=
;: (3)

Then, the supersymmetric solution is obtained as

e� ¼ 1þ q

r4
; AðrÞ ¼ 1; (4)

whereM, N ¼ 0� 9 and R ¼ ffiffiffiffi
�

p
=2 ¼ ð4�NcÞ1=4. And q

represents the vacuum expectation value (VEV) of gauge
fields condensate [10,11]. In this configuration, the four
dimensional boundary represents the N ¼ 2 supersym-
metric Yang-Mills theory. In this model, we find quark
confinement in the sense that we find a linear rising poten-
tial between quark and antiquark with the tension

ffiffiffi
q

p
=R2

[9,11]. However, chiral symmetry is preserved in the sense
that the vacuum expectation value of the order parameter
is zero. In other words, the dynamical mass generation of
massless quarks does not occur.
In this case, we notice that the space-time is regular

at any point. In the ultraviolet limit, r ! 1, the dilaton part
e� approaches to one and the metric (1) is reduced to
AdS5 � S5. On the other hand, the dilaton part e� diverges
in the infrared limit r ! 0, so that one may expect singu-
larity at r ¼ 0. However there is no such singularity. It is
assured by rewriting the metric (1) in terms of a new
coordinate z, where z ¼ R2=r. Then we obtain

ds210 ¼ e�=2 R
2

z2
ð�dt2 þ ðdxiÞ2 þ dz2 þ z2d�2

5Þ: (5)

In the infrared limit z ! 1, we have

e�=2 R
2

z2
¼ R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

R8
þ 1

z4

s
�

ffiffiffi
q

p
R2

: (6)

Therefore, we find 10D flat space-time in this limit and
no singular point [9,10].

III. ACCELERATING STRING SOLUTION

Here we restrict to the supersymmetric case. The metric
for the supersymmetric case (4) is given as,
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ds210 ¼ e�=2R2

�
u2ð�dt2 þ ðdxiÞ2Þ þ 1

u2
du2 þ d�2

5

�
: (7)

where u ¼ r=R2. The world sheet coordinates of the string
are taken as ðt; uÞ, and it is assumed to be stretching in the
direction x1 � x ¼ xðt; uÞ. Then the induced metric on the
world sheet of the string is given as

gtt ¼ �e�=2R2u2ð1� _x2Þ (8)

guu ¼ e�=2R2

�
1

u2
þ u2x02

�
(9)

gut ¼ gtu ¼ e�=2R2u2 _xx0 (10)

Then the Nambu-Goto action for a string stretching in
the x direction is given as follows,

S ¼ � R2

2��0
Z

dtdu e�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _x2 þ u4x02

p
(11)

for the world sheet of the string ð�; 	Þ ¼ ðt; uÞ, where
r ¼ R2u, x0 ¼ @ux, _x ¼ @tx and

e� ¼ 1þ ~q

u4
; ~q ¼ q

R8
: (12)

The equation of motion for xðt; uÞ is obtained as

1

2
�0 u

4x0

~g1=2
þ

�
u4x0

~g1=2

�0 � @t

�
_x

~g1=2

�
¼ 0; (13)

~g ¼ 1� _x2 þ u4x02; (14)

where dash and dot denote the derivative with respect
to u and t respectively as given above.

q ¼ 0 case.—Before solving (13), we briefly review
Xiao’s analytic solution given for q ¼ 0 or � ¼ 0,
namely, in AdS5 background. In this case, the solution is
obtained as

xðt; uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ f0ðuÞ

q
; f0ðuÞ ¼ 1=a2 � 1=u2 (15)

This solution represents the accelerated quark in the super-
symmetric Yang-Mills theory in the deconfinement phase.
The value a denotes the acceleration of the quark sitting
at the boundary. The speed of the string to x direction
depends on the position u, and it exceeds light velocity
in the region u � a.

We notice here the following point. For this solution, the
induced metric gtt of the string world sheet is given as

gtt ¼ �u2
f0ðuÞ

t2 þ f0ðuÞ
: (16)

This implies that gtt has a zero point at u ¼ a and this point
could be regarded as the horizon on the world sheet. So we
could see the Hawking radiation of fields on the world
sheet. However, there is no horizon in the 5D bulk back-
ground, so this situation is interpreted as the gauge field

radiation of the accelerated color charged particle, namely,
the quark.
In the present case, since the world sheet metric of the

accelerated string is time dependent and nondiagonal, then
we should go to the other coordinate which would provide
a clear vacuum of the theory. This is performed by the
Rindler coordinate transformation given by (26)–(28) in
the next section. In this case, we find the following world
sheet metric

g�� ¼ �R2ðs2 � a2Þ (17)

gss ¼ R2 1

s2 � a2
(18)

gs� ¼ g�s ¼ 0 (19)

These represent the bulk metric at the same time, so we
find the horizon of the world sheet and the one of the bulk
are common. As a result, we find the thermal bath of the
radiation in the new coordinate. This is known as the Unruh
effect.
Here we give some comment on the string. In the new

coordinate, the string world sheet is transformed to ð�; sÞ,
and it stretches in the direction 
 ¼ 
ð�; sÞ. Then the
string solution given above is transformed as


ðs; �Þ ¼ 0: (20)

The new horizon point is equivalent to the point of
fðuÞ ¼ 0, which is the horizon point of (16). The string
represented by (20) is the straight line from the horizon
s ¼ a to the boundary s ¼ 1. Then the part u < a of the
string in the Minkowski coordinate has been hidden in
the thermal bath (inside the horizon) in the new vacuum.
We can see the similar situation for the accelerated solu-
tions given in a different form of background.
q > 0 case.—Next, we solve Eq. (13) for the case of

nontrivial dilaton, namely, for q > 0. Also in this case, we
solve (13) by assuming the following functional form,

xðt; uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ fðuÞ

q
: (21)

We would find fðuÞ ’ f0ðuÞ at large uwhere the effect of q
could be neglected. However the function fðuÞ deviates
from f0ðuÞ when u decreases. Then it may be written as

fðuÞ ¼ f0ðuÞ þ ~fðuÞ; (22)

where ~fðuÞ is expected to be proportional to q. These
points are seen as follows.
Equation (13) is rewritten as the one of fðuÞ as follows,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=f02 þ u4=4

q �
u4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=f02 þ u4=4

p
�0 ¼ 1

f0
þ q

u3

qþ u4
(23)

where prime denotes the derivative with respect to u. First,
we consider the asymptotic behavior near the boundary
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(u ! 1). Substituting fðuÞ ¼ f0ðuÞ þ ~fðuÞ into Eq. (23),
we find

~fðuÞ ¼ k

u3
þOð1=u5Þ (24)

at large u. Here k is an arbitrary constant as a in f0. The
solution has two arbitrary constants since the equation
is the second order differential equation. Then we can set
the asymptotic value of fðuÞ as fð1Þ ¼ 1=a2 for any q as
the boundary condition used here. However, this condition
restricts the boundary condition in the infrared region of
small u.

For the boundary condition, fð1Þ ¼ 1=a2, the solution
with positive q deviates definitely from f0ðuÞ at small u.
In general the zero point of fðuÞ increases with q, namely

u1 > a; for fðu1Þ ¼ 0: (25)

This is obtained when we fix the point at u ¼ 1 as fð1Þ ¼
1=a2 for any q. On the other hand, the value of fð1Þmoves
to the large value with increasing q when we fix u1. The
situation depends on the boundary condition in solving the
equation of motion of fðuÞ. The understandable situation
would be to fix the acceleration of the quark as a by
fð1Þ ¼ 1=a2. In this case, the ‘‘horizon’’ u1 on the string
moves to a larger value and the string configuration fðuÞ
is modified from f0ðuÞ with increasing q. However the
Rindler temperature, which is obtained after a coordinate
transformation where the string is seen to be static, does
not depend on q and another parameter coming from
the coordinate transformation. On the other hand, Rindler
Temperature changes with the parameter of ERT, namely
a. We show this point in the next section.

For q > 0, we give here the numerical solutions. The
solutions for q ¼ 0:5, 3.0, 10 are shown in Fig. 1 and it is
compared with the case of q ¼ 0. We can see the zero point
of fðuÞ moves to the larger value of u as stated above.

IV. EXTENDED RINDLER TRANSFORMATION

Next we move to the comoving coordinate of the accel-
erated quark. Usually this is performed by the transforma-
tion among two coordinates in 4D space-time, time and
accelerated direction, as seen in [2,5]. However, here we
use another form of Rindler transformation proposed
by Xiao [6]. This transformation is performed among the
three coordinates, time, the accelerated direction and the
fifth coordinates of the original AdS5 space-time, namely,
for ðt; x; uÞ. We call this the extended Rindler transforma-
tion (ERT). After the transformation, in the new coordi-
nate, the accelerated quarks given above in the original
coordinate are seen as static and they are in a thermal bath
with a finite temperature. Especially, we notice that these
quarks are moving as free particles. In this sense, the quark
is not confined in the dual gauge theory for the Rindler
coordinate given by the extended Rindler transformation.
We study the details of this point in the following cases.
For the case of q ¼ 0, the comoving coordinates,

ðs; �; 
Þ, of this accelerated quark are obtained from the
original coordinates, ðu; t; xÞ, by the following extended
coordinate transformation [6],

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2
� s�2

s
ea
 coshða�Þ; (26)

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2
� s�2

s
ea
 sinhða�Þ; (27)

u ¼ se�a
 (28)

Then, the new metric is given as

ds210 ¼ R2

�
ds2

s2 � a2
� ðs2 � a2Þd�2

þ s2ðd
2 þ e�2a
½dx22 þ dx23�Þ þ d�2
5

�
(29)

and the above string configuration (15) is given by


 ¼ 0 (30)

which is static since it is independent of the new time
coordinate �. This string represents a free1 quark string
which connects a d-brane put at some s > a and the event
horizon s ¼ a.
We should notice here that we can replace the parameter

a by another value, for example, by ~a, in the above
coordinate transformation (26)–(28). In this case, we find
the transformed accelerated string at


 ¼ 1

~a
logð~a=aÞ (31)

FIG. 1 (color online). The numerical results of fðuÞ for a ¼ 1
(fð1Þ ¼ 1=a2 ¼ 1) and q ¼ 0, 0.5, 3.0 and 10 are shown from
left to right. The zero point of the solution moves to the right
with increasing q.

1Here, ‘‘free’’ means that the quark is not bounded with an
antiquark as a meson.
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where we imposed the condition that the position of the
quark on the boundary ðx; t; uÞ ¼ ð1=a; 0;1Þ is trans-
formed to ð
; � ¼ 0; s ¼ 1Þ. In this new coordinate with
~a, the Rindler temperature is obtained as ~a=2�. We, how-
ever, set here as ~a ¼ a for simplicity. In this case, the
Rindler temperature is directly related to the acceleration
of the particles as in particle physics.

For the case of q > 0, we consider the following similar
transformation,

x ¼ gðsÞea
 coshða�Þ; (32)

t ¼ gðsÞea
 sinhða�Þ; (33)

u ¼ hðsÞe�a
 (34)

where a denotes the acceleration of the quark at the bound-
ary. Then we find the new metric,

ds210 ¼ e�=2

�
R2h2

��
h02

h4
þg02

�
ds2�g2a2d�2

þa2
�
g2þ 1

h2

�
d
2þ e�2a
½dx22þdx23�

�
þR2d�2

5

�

(35)

where prime represents the derivative with respect to s, and
we set as

ðh2Þ0 ¼ h4ðg2Þ0 (36)

to eliminate the gs
. Then g is related to h by solving (36)

as

g2 ¼ c20 �
1

h2
(37)

where c0 is an arbitrary constant. Then we find again the
Rindler coordinate for c0 ¼ 1=a and h ¼ s, except for the

prefactor e�=2. In the present case, we change the radial
coordinate from s to hðsÞ, then we have

ds210 ¼ e�=2R2

�
dh2

h2 � a2
� ðh2 � a2Þd�2

þ h2ðd
2 þ e�2a
½dx22 þ dx23�Þ þ d�2
5

�
(38)

The accelerated strings therefore can be seen in the same
Einstein frame coordinate also in the confining phase
(for q > 0).

Transformed String Configurations.—We consider how
the string configuration of the accelerated strings is seen in
the comoving coordinate. The configuration is different
from the q ¼ 0 case. The new configuration is shown in
the 
-h plane by using the relation,

~fðh e�a
Þ ¼ 1

a2
ðe2a
 � 1Þ (39)

which is obtained from the form of the solution, x2 � t2 ¼
fðuÞ ¼ f0ðuÞ þ ~fðuÞ. Then, using the solution, ~fðuÞ,

we find the string configurations in the Rindler coordinate
in terms of Eq. (39).

The boundary condition should be taken as ~fðh ¼
1Þ ¼ 0 at fixed 
 since a in f0 ¼ 1=a2 � 1=u2 represents
the acceleration of the quark at the boundary. This implies

ðh ¼ 1Þ ¼ 0 from (39). In Fig. 2, some examples of the
solution for q ¼ 10, 3, 0.5, 0 with a ¼ 1 are shown. When

we set q ¼ 0, we obtain ~fðuÞ ¼ 0, which is the straight
line of 
 ¼ 0, namely, the h-axis. The larger q becomes,
the larger the deviation of the string configurations from
the straight line grows. (i) However, in any case, each
string configuration shows the free-quark state in a heat
bath of Rindler temperature a=2� and (ii) the horizon is
given by the point, h ¼ a (or u ¼ ae�a
 > a), where
the velocity of the string to x direction in the original
coordinate arrives at the speed of light.
Temperature and asymmetry of three space.—Here we

consider the temperature from two viewpoints. First, it
could be given from the condition to evade a conical
singularity in the ð�; hÞ plane for the Euclidean metric
(� ! i�).
It is seen near the horizon. By setting h ¼ að1þ �2=2Þ,

the metric (38) is rewritten for small � as follows

ds210 ¼ e�a=2R2fd�2 þ a2�2d�2 þ � � �g; (40)

where

e�a ¼ 1þ ~qe4a


a4
: (41)

From the above, the temperature is given by

TR ¼ a

2�
(42)

for fixed 
. Here we must notice that the prefactor e�a=2

depends on the new coordinate 
, then the temperature is

β

FIG. 2 (color online). Examples of the string solution 
ðhÞ for
q ¼ 0 (straight line) and q ¼ 0:5, 3, 10 (from right to left) with
a ¼ 1. The dotted line, h ¼ að¼ 1Þ, represents the Rindler
horizon. Solutions for finite q are bent due to the Yang-Mills
force expressed by the dilaton. Then the larger q becomes, the
larger the deformation of the solution grows.
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well defined only for fixed 
 in this definition. However,
we notice that the temperature given by (42) is independent
of 
. In other words, the thermal equilibrium with the
temperature TR would be seen at any point of 
. Then
this temperature is well defined in the three dimensional
space, ds2ð3Þ ¼ d
2 þ e�2a
½dx22 þ dx23�.

The other way to define the temperature is given by
considering the timelike Killing vector �� ¼ ��0, which
satisfies

r��
 þr
�� ¼ 0: (43)

In this case, the surface curvature at the horizon is given as

k2H ¼ � 1

2
ðr��
Þðr��
Þ ¼ a2; (44)

then we obtain the same result with (42),

TH ¼ kH
2�j��j ¼

a

2�
¼ TR: (45)

So the temperature could be well defined in the Rindler
coordinate, but the three space, ds2ð3Þ ¼ d
2 þ
e�2a
½dx22 þ dx23�, is asymmetric. It is separated to the

longitudinal (
) and the transverse (x2-x3) directions.
This asymmetric behavior is also reflected to the color
force, and it can be seen through the dilaton which affects
the force between the quark and the antiquark as being
found through the Wilson-Loop. Its analyses are given in
the next section.

Actually, the gauge coupling constant is defined by
g2eff ¼ e�a and it depends on 
 and h as follows,

g2eff ¼ 1þ ~qe4a


h4
: (46)

This implies that the Yang-Mills force depends on the
energy scale h and also on the coordinate 
 in the real
three space. In the present case, the temperature is finite
and the Yang-Mills force between a quark and antiquark is
completely screened when they are separated by the dis-
tance (L) larger than a critical value (L�). Namely the
quark is independent of the antiquark which is separated
by the distance L > L�, but we know that the quark can feel
the force from the antiquark in the region of L < L� and
this force is nearly equivalent to the one given at zero
temperature.

In the present case, we find the linear rising force in the
region of L0 < L< L�, where L < L0 defines the ultravio-
let region of the conformal symmetric limit. And we find
the tension parameter [11]

�eff ¼
ffiffiffi
q

p
2��0R2

(47)

at zero temperature in the present model. Then we expect
the tension parameter in the Rindler coordinate would be
given by

�R ¼
ffiffiffi
~q

p
R2e2a


2��0 ; (48)

which is however coordinate dependent. We can assure
this point through the Wilson-Loop calculation given be-
low. Therefore we study the dynamical properties in this
vacuum by separating into two cases, the longitudinal
and transverse directions in three dimensional space in
the new coordinate.

A. Wilson loop and the force between quarks

From the gauge coupling given above (46), we can say
that the force between the quark and antiquark would
depend on a and also on 
. In our original metric, the
quarks are confined due to the strong infrared gauge cou-
pling constant. Namely, it diverges for u ! 0. In the new
coordinate (Rindler coordinate), the infrared strong force
would be screened by the fluctuations of the thermal matter
with the temperature TR ¼ a=ð2�Þ. The situation would be
parallel to the case of the AdS-Schwarzschild background
which is dual to the high temperature gauge field theory.
Because of this screening, we would find the deconfine-
ment phase in the Rindler vacuum. This is the Unruh effect
in the confinement theory. In order to assure this point,
we study the force between the quark and the antiquark,
which are represented by the static strings in the Rindler
vacuum (38).

1. Strings stretched to the longitudinal (
) direction

Consider the string which is extending to the 
 direc-
tion. Taking its world sheet as ð�; h; 
ðhÞÞ, then the
Nambu-Goto action of this string is given as

S ¼ � 1

2��0
Z

d�dhR2e�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2ðh2 � a2Þ
02

q
(49)

where 
0 ¼ @h
. Namely the prime denotes the derivative
with respect to h. The equation of motion for 
 is given as

@h

�
e�=2h2ðh2 � a2Þ
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2ðh2 � a2Þ
02p

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2ðh2 � a2Þ
02

q
@
e

�=2

(50)

We notice here that the dilaton� depends on 
 and h, and
we find

@
e
�=2 ¼ 2ae��=2 ~qe

4a


h4
: (51)

Then the right hand side of (50) is not zero, so we cannot
obtain the symmetric U shaped string configuration. We
therefore solve the equation of motion by using a parame-
ter s along the string.2

2The parameter s introduced here has nothing to do with the
one given in (26)–(28) above.
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Before studying the Wilson loop, we would like to show
that the Rindler coordinate is dual to the deconfinement
phase of the gauge theory. We consider the energy E of the
string, which is given by changing the variable from h,

ðhÞ to 
, hð
Þ as

E ¼ R2

2��0
Z

d
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

hðh2 � a2Þ

s
(52)

n ¼ e�=2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 � a2Þ

q
(53)

If quarks are confined, we would find

E ¼ �effL; �eff ¼ R2

2��0 nðh�Þ (54)

where �eff denotes the tension of the linear rising potential
between the quark and the antiquark, which are separated
by L, and h� is the minimum point of nðhÞ. In the present
case, h� ¼ a and nðaÞ ¼ 0, so we cannot find linear po-
tential with a definite tension for large L. In other words,
the quarks are not confined. The main reason of this
deconfinement might be the screening of the color force
at finite distance due to the thermal effect of the thermal
bath with the Rindler temperature given above.

Reparametrization invariant formulation.—These points
can be seen more explicitly by calculating the Wilson loop
in the Rindler vacuum. As mentioned above, we rewrite
the action (49) by using the parameter s along the string
as follows

S ¼ �
Z

d�U; (55)

U¼ R2

2��0
Z

dsL¼ R2

2��0
Z

dse�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_h2 þ h2ðh2 � a2Þ _
2

q
;

(56)

where the dot denotes the derivative with respect to s.
We notice that the above Lagrangian U is reparametriza-
tion invariant with respect to s. Then we can give the
Hamiltonian H ¼ Hðh; ph; 
; p
Þ where

ph ¼ @L

@ _h
; p
 ¼ @L

@ _

; (57)

and we obtain

H¼ ~H

�
; ��1 ¼ 2e��=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_h2 þ h2ðh2 � a2Þ _
2

q
; (58)

~H ¼ 1

2

�
p2
h þ

p2



h2ðh2 � a2Þ � e�
�
: (59)

Notice that we can use the Hamiltonian ~H instead of H.
This is allowed since the theory we are solving is written
in the reparametrization invariant form. In this case,

we impose the Hamiltonian constraint as in the gravita-
tional theory,

H ¼ 0 then ~H ¼ 0: (60)

Under this constraint, we find that the difference of the
solutions of the Hamilton’s equations written by H and ~H
is in the parametrization of the solution. For example we
write the solution as hðsÞ or hðfðsÞÞ, where

@fðsÞ
@s

¼ � (61)

So in both cases of H and ~H, we will find the same string
configuration.
Then we can derive the equations of motion of the string

by the following Hamilton’s equations of ~H,

_h ¼ ph; _
 ¼ p


h2ðh2 � a2Þ ; (62)

_p h ¼ 2h2 � a2

h3ðh2 � a2Þ2 p
2

 � 2~q

h5
e4a
; _p
 ¼ 2a~q

h4
e4a
:

(63)

Boundary condition and numerical solutions.—Solving
the above equations (62) and (63) numerically, the solu-
tions are obtained as the functions of s. We solve them with
the boundary conditions,

hmax > hð0Þ ¼ h0 > a; 
ð0Þ ¼ 
0; phð0Þ ¼ 0

(64)

and p
ð0Þ is given from the constraint ~H ¼ 0 at s ¼ 0 as,

p
ð0Þ ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh20 � a2Þ

�
1þ ~qe4a
0

h40

�s
: (65)

Here hmax denotes the end point of the string, and it is fixed
so that this point is interpreted as the flavor brane’s position
or a UV cutoff near the boundary. And h0 denotes the
bottom of the string solution. This point is varied to obtain
the string solutions with various different energy E, which
is obtained by substituting the solution into the following
equation,

E ¼ R2

2��0
Z sup

sdw

dsL: (66)

Here the values of sdw and ðsdw<Þsup are obtained from the

solution hðsÞ by solving the following equations,

hðsdwÞ ¼ hmax ¼ hðsupÞ: (67)

They indicate the two end points of the string solution.
As for 
0, it denotes the coordinate 
 at the bottom

of the string solution and it controls the end point
values 
ðsdwÞ and 
ðsupÞ. Then, we adjust 
0 such that


ðsdwÞ ¼ 0 and 
ðsupÞ � 0. In this case, the distance (L)

between the quark and antiquark for these solutions is
given as
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L ¼ j
ðsupÞ � 
ðsdwÞj ¼ j
ðsupÞj: (68)

In our present calculation, h is cut at hmaxð¼ 10Þ and the
quarks are supposed to be at this point. This regularization
does not affect the large L behavior of the Wilson loop
estimations.

We show the results inFig. 3 for the region 
ðsupÞ> 0,

where the parameters are set as R ¼ 1, q ¼ 10, a ¼ 1:0
(left) and a ¼ 3:0 (right).

For sufficiently large q compared to the temperature
a=2�, as mentioned above, we can see the color force
with a definite tension before the screening effects become
dominant. In this region, the string energy is approximated
as E ¼ �RL in terms of the tension �R and the length L of
the string. In the present case the tension is given by (48).
However L is measured in the 
 direction and the tension
�R depends on 
. Therefore the energy could be estimated
as follows,

E ’
Z L

0
�Rd
 ’

ffiffiffi
~q

p
R2e2aL

4a��0 : (69)

Actually, we can see a good fit with this curve for low
temperature case a ¼ 1:0, and the numerical result as
shown in the left figure of Fig. 3.

On the other hand, at high temperature, for the case of
a ¼ 3:0, we can find that the potential is screened before
it meets the dashed curve as shown in the right one of
Fig. 3. As for the screening, we can see it through the
existence of the maximum point (Lmax) of L which we
discussed in the previous subsection. This point moves
smaller L with the increasing temperature as expected
from the usual high temperature theories in the confine-
ment phase.

The same analysis has been performed also for

ðsupÞ< 0. In this case, the force becomes weak even if

a is small, so the screening becomes dominant at rather
small L and it becomes difficult to see the remnant of the

confinement force. We abbreviated here to show the nu-
merical results.

2. Strings stretched to the transverse direction

Next, we consider the string stretched to the transverse
direction, for example, to x2 � x direction which is trans-
verse to the accelerated direction 
. In this case, the action
is given as

S¼� R2

2��0
Z

d�dhe�=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2ðh2 � a2Þ
02 þ x02e�2a
h2ðh2 � a2Þ

q
(70)

where x0 ¼ @x=@h. Here 
0ð¼ @
=@hÞ is also retained
since we cannot fix 
 as a constant value as can be seen
from the equations of motion for 
.
In order to obtain the relation of E and L as given above,

we must obtain the string solutions. It is convenient to
solve the equations after rewriting the action in the repar-
ametrization invariant form as above,

Ux ¼ R2

2��0
Z

dsLx ¼ R2

2��0
Z

dse�=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_h2 þ h2ðh2 � a2Þ _
2 þ _x2e�2a
h2ðh2 � a2Þ

q

(71)

where dot denotes the derivative with respect to the pa-
rameter s. Then we have the canonical momentum,

ph ¼ @Lx

@ _h
; p
 ¼ @Lx

@ _

; px ¼ @Lx

@ _x
; (72)

and the following Hamiltonian

~H x ¼ 1

2

�
p2
h þ

p2



h2ðh2 � a2Þ þ
p2
xe

2a


h2ðh2 � a2Þ � e�
�

(73)
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FIG. 3 (color online). E-L relations for quark and antiquark in the longitudinally extended case for hmax ¼ 10, R ¼ 1, ~q ¼ 10 and
a ¼ 1 (left), a ¼ 3 (right). The (red) dashed curves represent Eq. (69), which is expected as the effect of the color force existing in
the confinement phase.
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Then we can solve the equations of motion by the follow-
ing Hamilton equations,

_h ¼ ph; _
 ¼ p


h2ðh2 � a2Þ ; _x ¼ pxe
2a


h2ðh2 � a2Þ ;
(74)

_p h ¼ 2h2 � a2

h3ðh2 � a2Þ2 ðp
2

 þ p2

xe
2a
Þ � 2~q

h5
e4a
; (75)

_p
 ¼ � ap2
xe

2a


h2ðh2 � a2Þ þ
2a~q

h4
e4a
; _px ¼ 0: (76)

Boundary condition and numerical solutions.—Solving
the above equations numerically, we imposed the follow-
ing boundary conditions,


ð0Þ ¼ 
0; hmax > hð0Þ ¼ h0 > a; xð0Þ ¼ 0;

(77)

p
ð0Þ ¼ 0; phð0Þ ¼ 0; (78)

and pxð0Þ is given from the constraint ~Hx ¼ 0 at s ¼ 0 as

pxð0Þ ¼ h0e
a
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh20 � a2Þ

�
1þ ~qe4a
0

h40

�s
: (79)

In this case, the distance between the quark and the
antiquark is measured in the direction of x by setting the
coordinate 
 as the same value at the two end points.
Namely, we suppose at h ¼ hmax,

xþ � xðsupÞ; x� � xðsdwÞ;

ðsupÞ ¼ 
ðsdwÞ � 
end;

(80)

where sup and sdw are defined as (67) and xþðsupÞ (x�ðsdxÞ)
denotes the position of the quark (antiquark). Then the
distance between quark and antiquark is obtained as,

L ¼ xþ � x�: (81)

We must be careful about the following fact that, as
shown above, the color force is in the present case depend-
ing on 
 and h. Now, we like to see the force in the x
direction through the solution of (74)–(76). So we should
solve these equations by imposing the condition that the
end point coordinate 
 ¼ 
end is kept as a fixed value. So
here we must tune the boundary values, 
0 and h0 in order
to realize the same 
end for each solution. Here, we obtain
the solution for


end ¼ 0;

and a typical string solution in the present case is shown
in Fig. 4.

Defining the energy of the quark and antiquark system
as (66) in the previous case,

E ¼ R2

2��0
Z sup

sdw

dsLx;

we can see the relation of E and L as above. Typical results
are shown in Fig. 5. In this case we can see the linear rising
part before the screening. This rising part is fitted by the
formula

E ¼
ffiffiffi
~q

p
e2a

�
R2

2��0 L; (82)

where �
 would be approximately given by the 
x on the
horizon (h ¼ a) as,

�
 	 
0jh0¼a

3
: (83)

As for the upper part of the E-L relation, the curve
increases with decreasing L. This point is understood as
follows. The upper part is obtained by pulling the bottom
point of the string to near the horizon. Then the lower part
of the string grows to the direction of 
 and the energy
of the string becomes large as shown in Fig. 4. This kind
of behavior cannot be seen in the case of the AdS-
Schwarzschild background.
Screening length and temperature.—Next, we turn to the

temperature dependence of the screening length, which
is defined by the maximum value allowed L for a given
temperature. It is denoted by Lmax, and it usually decreases
with temperature as observed in the theory dual to the
AdS-Schwarzschild background [12]. We find finite Lmax

for any finite a or temperature a=2� as the reflection

sup , hmax, x

sdw , hmax, x

0 , h 0 , x 0

1

0

1

2

4

6

8

10

h

1

0

1

x

FIG. 4 (color online). 3D string configuration stretched in the
y direction. As y decreases the bottom of the string is stretched
to 
 direction.
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of the screening of the color force. Our result of the relation
between Lmax and a is given in Fig. 6.

The dotted (solid) curve represents the results from the
Wilson loop stretched in the transverse (x) (longitudinal
(
)) direction. The behavior of two curves clearly differs
from each other in the small a region. This implies that the
color force enhancement in the longitudinal direction at
low temperature is greater than the force in the transverse
direction. In the case of the transverse direction, the be-
havior is similar to the case of the AdS-Schwarzschild
background, where aLmax is almost constant or varies
slowly with the temperature. On the other hand, at high
temperature, the screening becomes dominant and the
asymmetric behavior disappears. As a result, the two
curves coincident at large a (at high temperature) region.
This is also assured from the fact that the potential in two
cases approaches the similar form.

B. Trailing string and drag force

Next we examine the drag force working on the quark
moving with a constant velocity in the hot gluons. This is
done by studying the trailing solution, which was discussed
in [13–15] in the AdS-Schwarzschild background. In the
present case, it is performed in the Rindler background
(38) given here. According to the work [13–15], we con-
sider a heavy quark moving with a fixed velocity v in the
thermal medium. This running quark is expressed through
a string with the velocity v, and its end point is on the
boundary.
When we choose the coordinate 
 as the moving direc-

tion, the string solution is supposed as


ð�; hÞ ¼ v�þ ~�ðhÞ: (84)

For the coordinate (38), however, it is easily found that
there is no such a form of solution. The reason is that the

dilaton depends on both time 
 and ~�ðhÞ as e� ¼ 1þ
~qe4a
=h4. Then the equation of motion for ~� contains time
explicitly through the dilaton as,

e� ¼ 1þ ~qe4aðv�þ~�ðhÞÞ

h4
: (85)

As a result, ~� should depend on h and also on � to satisfy
the equation of motion.
Therefore, the moving direction should be chosen as x2

or x3 in order to obtain a string solution with a constant
velocity as given in the right hand side of (84) and to
see the conserved momentum flow along the string from
the boundary to the horizon. So we embed the string
with its world sheet ð�1; �2Þ into the space ð�ð¼ �1Þ;
hð¼ �2Þ; 
; x2; x3Þ through the ansatz that x3 ¼ constant
and


 ¼ 
ðhÞ; x2 � yð�; hÞ ¼ v�þ �ðhÞ: (86)
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L0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E

FIG. 5 (color online). Typical E-L relations for quark and antiquark for a ¼ 0:1 (left) and a ¼ 1:0 (right), hmax ¼ 10, R ¼ 1 and
~q ¼ 10. Each (red) dashed line represents the tension of the potential of linear rising part, and it is given by (82) and (83), which is
expected as the effect of the color force existing in the confinement phase.
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FIG. 6 (color online). a-aLmax relations for ~q ¼ 10, R ¼ 1 and
hmax ¼ 10ð
 aÞ. The (red) solid line is obtained from the string
stretched to the longitudinal direction. The (blue) dashed line is
obtained from the string stretched to the transverse direction.
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We notice that we should also keep h dependence of
ðhÞ in this case due to the nontrivial dilaton. Then, the induced metric
of the string is given as

g�� ¼ �e�=2R2ððh2 � a2Þ � h2e�2a
v2Þ (87)

ghh ¼ e�=2R2

�
1

h2 � a2
þ h2e�2a
�02 þ h2
02

�
(88)

gh� ¼ g�h ¼ e�=2R2h2e�2a
v�0 (89)

and the Nambu-Goto action of this string is written as

S ¼
Z

d�dhLtr ¼ � R2

2��0
Z

d�dheð�=2Þe�a


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
e2a
 � h2v2

h2 � a2

�
ð1þ h2ðh2 � a2Þ
02Þ þ h2ðh2 � a2Þ�02

s
: (90)

From this action, we find the equation of motion for �, and its conserved conjugate momentum �� (�0
� ¼ 0) is

obtained as

�� ¼ @Ltr

@�0 ¼ � R2

2��0 e
ð�=2Þe�a
 h2ðh2 � a2Þ�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðe2a
 � h2v2

h2�a2
Þð1þ h2ðh2 � a2Þ
02Þ þ h2ðh2 � a2Þ�02

q : (91)

Here we notice that we also find �
 ¼ @Ltr

@
0 . However there
is no momentum in the 
 direction now, so we do not need
to consider the drag force in this direction. However, we
must solve both
ðhÞ and �ðhÞ in order to obtain�� as seen
from Eq. (91). As a result, the string configuration moving
with a constant velocity is deformed also to 
 direction.
The profile of such string is shown in Fig. 7.

Here we give the following comment instead of showing
the numerical behavior of the drag force. The drag force on
the quark can be determined by the momentum flow ��

which is lost as the flow from the string to the horizon [15].
We find the horizon on the string world sheet at h ¼ h�
from (87),

h� ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2e�2a


p ; (92)

which depends on v and
. And h� > a, namely, it is larger
than the bulk horizon. Another point to be noticed is that
the velocity is constrained in the present case as

v � ea
 (93)

for fixed 
.
In any case, thus, we can estimate the drag force at

the horizon h ¼ h�, where �0 and 
0 dependence disap-
pears, as

Fdrag ¼ �� ¼ � 1

2��0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh�e�a
ðh�ÞÞ4R4 þ q

R4

r
v: (94)

Here we notice the following two points. First, we can see
�
ðh�Þ ¼ 0, then the force observed at the horizon h ¼ h�
is only the drag force Fdrag for dragging the string to the

y direction. While the value of h� is determined by solving

ðhÞ for the first time, it is not performed here. Second,
the force is modified by the color force due to the dilaton
from the form which is proportional to the temperature,
Fdrag / T2.

FIG. 7 (color online). Strings trailing along with y axis for v ¼
0:1, a ¼ 1, R ¼ 1 and q ¼ 0 (on 
 ¼ 0 plane), q ¼ 1 (front),
q ¼ 2 (middle), q ¼ 5 (back). These strings that have finite q are
curved to 
 axis due to the existence of dilaton and the curve is
sharper with the larger value of q.
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Finally as for the friction constant �, one can define it as

Fdrag ¼ dp

dt
¼ ��p; p ¼ mq

vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p (95)

where mq denotes the quark mass, and � is written as,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

2��0mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh�e�a
ðh�ÞÞ4R4 þ q

R4

r
(96)

For small v ’ 0, we find h� ’ a and h�e�a
ðh�Þ ’ u1, then
we get

� ’ 1

2��0mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u41R

4 þ q

R4

r
: (97)

Then the friction constant is related to the radiation power
given in AdS5 background [6].

In the case of the AdS5-Schwarzschild background, the
friction constant is given as follows [14],

�AdS ¼ �

2�0mq

R2T2: (98)

On the other hand, in the limit of q ¼ 0, (97) leads to

� ’ 2�

�0mq

R2T2; (99)

since u1 ¼ a in this limit. Thus we recognize the difference
of factor four between (99) and (98). This point should be
explained from some physical insight, but it is remained
as an open problem here.

V. RELATION TO THE 4D FIELD THEORY

Here we give a comment on the statement for the Unruh
effect given in [2], where the analysis is performed within
the 4D field theory. The main result is that the vacuum
expectation values (VEVs) of any Green’s functions in the
vacuum of Minkowski space-time are the same as those of
the Rindler space-time when the calculation is restricted to
the same Rindler wedge in the Minkowski coordinate. So
one may consider that the phase of the Minkowski vacuum
cannot be changed in the Rindler vacuum since the VEVof
any order parameter would be the same in both vacuums.

However, in the present paper, we show that the vacuum
of the Rindler space-time is in the quark deconfinement
phase in spite of the fact that the original theory in the
Minkowski vacuum is in the confinement phase. Then our
calculation seems to be inconsistent with the statement
of [2]. However this point would be resolved as follows.

Since the confinement or deconfinement is discrimi-
nated by the VEV of the Wilson loop, we concentrate on
this quantity here. In the field theory side, the correspond-
ing operator would be given as,

O ¼ trðPeig
H

C
A�ðzÞdz�Þ (100)

where P denotes the path ordering of a closed path C in
the line integration for the gauge field A�ðzÞ. Its VEV is

written as

A ¼ h0jOj0i (101)

for the Minkowski vacuum j0i, and

B ¼ Trðe�HR=TOÞ
Tre�HR=T

(102)

for the finite temperature (T) Rindler vacuum, respectively.
The statement in [2] implies the equivalence of A and B
when they are calculated within the same Rindler wedge.
In our holographic approach, the Wilson loop defined

above is estimated in terms of the (static) string configu-
rations, whose end points are on the path C, for both A and
B. The string configurations are obtained as the classical
solutions of the Nambu-Goto action embedded in each
background. Now, we perform the calculation for A for a
fixed path C. Then the calculation for B has been done
by using the path and the string configurations, which are
all obtained by ERT from those used in A. In this case, we
will find A ¼ B. However, we did not do the calculation
in this way.
Our calculation of A and B do not lead to A ¼ B due

to the following three reasons. First, the paths used in A and
B are not related by ERT. In order to see the potential
between the quark and the antiquark, we have performed
the calculations for the rectangular path in the t-x plane for
A and the one in the �-
 plane for B respectively. In this
case, the rectangular path used in A cannot be transformed
to the one used in B by ERT since it must be transformed
to the � dependent path.
Second, the static solutions used in the evaluation of A

cannot be transformed to the static (� independent) ones
used in B since the static solutions given in the Minkowski
vacuum are generally transformed by ERT to the � depen-
dent one. Then our Wilson-loop calculations in A and B
are not related by ERT. We derived our result from them.
Actually, we could obtain different results from the calcu-
lation of A and B, the linear confinement potential
for A and the screening and the deconfinement for B
respectively.
Third, we should give a comment for the quark string

configuration in the Rindler vacuum. This point is also
related to the fact that the quark in the Rindler vacuum is
different from the one in the Minkowski vacuum. In esti-
mating B, the essential string solution responsible for the
proof of the deconfinement is the one which connects the
boundary and the event horizon, because this solution can
be interpreted as the free quark and this is possible only
for the deconfinement phase. We could find such a solution
only in the Rindler vacuum. The interesting point is that
this free-quark configuration in the Rindler vacuum is
obtained by ERT from the constantly accelerating quark
string configuration given in the Minkowski vacuum as
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shown above. However this configuration is not used in
the evaluation of A in our theoretical scheme. Because
of these reasons, we are not seeing the relation A ¼ B.
We are examining the parts, which cannot be related by
ERT, of A and B. Then our statement is not contradicting
the one in [2].

Of course, there are problems remaining related to the
coordinate transformation which is adopted in the present
paper. We should study the other form of the coordinate
transformation. For example, the coordinate transforma-
tion given in [2] can be considered as such a transforma-
tion, which does not include the fifth coordinate of the
bulk. This is different from ERT used here. In the latter
case, the transformation is performed in three dimensional
coordinate including the fifth one. As a result, the event
horizon appears in the bulk, then the infrared region is
cut off in the dynamics of the dual 4D theory. Then the
dynamical properties responsible to the long range force
would be lost in the vacuum of the new coordinate.

We should study also the VEV of other physical quan-
tities. In this context, we notice another work given in [16]
from other 4D nonperturbative approach, and the author
shows chiral symmetry restoration in the Rindler vacuum.
So it would be necessary to proceed with work more in
this direction in order to make clear the Rindler vacuum.

VI. SUMMARYAND DISCUSSIONS

We give here a constantly accelerated quark as a string
solution of the Nambu-Goto action which is embedded in
the supergravity background dual to the confining Yang-
Mills theory. For this accelerated quark given in the zero-
temperature Minkowski space-time, we find an event
horizon in its world sheet metric. This horizon is also found
in the case of AdS5 background dual to the nonconfining
theory. In any case, this fact can be considered as a clear
signal of the radiation of gluons due to the acceleration of
the color charged quark.

We consider the extended Rindler transformation pro-
posed by Xiao in order to move to the comoving frame of
the accelerated quark and to study the properties of the
Rindler vacuum. The coordinate transformation is gener-
alized to the 5D bulk theory, but the boundary is described
by the usual 4D Rindler metric. In this case, the dual theory
is found in a thermal medium with the Rindler temperature,
so it is expected that the theory is in a different vacuum
from the one in the inertial frame. To study this point, we
have examined several dynamical properties of the new
vacuum to compare them to those observed in the inertial
coordinate.

We could find that the vacuum properties are changed
from those seen in the inertial frame. In the Rindler vac-
uum, the color force is screened by the thermal effect at
long distance. As a result, the confining property has been
lost. The screening length depends on the temperature
and also on the direction in the three space. As for the

temperature dependence, we find some difference from
the one observed previously in the AdS-Schwarzschild
background, especially for the screening in the longitudi-
nal direction. The reason of the anisotropy in the 3D space,
longitudinal and transverse to the acceleration, can be
reduced to the behavior of the dilaton. The dilaton ex-
presses the gauge coupling constant, and it is deformed
in the longitudinal direction due to the extended Rindler
transformation. Then the potential between the quark and
antiquark has different forms in the longitudinal and the
transverse directions. This point has been assured through
the direct observation of the potential between the quark
and antiquark.
Even if we calculate the force in the transverse direction,

we can see the effect of the longitudinally deformed force.
For example, consider some excited bound state of the
quark and antiquark. Then we could find a small repulsion
in the direction (y) transverse to the accelerated direction
(
). This repulsion is understood from the string configu-
ration in the 3D space 
-y-h. When the distance y de-
creases, the string is stretched in the 
 direction near the
horizon h ’ a. This phenomenon is understood as the
remnant of the strong confining force near the horizon.
On the other hand, the attractive force is exponentially
enhanced in the longitudinal direction at fairly large
distance. This behavior can be reduced to the deformed
dilaton in the Rindler coordinate in the longitudinal
direction.
We also discuss the drag force to see the thermal effects

in the Rindler vacuum. We find the friction constant is
related to the radiation power of the accelerated quark in
the original vacuum. Then we recognize the difference
of factor four between the friction constant in the
Rindler vacuum and the one in the AdS5-Schwarzschild
background.
Finally, we give our main conclusion that we could find

a new vacuum when we move to the comoving coordinate
of an accelerating quark by the extended Rindler trans-
formation considered here and find a kind of a high tem-
perature theory of deconfinement phase. Then, in the new
vacuum, the properties given by the long range force in the
inertial frame have been lost. Thus our calculation seems
to be inconsistent with the claim given in [2]. However,
this point is resolved as explained in the previous section.
The main reason is that we are considering the different
VEV of Green’s functions to decide the phase of the
vacuum.
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