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Manifestation of quantum-billiard eigenvalue statistics from subthreshold emission of
vertical-cavity surface-emitting lasers
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We report that the subthreshold emission spectra of vertical-cavity surface-emitting lasers (VCSELs) can be
analogously used to manifest the quantum-billiard energy spectra. The Fourier-transformed distributions of the
subthreshold emission spectra are demonstrated to display various peak structures that are in good agreement
with the results of the quantum-billiard model. We also verify that the statistical analyses of the nearest-neighbor
eigenvalue spacing distributions obey a Poisson distribution for an equilateral-triangular device and a Wigner
distribution for a stadium-shaped device.
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I. INTRODUCTION

Quantum manifestations of classical chaos recurrently
attract much attention because the experimental techniques
exploring the quantum classical correspondence have been
continuously improved [1–4]. The two-dimensional (2D)
billiard problem is particularly useful for studying the classical
behaviors in the corresponding quantum regime due to their
simplicity [5,6]. Ballistic-electron transport in quantum dots
is often regarded as experimental realizations of quantum
billiards [7–9]. The similarity between Schrödinger and
Helmholtz equations has been widely used to develop elec-
tromagnetic wave resonators, ranging from 2D microwave
cavities [10–12] to optical microdisk lasers [13–15], as another
class of experimental and theoretical quantum-chaotic model
systems.

Recently, the lateral oxide confinements of the vertical-
cavity surface-emitting lasers (VCSELs) with a unique longi-
tudinal wave vector kz have been justified to be equivalent to
2D wave billiards with hard walls [16]. The special superiority
of oxide-confined VCSELs is that the unique longitudinal wave
vector kz brings out the lasing transverse modes to be directly
reimaged with simple optics for analogous observations of 2D
quantum-billiard wave functions. More recently, Gensty et al.
[17] utilized the emission spectra far above lasing threshold to
analyze the eigenvalue spacing distribution and confirmed the
oxide-confined VCSELs to be fascinating devices for wave
chaos studies. However, the mode-competition phenomena
usually induce mode-hopping instability and only several
tens of cavity modes can be simultaneously lasing in the
emission spectra far above lasing threshold. So far, the VCSEL
devices have never been successfully employed to manifest the
signatures of classical chaos and the role of periodic orbits in
the quantum-billiard spectra.

Shortly after the invention of the semiconductor laser early
in the 1960s, it was found that several hundreds to a thousand
cavity modes could be clearly observed just below the lasing
threshold in conventional edge-emitting semiconductor lasers
[18,19]. In the same way, it was recently demonstrated that
the oxide-confined VCSELs could emit several hundreds of
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transverse modes in the subthreshold emission spectra [20].
This result casts light on the prospect of using the VCSEL
device to realize the experimental manifestations of classical
chaos in the quantum-billiard spectra.

In this work we first employ a large-aperture equilateral-
triangular VCSEL to explore the subthreshold emission
spectrum and the Fourier transformed length spectrum. It
is found that the experimental length spectrum agrees very
well with the result of the quantum-billiard model to exhibit
a series of sharp peaks at multiples of the lengths of the
primitive periodic orbits. Furthermore, we use the subthreshold
emission spectrum in a stadium-shaped VCSEL to investigate
the signatures of wave chaos. Experimental results noticeably
reveal that the isolated periodic orbits, corresponding to the so-
called scar modes, play an essential role in the genuine chaotic
wave resonators. We also confirm that the nearest-neighbor
eigenvalue spacing distributions for the equilateral-triangular
and stadium-shaped VCSELs obey a Poisson distribution and
a Wigner distribution, respectively.

II. PERIODIC-ORBIT THEORY

Periodic-orbit theory developed by Gutzwiller [5] and
Balian and Bloch [21] has been extensively used to analyze the
long-range correlations in quantum spectra [22–24]. Here we
give a brief synopsis for the application of periodic-orbit theory
on the analysis of quantum-billiard spectra. Mathematically,
the energy level density ρo(E) can be split into a smoothly vary-
ing part ρ(E) and a remaining oscillatory part. According to the
Gutzwiller trace formula, the oscillatory part of the eigenvalue
density is given by the actions of classical orbits, Sμ (E).
Therefore the energy level density ρ(E) can be expressed as

ρ(E) =
∞∑

n=1

δ(E − En)

= ρo(E) +
∞∑

ν=1

∑
μ

ρν,μ cos

[
ν

(
Sμ(E)

h̄
− φμ

)]
, (1)

where the index μ labels the periodic orbits and ν = 1,2, . . .

run over all recurrences of such orbits. For quantum-billiard
systems, the action Sμ(E)/h̄ is given through the term kLμ,
where k is the wave number and Lμ is the path length of
the periodic orbit. The eigenvalue density for the billiard

016208-11539-3755/2011/83(1)/016208(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.016208


CHEN, YU, CHIANG, TUAN, HUANG, LIANG, AND HUANG PHYSICAL REVIEW E 83, 016208 (2011)

problem can be expressed as
∑∞

n=1 δ(k − kn), where kn are the
quantized wave numbers. As a result, the Fourier-transformed
spectrum of the eigenvalue density is given by

ρFT(L) =
∞∑

n=1

∫ ∞

−∞
δ(k − kn)eikL =

∞∑
n=1

eiknL

=
∞∑

ν=1

∑
μ

ρν,μδ(L − νLμ). (2)

Equation (2) indicates that the length spectrum ρFT(L) will
display a series of intense peaks at multiples of the lengths
of the periodic orbits, i.e., at L = νLμ. In other words, the
character of classical periodic orbits can be revealed in the
Fourier-transformed spectrum of the eigenvalue density. For
numerical evaluation, the length spectrum can be written as
ρN (L) = ∑N

n=1 eiknL, where N should be large but finite.

III. EXPERIMENTAL RESULTS AND
THEORETICAL ANALYSIS

The experimental VCSEL devices were grown with metal-
organic chemical vapor deposition. Each device consists of
a multiple quantum-well active region and a vertical cavity
formed by two distributed Bragg reflector (DBR) mirrors. The
active region comprises three Al0.07Ga0.93As-Al0.36Ga0.64As
quantum wells with well and barrier thickness of 70 and 100 Å,
respectively. The spacers at both sides of quantum well were
added to form a 1-λ cavity. The longitudinal wave number
is given by kz = 2π/λoand the values of λo are designed to
be approximately 782.6 nm for the experimental devices. The
periods for the top and bottom DBR mirrors are 23 and 29,
respectively. A high-Al composition Al0.97Ga0.03As layer was
placed at the first p-type doped DBR mirror and was oxidized to
define an aperture for current confinement. This oxide aperture
simultaneously induces an optical confinement because of the
large difference of the refractive index between the semicon-
ductor material and the oxide layer, thus forming an essentially
rigid wall waveguide [16,17]. Here we fabricated two different
shapes of oxide apertures, an equilateral-triangular shape and
a stadium shape, to explore the signature of wave chaos
in the subthreshold emission spectra. The optical micro-
scope photographs of the experimental VCSELs are shown
in Fig. 1.

The VCSEL device was placed in a temperature-controlled
system with a stability of 0.1 ◦C near room temperature. We
employed an optical spectrum analyzer based on a Michelson
interferometer to measure the subthreshold emission spectra
with a resolution up to 0.002 nm. With the relation of
kz = 2π/λo, the subthreshold emission spectrum ρ(λ)can be
changed from a function of the emission wavelength λ to a
function of the transverse wave number k by using the relation
k = √

(2π/λ)2 − k2
z . We first investigate the subthreshold

emission spectrum of an equilateral-triangular VCSEL with
the side length of a = 66 μm, as shown in Fig. 1(a).
Figure 2(a) shows the experimental emission spectrum ρ(k) of
the equilateral-triangular VCSEL just below the lasing thresh-
old. With the experimental data, the Fourier transform of the
subthreshold spectrum ρFT(L) can be numerically calculated.

a

a

b=a/2

(a) (b)

FIG. 1. (Color online) Optical microscope photographs of the
experimental VCSELs for (a) equilateral-triangular device with
a = 66 μm and (b) stadium-shaped device with a = 42 μm and
b = 21 μm.

Figure 2(b) depicts the calculated results for the path-length
spectrum |ρFT(L)|2 corresponding to the experimental data
shown in Fig. 2(a). We experimentally found that there was
no obvious difference in the path-length spectra from sample
to sample for device growth in the same batch. To make a
comparison with the quantum-billiard spectrum, we calculated
the Fourier transform of the density of states for an equilateral-
triangular quantum billiard. The quantized wave numbers in
an equilateral-triangular quantum billiard of side a can be
analytically given by [25,26] km,n = (4π/3a)

√
m2 + n2 − mn

for integral values of m and n, with the restriction that
m � 2n. The length spectrum was numerically calculated with
the expression ρN (L) = ∑N

n=1

∑2N
m=2n eikm,nL and N = 15.

Figure 2(b) depicts the calculated results for the billiard model.
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FIG. 2. (Color online) (a) Experimental emission spectrum ρ(k)
of the equilateral-triangular VCSEL just below the lasing threshold;
(b) Fourier-transformed spectrum |ρFT(L)|2. The experimental and
numerical results are displayed as mirror images.

016208-2



MANIFESTATION OF QUANTUM-BILLIARD EIGENVALUE . . . PHYSICAL REVIEW E 83, 016208 (2011)

Note that the path length of the periodic orbit (p,q) can be
expressed as LPO(p,q) = a

√
3
√

p2 + pq + q2. If p and q
have common factors, such an orbit categorically corresponds
to a recurrence of a simpler one in which the particle undergoes
two or more periods. It can be seen that the experimental length
spectrum agrees very well with the theoretical spectrum of the
billiard model to exhibit a series of sharp peaks at multiples of
the lengths of the primitive periodic orbits. This good agree-
ment signifies the feasibility of exploiting the spontaneous
emission spectra of large-aperture VCSELs to investigate the
energy spectra of quantum billiards in an analogous way. In
earlier times, the energy spectra of quantum billiards have been
successfully studied by flat microwave resonators [4,10–12].
Here we manifest the quantum-billiard path-length spectra
from the active devices in the optical regime. The observation
of numerous cavity modes with narrow linewidth implies that
the subthreshold emission spectra of VCSELs may be useful
in developing wide-band tunable light sources for optical data
communication.

Next, we fabricated a VCSEL, which has the shape of
a Bunimovich stadium billiard, as shown in Fig. 1(b), with
the dimensions a = 42 μm and b = 21 μm, corresponding
to γ = (a − b)/b = 1. Figure 3(a) shows the experimental
emission spectrum ρ(k) of the stadium-shaped VCSEL just
below the lasing threshold. Figure 3(b) depicts the calculated
result for the Fourier-transformed spectrum |ρFT(L)|2 of the
experimental data shown in Fig. 3(a). To make a comparison
with the quantum-billiard spectrum, we employed the so-
called expansion method [27] to calculate the theoretical
eigenvalue density for the stadium billiard with the same
geometry. The numerical result of the quantum-billiard model
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FIG. 3. (Color online) (a) Experimental emission spectrum ρ(k)
of the stadium-shaped VCSEL just below the lasing threshold;
(b) Fourier-transformed spectrum |ρFT(L)|2. The experimental and
numerical results are displayed as mirror images.
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FIG. 4. (Color online) Experimental statistics for the nearest-
neighbor eigenvalue spacing distribution p(s) in form of histogram
for (a) equilateral-triangular device and (b) stadium-shaped device.
The curves represent (a) a Poisson distribution and (b) a Wigner
distribution.

is shown in Fig. 3(b). It can be seen that the positions of
the experimental peaks for the short-range periodic orbits,
(L/a) < 3.0, agree well with the theoretical analysis. The
short-range periodic orbits are associated with the scar modes
that are numerically found to be rather insensitive to the
geometry imperfection. For the long-range length distribution,
the experimental spectrum comes close to the theoretical one
to exhibit the complicated oscillations without conspicuous
peaks. Numerical results indicate that the detailed structure in
the long-range length distribution is more or less changed
by the tiny perturbation, even though the salient feature
of the complicated oscillations is quite similar. Therefore
it is somewhat problematic to make a more quantitative
comparison between the experimental and theoretical peaks for
the long-range periodic orbits. Nevertheless, it is judiciously
confirmed that the subthreshold emission spectra of the
VCSELs with classically chaotic shape can manifest the path-
length distributions to be in good agreement with the charac-
teristics of the quantum-billiard model.

Finally, we employed the experimental emission spec-
tra of the VCSELs to perform a statistical analysis. We
searched all the peak positions in the experimental spectra
and recorded these wave numbers as the sequence of eigen-
values {k1,k2, . . . ki, . . .}. The spacings si = (ki+1 − ki)/	k

between adjacent eigenvalues were subsequently obtained
by calculating the mean spacing 	k. We obtained 817 and
548 spacings of eigenmodes for the equilateral-triangular
and stadium-shaped VCSELs, respectively. Figure 4 shows
the experimental statistics for the nearest-neighbor eigenvalue
spacing distribution p(s) in the form of a histogram. It can be
seen that the statistical results for the equilateral-triangular and
stadium-shaped VCSELs are in good agreement with a Poisson
distribution p(s) = exp(−s)and a Wigner distribution p(s) =
(πs/2) exp(−πs2/4), respectively. The good consistency of
the experimental statistics with the theoretical prediction
further confirms that the subthreshold emission spectra of
VCSELs can be analogously used to manifest the quantum-
billiard spectra.

IV. CONCLUSIONS

In conclusion, we have investigated the manifestation
of quantum-billiard energy spectra from the subthreshold
emission spectra of equilateral-triangular and stadium-shaped
VCSELs. The Fourier-transformed path length distribution
for an equilateral-triangular VCSEL exhibits various peak
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structures to be in good agreement with the results of the
quantum-billiard model. We also employed a stadium-shaped
VCSEL to manifest the path-length distribution correspond-
ing to the characteristics of the quantum chaotic billiards.
Furthermore, the statistical analyses of the nearest-neighbor
eigenvalue spacing distributions have been verified to obey
a Poisson distribution for the equilateral-triangular device
and a Wigner distribution for the stadium-shaped device.

The good agreement confirms that the subthreshold emission
spectra of VCSELs can be analogously used to manifest the
quantum-billiard spectra.
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