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A corotational finite element method combined with floating frame method and a numerical
procedure is proposed to investigate large steady-state deformation and infinitesimal-free
vibration around the steady-state deformation of a rotating-inclined Euler beam at constant
angular velocity. The element nodal forces are derived using the consistent second-order
linearization of the nonlinear beam theory, the d”Alembert principle, and the virtual work principle
in a current inertia element coordinates, which is coincident with a rotating element coordinate
system constructed at the current configuration of the beam element. The governing equations for
linear vibration are obtained by the first-order Taylor series expansion of the equation of motion
at the position of steady-state deformation. Numerical examples are studied to demonstrate the
accuracy and efficiency of the proposed method and to investigate the steady-state deformation
and natural frequency of the rotating beam with different inclined angle, angular velocities, radius
of the hub, and slenderness ratios.

1. Introduction

Rotating beams are often used as a simple model for propellers, turbine blades, and satellite
booms. Rotating beam differs from a nonrotating beam in having additional centrifugal
force and Coriolis effects on its dynamics. The vibration analysis of rotating beams has
been extensively studied [1-25]. However, the vibration analysis of rotating beam with
inclination angle, which is considered in the recent computer cooling fan design on the
natural frequencies of rotating beams [21], is rather rare in the literature [10, 19, 21, 22].
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Figure 1: A rotating inclined beam, (a) top view, (b) side view.

In [21, 22], the effect of the steady-state axial deformation and the inclination angle on
the natural frequencies of the rotating beam was investigated. However, the lateral steady-
state deformation and its effects on the natural frequencies of the rotating beam were not
considered in [21, 22]. To the authors” knowledge, the lateral steady-state deformation and its
effects on the lagwise bending and axial vibration of rotating inclined beams are not reported
in the literature.

It is well known that the spinning elastic bodies sustain a steady-state deformation
(time-independent deformation) induced by constant rotation [26]. For rotating beams
with an inclination angle as shown in Figure 1, the steady-state deformations include axial
deformation and lateral deformation. The linear solution of the steady-state deformation of
rotating-inclined beam induced by constant rotation can be easily obtained using mechanics
of materials. However, the centrifugal stiffening effect on the steady lateral deformation
is significant for slender rotating-inclined beam, and the centrifugal force is configuration
dependent load; thus the linear solution of the steady-state deformation of rotating inclined
beam may be not accurate enough. The lagwise bending and axial vibration of rotating
inclined beams are coupled due to the Coriolis effects [15, 24] and the lateral steady-state
deformation. The accuracy of the frequencies obtained from linearizing about the steady-
state deformation is dependent on the accuracy of the steady-state deformation and the
accuracy of the linearized perturbation [6, 12]. Thus, the geometrical nonlinearities that
arise due to steady-state deformation should be considered. In [6], the rotating beam with
pretwist, precone, and setting angle is studied. The undeformed state of the rotating beam is
chosen to be the reference state to define the deformation parameters of the rotating beam.
The geometric nonlinearities up to the second degree are considered. The Galerkin method,
with vibration modes of nonrotating beam, is employed for the solution of both steady-
state nonlinear equations and linear perturbation equations. In [8], it is reported that for
a cantilever beam with a tip mass, even up to the third degree geometric nonlinearities
are considered, in some cases, very inaccurate eigenvalues for the perturbed linearized
equation of motion are obtained. The formulation used in [6, 8, 12] may be regarded as a
total Lagrangian (TL) formulation combined with the floating frame method. In order to
capture correctly all inertia effects and coupling among bending, twisting, and stretching
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deformations of the rotating beam, the governing equations of the rotating beam might be
derived by the fully geometrically nonlinear beam theory [12, 27, 28]. The exact expressions
for the inertia, deformation forces, and the governing equations of the rotating beam,
which are required in a TL formulation for large displacement/small strain problems, are
highly nonlinear functions of deformation parameters. However, the dominant factors in
the geometrical nonlinearities of beam structures are attributable to finite rotations, with the
strains remaining small. For a beam structures discretized by finite elements, this implies
that the motion of the individual elements to a large extent will consist of rigid body motion.
If the rigid body motion part is eliminated from the total displacements and the element
size is properly chosen, the deformational part of the motion is always small relative to
the local element axes; thus in conjunction with the corotational formulation, the higher-
order terms of nodal deformation parameters in the element deformation and inertia nodal
forces may be neglected by consistent linearization [28, 29]. In [29], Hsiao et al. presented a
corotational finite element formulation and numerical procedure for the dynamic analysis of
planar beam structures. Both the element deformation and inertia forces are systematically
derived by consistent linearization of the fully geometrically nonlinear beam theory using
the d Alembert principle and the virtual work principle. This formulation and numerical
procedure were proven to be very effective by numerical examples studied in [29]. However,
because the nodal displacements and rotations, velocities, accelerations, and the equations of
motion of the system are defined in terms of a fixed global coordinate system, the formulation
proposed in [29] cannot be used for steady-state deformation and free vibration analysis
of a rotating-inclined beam. The absolute nodal coordinate formulation [30, 31] is used to
large rotation and large deformation problems. Numerical results show that the absolute
nodal coordinate formulation can be effectively used in the large deformation problems.
However, the mass matrix of the finite elements in [30, 31] is a constant matrix, and therefore,
the centrifugal and Coriolis forces are equal to zero. Thus, the absolute nodal coordinate
formulation cannot be used for steady-state deformation and free vibration analysis of a
rotating inclined beam.

The objective of this study is to present a corotational finite element method combined
with floating frame method and a numerical procedure for large steady-state deformation
and free vibration analysis of a rotating-inclined beam at constant angular velocity. The nodal
coordinates, displacements and rotations, absolute velocities, absolute accelerations, and the
equations of motion of the system are defined in terms of an inertia global coordinate system
which is coincident with a rotating global coordinate system rigidly tied to the rotating
hub, while the total deformations in the beam element are measured in an inertia element
coordinate system which is coincident with a rotating element coordinate system constructed
at the current configuration of the beam element. The rotating element coordinates rotate
about the hub axis at the angular speed of the hub. The inertia nodal forces and deformation
nodal forces of the beam element are systematically derived by the virtual work principle,
the d Alembert principle, and consistent second-order linearization of the fully geometrically
nonlinear beam theory [27-29] in the element coordinates. Due to the consideration of the
exact kinematics of Euler beam, some coupling terms of axial and flexural deformations are
retained in the element internal nodal forces. The element equations are constructed first in
the inertia element coordinate system and then transformed to the inertia global coordinate
system using standard procedure.

The infinitesimal-free vibrations of rotating beam are measured from the position of
the corresponding steady-state deformation. The governing equations for linear vibration of
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rotating beam are obtained by the first-order Taylor series expansion of the equation of mo-
tion at the position of steady-state deformation.

Dimensionless numerical examples are studied to demonstrate the accuracy and
efficiency of the proposed method and to investigate the effect of inclination angle and
slenderness ratio on the steady-state deformation and the natural frequency for rotating
inclined Euler beams at different angular speeds.

2. Formulation
2.1. Description of Problem

Consider an inclined uniform Euler beam of length Lt rigidly mounted with an inclination
angle a on the periphery of rigid hub with radius R rotating about its axis fixed in space at a
constant angular speed Q as shown in Figure 1. The axis of the rotating hub is perpendicular
to one of the principal directions of the cross section of the beam. The deformation
displacements of the beam are defined in an inertia rectangular Cartesian coordinate system
which is coincident with a rotating rectangular Cartesian coordinate system rigidly tied to
the hub.

Here only axial and lagwise bending vibrations are considered. It is well known
that the beam sustains a steady-state deformations (time-independent deformation displace-
ments) induced by constant rotation [26]. In this study, large displacement and rotation with
small strain are considered in the steady-state deformation. The vibration (time-dependent
deformation displacements) of the beam is measured from the position of the steady-state
deformation, and only infinitesimal-free vibration is considered. Note that the axial and
lagwise vibrations, which are coupled due to the Coriolis effects and the lateral steady-state
deformation, cannot be analyzed independently. Here the engineering strain and stress are
used for the measure of the strain and stress.

2.2. Basic Assumptions

The following assumptions are made in derivation of the beam element behavior.
(1
(2
(€]
(4

The beam is prismatic and slender, and the Euler-Bernoulli hypothesis is valid.
The unit extension of the centroid axis of the beam element is uniform.

The deformation displacements and rotations of the beam element are small.

— — ~— ~—

The strains of the beam element are small.

In conjunction with the corotational formulation and rotating frame method, the third
assumption can always be satisfied if the element size is properly chosen. Thus, only the terms
up to the second order of deformation parameters and their spatial derivatives are retained
in element position vector, strain, and deformation nodal forces by consistent second-order
linearization in this study.

2.3. Coordinate Systems

In order to describe the system, we define three sets of right-handed rectangular Cartesian
coordinate systems.
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Figure 2: Coordinate systems.

(1) A rotating global set of coordinates, X; (i = 1,2,3) (see Figures 1 and 2); the
coordinates rotate about the hub axis at a constant angular speed € as shown in
Figure 1. The origin of this coordinate system is chosen to be the intersection of
the centroid axes of the hub and the undeformed beam. The X; axis is chosen to
coincide with the centroid axis of the undeformed beam, and the X, and X3 axes
are chosen to be the principal directions of the cross section of the beam at the
undeformed state. The direction of the axis of the rotating hub is parallel to the
X3 axis. The nodal coordinates, nodal deformation displacements, absolute nodal
velocity, absolute nodal acceleration, and equations of motion of the system are
defined in terms of an inertia global coordinate system which is coincident with the
rotating global coordinate system.

(2) Element coordinates; x; (i = 1,2,3) (see Figure 2), a set of element coordinates is
associated with each element, which is constructed at the current configuration of
the beam element. The coordinates rotate about the hub axis at a constant angular
speed Q. The origin of this coordinate system is located at the element node 1, the
centroid of the end section. The x; axis is chosen to pass through two end nodes
of the element; the directions of the x, and x3 axes are chosen to coincide with
the principal direction of the cross section in the undeformed state. Because only
the displacements in X;X, plane are considered, the directions of x3 axis and X3
axis are coincident. The position vector, deformations, absolute velocity, absolute
acceleration, internal nodal forces, stiffness matrices, and inertia matrices of the
elements are defined in terms of an inertia element coordinate system which is
coincident with the rotating element coordinate system.

In this study, the direction of the axis of the rotating hub is parallel to the X3 axis and
only the displacements in X; X plane are considered. Thus, the angular velocity of the hub
referred to the global coordinates may be given by

Qc=1{0 0 Q}, (2.1)

where the symbol { } denotes a column matrix, which is used through the paper.
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Figure 3: Kinematics of Euler beam.

2.4. Kinematics of Beam Element

Let Q (Figure 3) be an arbitrary point in the beam element and P the point corresponding
to Q on the centroid axis. The position vector of point Q in the undeformed configurations
referred to the current element coordinate system may be expressed as

r = {x,y,z}. (2.2)

Using the approximation cos0 = 1 - (1/2)6?,sin6 = 6, and (1 + &.) = 1, retaining all
terms up to the second order, the position vector of point Q in the deformed configurations
referred to the current element coordinate system may be expressed as

r={1‘1/7’2,7’3}= {xp_yer y<1_%92>+vrz}l (23)
. ov(x,t) 0v(x,t) Ox v
~ = = _—= = / 4
0= sin6 0s ox 0s l1+e O 24)
0s
o =

where x,(x,t) and v(x,t) are the x; and x, coordinates of point P, respectively, in the
deformed configuration, ¢ is time, 8 = 6(x, t) is the angle counterclockwise measured from x;
axis to the tangent of the centroid axis of the deformed beam, ¢, is the unit extension of the
centroid axis, and s is the arc length of the deformed centroid axis measured from node 1 to
point P. In this paper, ( )’ denotes ( )x=0()/0x.
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Here, the lateral deflection of the centroid axis, v(x, t), is assumed to be the Hermitian
polynomials of x and may be expressed by

v(x,t) = {N1,Na, N3, Nu} {v1,0], 02,05} = Niup, (2.6)

where v; = v;(t) and v; = v;.(t) (j = 1,2) are nodal values of v and v ,, respectively, at nodes j.
Note that, due to the definition of the element coordinates, the values of v; (j = 1,2) are zero.
However, their variations and time derivatives are not zero. N; (i = 1-4) are shape functions
and are given by

Ni=3(0-27@+d,  Na=£(1-&)a-p,

: . (2.7)
No=7(1+9°2-9, Ni=g(-1+8)1+2),
=-1+%, (2.8)

where L is the length of the undeformed beam element.
Making use of assumptions v, < 1 and . < 1, the relationship between x,(x,t),
v(x,t), and x in (2.3) may be approximated by

X

xp(x,t) =up + I <1 + £ — %v?‘x)dx, (2.9)

0

where u; is the displacement of node 1 in the x; direction. Note that due to the definition of
the element coordinate system, the value of u; is equal to zero. However, the variation and
time derivatives of u; are not zero.

The axial displacements of the centroid axis may be determined from the lateral
deflections and the unit extension of the centroid axis using (2.9).

From (2.9), one may obtain

L
=L+uy—u =x.(L,t)—x.0,t) = f (1 +é&c— %vi) dx (2.10)
0

in which £ is the current chord length of the centroid axis of the beam element and u, is the
displacement of node 2 in the x; direction. Using the assumption of uniform extension of the
centroid axis and (2.10), . in (2.10) maybe expressed by

1 1
£ = Z(Gf’u“ + zGZu;,),
Ga = {_1/1}/
(2.11)
u, = {uy, Uz},

L
Gy = J N, v dx.
0
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Substituting (2.11) into (2.9), one may obtain

1 X
xp(x,t) = Nbug +x + iGiub - —f V2 dx,
2L 2],
2.12)
1-¢ 1+¢
SRIEE]

From (2.3) and the definition of engineering strain [32, 33], making use of the
assumption of small strain, and retaining the terms up to the second order of deformation
parameters, the engineering strain in the Euler beam may be approximated by

en =¢e.—yo'. (2.13)

The absolute velocity and acceleration vectors of point Q in the beam element may be
expressed as

v={01,05,03} =V + QXTr+1, (2.14)
a={aj,ay a3} =a,+Qxr+Qx (Qxr) +2Q x i +7, (2.15)
Vo = Q XTIy, (2.16)

a = {ao1, ao2, Aoz} = Q x (Q X 140), (2.17)
Q=AL.Qc, (2.18)

Ao = AGETA0G, (2.19)

YA0G = Y40 + Tooc = {Rcosa + X,,—Rsina +Y,,0}, (2.20)

where ris the position vector of point Q given in (2.3) referred to the current moving element
coordinate system, the symbol (') denotes time derivative, Q is the vector of angular velocity
referred to the current inertia element coordinates, ¢ is the angular velocity of the hub
referred to the global coordinates given in (2.1), Agg is the transformation matrix between
the current global coordinates and the current element coordinates, v, and a, are the absolute
velocity and absolute acceleration of point o, the origin of the current element coordinates, X,
and Y, are coordinates of point o referred to the current global coordinates, R is the radius of
the hub, and a is inclination angle of the rotating beam.  x (£ x r)and 2 x i are centripetal
acceleration and Coriolis acceleration, respectively.  and i are the velocity and acceleration
of point Q relative to the current moving element coordinates. From (2.3), (2.11) and (2.12), &
and ¥ may be expressed as

i={i, i) = {X - Y., 0 - y0,0,0},

P = {1,773} = {xp ~ YOy, V- Yo, - yv,xv,x,O},
x X

5 to. to. .

Xp =Nyu, + szub - jo V0 1dx,
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. 1 to. .
€= (GLug + Gyiny),
.. o X o Nt . x .. .
¥p = Nyiig + Z(Gbub +Guwp) — | (0¥ + 00 )dx,
0

1 .
b= (Glii, + Gl + Glily).

(2.21)

Note that the current element coordinates constructed at the current configuration of
the beam element rotate about the hub axis at the angular velocity of the hub. Thus, the
centripetal acceleration and Coriolis acceleration corresponding to the inertia forces of the
rotating beam are unique. For nonrotating beam, = 0 and t and ¥ are the absolute velocity
and acceleration referred to the current element coordinate.

2.5. Element Nodal Force Vector

Letu;,6v;,and 60} (j = 1,2) denote the virtual displacements in the x; and x; directions of the
current inertia element coordinates, and virtual rotations applied at the element nodes j. The
element nodal force corresponding to virtual nodal displacements 6u;, 6v;, and 60} (j=1,2)
are f;;, the forces in the x; (i = 1, 2) directions, and m; moments about the x3 axis, at element
local nodes j.

The element nodal force vector is obtained from the d' Alembert principle and the
virtual work principle in the current inertia element coordinates. The virtual work principle
requires that

suLf, + ouf, = fv (611011 + pS1a)dV, (2.22)

ou, = {6uy, 6uy}, (2.23)

buy, = {601, 607,605,605}, (2.24)

f, =5 + £ = {fu, fio}, (2.25)

£, =) + £, = { for, m1, fo, M2}, (2.26)

€ = {28}, (227)

& = {f2,mp, fB,ms}, (2.28)

£,={fl fa}, (2.29)

flIJ’ = {levm{rlezrmé }r (2.30)

where f; (i = a,b) are the generalized force vectors corresponding to éu, and Ouy,

respectively, f and f| (i = a,b) are element deformation nodal force vector and inertia
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nodal force vector corresponding to f;, respectively, V is the volume of the undeformed beam
element, and 6ey; is the variation of €17 in (2.13) corresponding to 6u, and 6up. o1 is the
engineering stress. For linear elastic material, 011 = E€11, where E is Young’s modulus. p is
the density, Or is the variation of r in (2.3) (referred to the current inertia element coordinate
system) corresponding to 6u, and 6uy, and a is the absolute acceleration in (2.15).

If the element size is chosen to be sufficiently small, the values of the deformation
parameters of the deformed element defined in the current element coordinate system may
always be much smaller than unity. Thus the higher-order terms of deformation parameters
in the element internal nodal forces may be neglected. However, in order to include the
nonlinear coupling among the bending and stretching deformations, the terms up to the
second order of deformation parameters and their spatial derivatives are retained in element
deformation nodal forces by consistent second-order linearization of 6¢11011 in (2.22). Here,
only infinitesimal-free vibration is considered, thus only the terms up to the first order of time
derivatives of deformation parameters and their spatial derivatives are retained in element
inertia nodal forces by consistent first-order linearization of 6ra in (2.22).

From (2.6) and (2.11), the variation of £1; in (2.13) may be expressed as

Oenn = Oec — YOUxx,

e = 7 (6}Ga + 5u}Gy), (231)

60xx = 6uyN}.
From (2.3), (2.6), and (2.12), 6r the variation of rin (2.3) may be expressed as

&r = {611,615, 613} = {6x, — y6U 1, 6V —yv,6V,,0},

6xp = 6uULN, + %6u2Gb - J‘ v 60 ,dx, (2.32)
0
6v, = )Ny,

Substituting (2.15)—(2.21) and (2.31)—(2.32) into (2.22), using [ yd A = 0, neglecting the
higher order terms, we may obtain

0 = EAe.G,, (2.33)

) =EI INZv,xxdx +fh j N, v .dx, (2.34)

fl = pA f N N dxii, + Q*pAag f N,dx - Q’pA j N, (Niu, + x)dx - 2QpA f N, odx,

(2.35)

fi =pA J‘ Npodx + pI ’[ N, ¥ cdx
(2.36)
+Q%pAay I Npdx — Q*pA J Nyovdx — Q?pl f N, v'dx +2QpA J NN’ dxu,,.
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where the range of integration for the integral [( )dx in (2.34)—(2.36) is from 0 to L, A is
the cross section area, I is moment of inertia of the cross section, a,; (i = 1,2) are the x;
components of a, in (2.17). The underlined terms in (2.35) and (2.36) are the inertia nodal
force corresponding to the steady-state deformation induced by the constant rotation.

2.6. Element Matrices

The element matrices considered are element tangent stiffness matrix, mass matrix,
centripetal stiffness matrix, and gyroscopic matrix. The element matrices may be obtained
by differentiating the element nodal force vectors in (2.33)—(2.36) with respect to nodal
parameters and time derivatives of nodal parameters.

Using the direct stiffness method, the element tangent stiffness matrix may be
assembled by the following submatrices:

of EA
kau = L = _GaGt/
ouy, L a
of>
kg =kl =22 =0, 2.37
b ba aub ( )
kbb — 0 lI;J — EIJ‘NHNNtdx +fDJ‘Nr N'tdx.
aub b" b 12 b" b

The element mass matrix may be assembled by the following submatrices:

of!
mg, = aﬁi = pAfNuN;dx,
ofl
mab = mtba = aub = 0, (238)
of] ‘ 2 | N N
myp = 3y pA | NpNydx + pI(1-¢.)” | N,N,dx.

The element centripetal stiffness matrix may be assembled by the following sub-
matrices:

of! ;
kaaa = 555 — B - -pA | N,N.dx,
t of
kQab =k 0, (239)

Qab QZ aub

of] .
- = —pA f NN dax.

kopy = ———
Qb = oan
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Table 1: Dimensionless variables.

Variables Dimensionless variables
_ = X, =
Coordinates x, Xo, Y, X= i, Xo==2,Y,=Y,/Lr,
Lr Lr
t |E
Time t T= Ir F
Length of beam L L=L/Ly
element
Area moment of I I= Lz
inertia AL7
Radius of hub R R=R/Lr
Displacements u, v u=u/Lr, v=v/Ly
spatial derivatives d o D 7 = a_'z -, 7 = _ﬁ =Ly, ¥ = a_? -, 7 = 52_5 = Lo
of displacement T 0x X ox x”
i 2 — 20—
Time derivativesof . .. . . ;=(')_u=, P ;=5_u=L P ;=a_v=, P ;=b_v=L Py
displacement i, 0,0 W= M\ ME e T S G SO U 52 THTEY
fi . .
Force and moment fij, m; fl-]- = ﬁ, (i=12j7=1,2)
Angular velocity Q k=QLr\/p/E
Natural frequency w K =wLt+\/p/E

The element gyroscopic matrix may be assembled by the following submatrices:

oot
T Qou,
epmc = Mo _ ooa (NN (2.40)
ab = Cba_Qal-lb_ P aNpax, :
of,
Cbb_Qal:lb_

2.7. Equations of Motion

For convenience, the dimensionless variables defined in Table 1 are used here.
The dimensionless nonlinear equations of motion for a rotating beam with constant
angular velocity may be expressed by

¢ =F° (é) +F! <k2, Q 5(2) =0, (2.41)
Q=0Q, +9Q(7) (2.42)

where k and 7 are dimensionless time and dimensionless angular speed of rotating beam,
respectively, defined in Table 1. ¢, FP, and F' are the dimensionless unbalanced force
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vector, the dimensionless deformation nodal force vector, and the dimensionless inertia
nodal force vector of the structural system, respectively. F/ and FP are assembled from the
dimensionless element nodal force vectors, which are calculated using (2.33)—(2.36) and the
dimensionless variables defined in Table 1 first in the current element coordinates and then
transformed from element coordinate system to global coordinate system before assemblage

using standard procedure. Q is the dimensionless nodal displacement vector of the rotating

beam, Q = 0Q/0r and Q = 0°Q/d7? are the dimensionless nodal velocity vector and
the dimensionless nodal acceleration vector of the rotating beam, respectively, Q; is the
dimensionless steady-state nodal displacement vector induced by constant dimensionless
rotation speed k, and Q(7) is the time-dependent dimensionless nodal displacements vector
caused by the free vibration of the rotating beam. Here only infinitesimal vibration is
considered.

2.8. Governing Equations for Steady-state Deformation

For the steady-state deformations, Q(7) = 0. Thus (2.41) can be reduced to nonlinear
dimensionless steady-state equilibrium equations and expressed by

¢ =F(Q,) + K’FL(Q,) =0, (2.43)

where FP(Q;) and k?FL(Qj) are the dimensionless deformation nodal force vector and the
dimensionless inertia nodal force (the centrifugal force) vector of the structural system
corresponding to the dimensionless steady-state nodal displacement vector Qy, respectively.
k?FL(Qy) is corresponding to the underlined terms of (2.35) and (2.36). Note that k*F.(Q;) is
deformation dependent. Thus k*FL(Qs) should be updated at each new configuration.

Here, an incremental-iterative method based on the Newton-Raphson method is
employed for the solution of nonlinear dimensionless steady-state equilibrium equations at
different dimensionless rotation speed k. In this paper, a weighted Euclidean norm of the
unbalanced force is employed for the equilibrium iterations and is given by

lell

[P 2.44
kZ\/N”F£” S €rol ( )

where N is number of the equations of the system and e, is a prescribed value of error
tolerance. Unless otherwise stated, the error tolerance ey is set to 1072 in this study.

2.9. Governing Equations for Free Vibration Measured from the Position of
Steady-State Deformation

Substituting (2.42) into (2.41) and setting the first-order Taylor series expansion of the
unbalanced force vector ¢ around Qg to zero, one may obtain the dimensionless governing
equations for linear free vibration of the rotating beam measured from the position of the
steady-state deformation as follows.

MO + CQ + <K + kZKQ>Q =0, (2.45)
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where M, C, K, and K, are dimensionless mass matrix, gyroscopic matrix, tangent stiffness
matrix, and centripetal stiffness matrix of the rotating beam, respectively. M, C, K, and K¢, are
assembled from the dimensionless element mass matrix, gyroscopic matrix, tangent stiffness
matrix, and centripetal stiffness matrix, which are calculated using (2.37)-(2.40) and the
dimensionless variables defined in Table 1 first in the current element coordinates and then
transformed from element coordinate system to global coordinate system before assemblage
using standard procedure.
We will seek a solution of (2.45) in the form

Q = (Qg +iQy)e™T, (2.46)

where i = +/~1, K and 7 are dimensionless natural frequency of rotating beam and di-
mensionless time defined in Table 1, and Qg and Q; are real part and imaginary part of the
vibration mode.

Substituting (2.46) into (2.45), one may obtain a set of homogeneous equations ex-
pressed by

HZ =0, (2.47)
K + k’Kq - K2M kKC!
H=H(K, k) = ) (2.48)
kKC K + k?Kq - K2M
Z ={Qg,Qs}, (2.49)

where H(K, k) denotes H being a function of K and k. Note that H is a symmetric matrix.

Equation (2.47) is a quadratic eigenvalue problem. For a nontrivial Z, the determinant
of matrix H in (2.47) must be equal to zero. The values of K which make the determinant
vanishes are called eigenvalues of matrix H. The bisection method is used here to find
the eigenvalues. Note that when k = 0, (2.47) will degenerate to a generalized eigenvalue
problem.

3. Numerical Examples

To verify the accuracy of the present method and to investigate the steady deformation
and the natural frequencies of rotating-inclined beams with different inclination angle a,
dimensionless radius of the hub R, and slenderness ratios n = Ly\/A/I at different di-
mensionless angular velocities k, several dimensionless numerical examples are studied here.

For simplicity, only the uniform beam with rectangular cross section is considered
here. The maximum steady-state axial strain emayx of rotating beam is the sum of the maximum
steady-state membrane strain '™ and bending strain ¢, which occur at the root of the
rotating beam. In practice, rotating structures are designed to operate in the elastic range
of the materials. Thus, it is considered that emax < &, (say 0.01) in this study. At the same
dimensionless angular speed k, emax are different for rotating beams with different #, a, and
R. Thus, the allowable k are different for rotating beams with different 7, a, and R in this
study.
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Table 2: Comparison of results for different cases (17 = 20, R = 1.5).

a Kk G5y oy WA K K K@ K K@ Ko Ko@)
EA10 0 0 0 174788 1.05957 1.57241 2.82495 4.75610 5.19546 8.00214
EA50 0 0 0 174787 1.05953 1.57086 2.82431 4.71413 5.19120 7.86206
0 EA100 0 0 0 174787 1.05953 1.57081 2.82431 4.71283 5.19119 7.85600
[24] 0 0 0 17479 1.05953 1.57080 2.82431 4.71239 5.19119 —
0° [34] 0 0 0 17580 1.10172 1.57080 3.08486 4.71239 6.04510 —
EA10  6.93309 0 0 198616 1.08756 1.57615 2.85333 4.75729 5.22384 8.02928
EA50 7.15492 0 0 198514 1.08726 1.57616 2.85243 4.71534 5.21931 7.86274
0.06 EA100 7.18210 0 0 198511 1.08726 1.57457 2.85242 4.71403 5.21930 7.85669
[24] 7.20000 0 0 19862 1.08760 1.57455 2.85276 4.71360 5.21962 —

LAS  7.20000
EA10 1.72680 1.93098 5.47630 .181049 1.06661 1.57335 2.83206 4.75639 5.20256 8.00889
EA50 1.78195 1.93546 5.47699 .181021 1.06651 1.57180 2.83136 4.71443 5.19823 7.86221

o
o

0w EA100 1.78870 1.93560 5.47701 .181020 1.06651 1.57175 2.83136 4.71312 5.19822 7.85616
LAS 1.79486 2.03794 5.88301 — — — — — — —
EA10 .173298 1.29008 3.72294 .175410 1.06028 1.57252 2.82567 4.75613 5.19619 8.00281

30° 001 EA50 178615 1.29224 3.72299 .175407 1.06024 1.57097 2.82503 4.71416 5.19191 7.86207
EA100 .179264 1.29231 3.72300 .175407 1.06024 1.57092 2.82503 4.71285 5.19190 7.85601
LAS 179904 1.29904 3.75000 — — — — — — —
EA10 .0500345 2.59364 7.49504 .174836 1.05978 1.57253 2.82520 4.75612 5.19573 8.00229

90° 0.01 EA50 .0500384 2.59784 7.49506 .174835 1.05974 1.57098 2.82456 4.71415 5.19145 7.86205

EA100 .0500216 2.59797 7.49507 .174835 1.05974 1.57093 2.82456 4.71284 5.19144 7.85599
LAS .0500000 2.59807 7.50000 — — — — — — —

To investigate the effect of the lateral deflection on the steady-state deformation and
the natural frequency of rotating Euler beams, here cases with and without considering the
lateral deflection are considered. The corresponding elements are referred to as EA element
and EB element, respectively. For EA element, all terms in (2.33)—(2.40) are considered; for EB
element, all terms in (2.33)—(2.40) are considered except the underlined terms in (2.36), which
are the lateral inertia nodal force corresponding to the steady-state deformation induced by
the constant rotation. In this section, vy, /Lt denotes the dimensionless lateral tip deflection
of the steady-state deformation; K; denotes the ith dimensionless natural frequency of the
rotating beam and denote that the corresponding vibration mode is lateral vibration at k = 0;
in all tables, the entries with “(a)” denotes that the corresponding vibration mode is axial
vibration at k = 0.

The example first considered is the rotating-inclined beams with dimensionless radius
of the hub R = 1.5, inclination angle a = 0°, 5°, 30°, 90°, and slenderness ratios 77 = 20, 1000.
The present results are shown in Tables 2 and 3 together with some results available in the
literature. In Tables 2 and 3, EAn, n = 10, 50, 100, denote that n equal EA elements are used for
discretization, and LAS denotes the linear analytical solution of the steady-state deformation.
It can be seen that for higher natural frequencies of lateral vibration, the discrepancy between
the present results and the analytical solutions given in [34], in which the rotary inertia is
not considered, increases with decrease of the slenderness ratio. It seems that the effect of
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Table 3: Comparison of results for different cases (17 = 1000, R = 1.5).

max max

« K G0y o) U aohy qoty aohy K K Koo K
EA10 0 0 0 351601 .220349 .617105 .121008 .200340 .300117 .421052
EA50 0 0 0 351601 .220341 .616949 .120893 .199838 .298509 .416903
0 EA100 0 0 0 351601 .220341 .616948 .120893 .199837 .298506 .416896

[24] 0 0 0 352 2203 .6169 12089 .19984 .29851 —

0° [34] 0 0 0 3516 22034 .616972 120902 — — —
EA10 6.93309 0 0 9.00457 2.50186 4.13423 .591446 .784725 .992927 1.21760
EA50 7.15492 0 0 8.96239 2.47424 4.06068 .580524 .771309 .976120 1.19365
0.06 EA100 7.18210 0 0 8.96152 2.47312 4.05756 .580088 .770833 .975634 1.19316

[24] 7.20000 0 0 8.952 2.4708 4.0536 .57955 .77017 .97486 —

LAS  7.20000 0 0 — — — — — — —

EA10 1.73113 3.88303 .0835171 4.54714 1.27448 2.17658 .323098 .443024 .577262 .726698
EA50 1.78396 6.00526 .0838194 4.53348 1.26220 2.15028 .319777 .439167 .572464 719965

0w EA100 1.78936 6.20203 .0838218 4.53320 1.26179 2.14942 .319678 .439068 .572368 .719873
LAS 1.79486 101.897 14.70753  — — — — — — —
EA10 117174 8.73588 .429688 1.29068 .405580 .836390 .143462 .221484 319586 .439110

30° 0.008 EA50 .114341 9.36150 .429979 1.28848 .404156 .836065 .143631 .221433 .318254 434653
EA100 .113410 9.38784 .429986 1.28840 .404108 .836056 .143643 .221458 .318289 .434691
LAS 115138 41.5692 6.00000 — — — — — — —
EA10 00632587 8.11012 .747138 .561367 .232168 .566051 .113317 .190889 .289637 409722

90° 0.003 EA50 00388224 8.15298 .747250 .560585 .232182 .566299 .113204 .190326 .287895 .405359

EA100 .00351740 8.15396 .747254 .560558 .232181 .566306 .113202 .190322 .287886 .405342
LAS .00450000 11.6913 1.68750 — — — — — — —

the rotary inertia on the higher natural frequencies of the Euler beam is not negligible when
the slenderness ratio is small. It can be seen from Tables 2 and 3 that the differences between
the results of EA50 and EA 100 are negligible for all cases studied. Thus, in the rest of the
section, all numerical results are obtained using 50 equal elements. For « = 0, and k #0, the
steady-state deformation is axial deformation only as expected. The analytical solution of the
maximum steady-state membrane strain e™ = k2 (Rcosa +1/2) given in [15] and the linear
solution are identical. It can be seen that at the same dimensionless angular speed k, €2 is
independent of the slenderness ratio 7. Thus, for a = 0, the allowable k is limited by ¢2"** and
is the same for the rotating beam with different slenderness ratio 7. Very good agreement is
observed between the natural frequencies obtained by the present study and those given in
[24], which are obtained using the power series method. It can be seen from Table 3 that for
slenderness ratio 7 = 1000, with increase of the inclination angle a, the values of ¢'** and
vyp/ Lt increase significantly and the value of the allowable dimensionless angular speed k
decreases significantly. Comparing ;' and vy, / L of EA with the results of linear analytical
solution, respectively, it is found that the difference between the results of EA and LAS is
insignificant for 7 = 20 but is remarked for 7 = 1000. These may be explained as follows. The
centrifugal stiffening effect is significant for slender beam, and the lateral component of the
centrifugal force in the rotating inclined beam decreases with the increase of the steady-state
lateral deflection.



Mathematical Problems in Engineering 17

Table 4: Dimensionless frequencies for rotating beam with different inclination angle (7 = 70, R = 1, k =
5/70).

a gznax(lo—?:) 62‘“ Uﬁp /LT K] K2
EA EB EA EA EA EB [21] EA EB [21]
0° 7.61582  7.61579 0 0 .105565 .105427 105 411754 410792 418

10° 7.53275 7.53893  .021843  .119537 105513  .104869  .105 411356  .410001  .417
20° 7.28556 7.31066  .043509 236923  .105359 103195 < .103 410160 407642 414
30° 6.88032 6.93792  .064820  .350059  .105101 100399 100 408162 403758 410
40° 6.32700 6.43205 .085602 456935  .104737  .0964721  .096 405357  .398421 405
50° 5.63927 5.80840 .105681  .555686  .104264 .0913941 .091 401742 391733 .398
60° 4.83425 5.08596  .124890 .644628 103679  .0851262 .085 .397314  .383830  .390
70° 3.93214 4.28663  .143064 722301 .102976  .0775919  .077  .392079  .374876  .381
80° 295575 3.43472 160043 .787503  .102151 .0686418  .068  .386048  .365073  .371
90° 193010 255611 .175673  .839324  .101193  .0579597  .057  .379245 .354659  .361

Table 5: Dimensionless frequencies for rotating beam with different inclination angle (77 = 39, R = 1).

a k™ (10 M (107°) vyp/Lr (107°) Ky (107 Kp K; K, Ks  Kg(a)
0 0 0 0 900168 559057 1.54325 1.57086 (a) 2.96396 4.71413
010  1.48999 0 0 909817 560283 1.54452 1.57097 (a) 2.96528 4.71415
020 5.96060 0 0 938126 563945 1.54830 1.57130 (a) 2.96926 4.71421
0° .030 13.4138 0 0 983359 569996 1.55455 1.57190 (a) 2.97586 4.71432
040 23.8528 0 0 1.04313 578359 1.56302 1.57296 (a) 2.98509 4.71449
050 37.2822 0 0 1.11488 588935 1.57113 1.57704 (a) 2.99691 4.71472
060 53.7078 0 0 1.19620 .601604 1.57358 (1) 1.58936 3.01129 4.71502
005 371545  .073310 412011 902582 559363 1.54357 1.57089 (a) 2.96429 4.71414

010 1.48623 .289977 1.62160 909786 560280 1.54449 1.57100 (a) 2.96528 4.71415
015  3.34417 .640707 3.55360 921661 561805 1.54595 1.57126 (a) 2.96693 4.71416
020  5.94559 1.11150 6.09535 938019 563932 1.54784 1.57177 (a) 2.96925 4.71416
025 9.29075 1.68547 9.11211 958617 566654 1.55003 1.57268 (a) 2.97222 4.71415
.030  13.3800 2.34473 12.4630 983170 .569962 1.55233 1.57416 (a) 2.97585 4.71413
002 .054292 .067510 .379956 2900509 559102 1.54330 1.57087 (a) 2.96401 4.71413
004 217174 269614 1.51631 901534 559237 1.54341 1.57090 (a) 2.96415 4.71413
30°.006 .488657 .605041 3.39858 903243 559461 1.54355 1.57103 (a) 2.96440 4.71412
.008 .868763 1.07170 6.00953 905635 559775 1.54362 1.57132 (a) 2.96474 4.71409
010 1.35752 1.66673 9.32547 908710 .560177 1.54351 1.57191 (a) 2.96518 4.71403
002 .019999 135091 .760426 2900208 559076 1.54327 1.57087 (a) 2.96398 4.71413
.004 .080009 .540362 3.04080 900333 559132 1.54324 1.57098 (a) 2.96404 4.71412
90°.006 .180072 1.21579 6.83830 900554 559224 1.54295 1.57140 (a) 2.96415 4.71407
.008 .320253 2.16132 12.1478 900889 .559349 1.54211 1.57246 (a) 2.96431 4.71394
.010 .500631 3.37678 18.9613 901363 559506 1.54041 1.57447 (a) 2.96451 4.71365

50

To investigate the effect of the lateral deflection on the steady-state deformation and
the natural frequency of rotating-inclined beams, the cases with and without considering
the lateral deflection are studied for 7 = 70, R = 1, and k = 5/70. The present results are
shown in Table 4. The results transcribed from the figure given in [21], in which the steady-
state lateral deflection and the rotary inertia are not considered, are also shown in Table 4 for
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Table 6: Dimensionless frequencies for rotating beam with different inclination angle (17 = 50, R = 1).

74 k gznax (10_4) gznax (10_3) Uﬁp/LT (10_3) K7 (10_1) K> K3 Ky (61) K5 K6

0 0 0 0 702550 437859 1.21530 1.57086 2.35176 3.82646
.010  1.48998 0 0 714917 439441 1.21696 1.57096 2.35349 3.82822
.020  5.96058 0 0 750712 444154 1.22192 1.57125 2.35868 3.83349
0° .030 13.4137 0 0 806600 451898 1.23014 1.57173 2.36731 3.84227
.040  23.8527 0 0 878442 462516 1.24155 1.57241 2.37932 3.85452
.050  37.2820 0 0 962316 475813 1.25605 1.57328 2.39467 3.87021
.060  53.7076 0 0 1.05500 .491563 1.27352 1.57435 2.41329 3.88930
.005  .371544 .093761 .674835 705653 438254 1.21571 1.57089 2.35219 3.82689
.010  1.48623 .368279 2.62905 714878 439437 1.21695 1.57096 2.35349 3.82821
50 015  3.34418 .804892 5.66932 729982 441402 1.21900 1.57111 2.35565 3.83040
.020  5.94560 1.37717 9.52433 750592 444136 1.22184 1.57134 2.35869 3.83347
025 9.29074 2.05594 13.8991 776240 447626 1.22547 1.57166 2.36258 3.83740
.030  13.3799 2.81357 18.5209 806412 451854 1.22987 1.57208 2.36734 3.84221
002 .054292 .086522 .624206 702990 437917 1.21536 1.57087 2.35182 3.82652
.004 217177 .345191 2.48734 704308 438091 1.21554 1.57088 2.35202 3.82671
30°.006  .488671 773349 5.56121 706507 438381 1.21583 1.57093 2.35234 3.82704
.008  .868803 1.36665 9.79986 709585 438785 1.21621 1.57103 2.35280 3.82749
.010  1.35760 2.11921 15.1409 713543 439301 1.21666 1.57120 2.35340 3.82806
002 .019999 173193 1.24980 702604 437883 1.21532 1.57087 2.35179 3.82648
.004  .080020 .692767 4.99671 702772 437956 1.21539 1.57090 2.35188 3.82657
90°.006  .180129 1.55866 11.2327 703078 438073 1.21545 1.57103 2.35204 3.82670
.008  .320419 2.77065 19.9428 703561 438232 1.21544 1.57135 2.35228 3.82688
.010  .500997 4.32814 31.1020 704273 438426 1.21527 1.57200 2.35265 3.82709

comparison. It can be seen from Table 4 that except a = 0, the values of &' are much larger

than the yield strain for most engineering materials at k = 5/70. Thus the results in Table 4
are only displayed for the purpose of comparisons between the results of EB and those given
in [21]. There is a very good agreement between the natural frequencies obtained using the
EB element and those given in [21]. Although the comparisons are beyond the yield point of
most engineering materials, results of EA and EB show that the differences between the cases
with and without considering the lateral deflection become apparent for the rotating-inclined
beam with large inclination angle « at high-dimensionless angular speed. It can be seen from
Table 4 that the difference between the natural frequencies of EA and EB is not significant for
small a, but the first natural frequency of EB is much smaller than that of EA for large a. The
natural frequencies of EA slightly decrease with increase of a, but those of EB significantly
decrease with increase of a for & > 50°. These may be partially attributed to the fact that
the decrease of the centrifugal stiffening effect of the rotating-inclined beam caused by the
increase of the inclination angle is alleviated by the increase of lateral deflection induced by
the lateral centrifugal force.

To investigate the effect of angular speed on the steady-state deformation and
natural frequency of rotating beams with different slenderness ratios and inclination angles,
the following cases are considered: slenderness ratio 7 = 39,50,100, 1000, inclination angle

a = 0°,5°,30°90°, and dimensionless radius of the rotating hub R = 1. Tables 5, 6, 7, and 8
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Table 7: Dimensionless frequencies for rotating beam with different inclination angle (17 = 100, R = 1).

a ke (107 g™ (107°) wvgp/Lr (107) Kp (1071) K Ks Ky(@@) Ks Ks

0 .000000 0 0 351520 .219989 .614602 1.20047 1.57086 1.97619
.010  1.48998 0 0 375696 223163 .617963 1.20402 1.57096 1.97983
.020  5.96058 0 0 439855 232418 .627926 1.21458 1.57124 1.99072
0° .030 13.4137 0 0 528670 .247050 .644140 1.23194 1.57172 2.00872
.040  23.8527 0 0 630838 .266138 .666082 1.25578 1.57240 2.03361
.050  37.2820 0 0 740095 288755 .693127 1.28568 1.57327 2.06512
.060  53.7076 0 0 853195  .314093 .724614 1.32116 1.57433 2.10288
.005  .371547 .184139 2.62891 357708 220785 .615441 1.20136 1.57089 1.97710
.010  1.48624 .688585 9.52242 375636 223154 .617940 1.20397 1.57105 1.97985
50 .015  3.34416 1.40679 18.5127 403666 227045 .622062 1.20826 1.57140 1.98446
.020  5.94540 2.23838 27.6550 439745 232381 .627773 1.21419 1.57195 1.99093
025 9.29010 3.11970 35.8627 481914  .239066 .635040 1.22176 1.57261 1.99922
.030 13.3786 4.01960 42.7784 528564 246988 .643816 1.23096 1.57329 2.00929
.002  .054294 172596 2.48732 352403 220106 .614725 1.20060 1.57087 1.97632
.004 217197 .683326 9.79956 355052 220456 .615081 1.20096 1.57097 1.97675
30°.006  .488756 1.51188 21.5060 359467 221033 .615636 1.20145 1.57136 1.97753
.008  .869003 2.62713 36.9471 365637 221832 .616344 1.20197 1.57227 1.97873
.010  1.35790 3.99065 55.3127 373528 222846 .617163 1.20241 1.57395 1.98043
.002  .020005 .346383 4.99669 351634 .220038 .614651 1.20052 1.57089 1.97625
.004 .080103 1.38532 19.9425 352038 220178 .614748 1.20053 1.57127 1.97654
90°.006  .180478 3.11497 44.6708 352915 220392 .614736 1.20014 1.57288 1.97728
.008  .321226 5.52831 78.7975 354553 220651 .614373 1.19878 1.57704 1.97891
.010  .502064 8.60794 121.586 357326 220924 .613368 1.19581 1.58523 1.98201

tabulate the maximum steady-state membrane strain and bending strain, dimensionless
lateral tip deflection, and first six dimensionless natural frequencies for different 7. It can
be seen from Tables 5-8 that the values of vy, /Lr increase significantly with the increase
of the dimensionless angular velocities k and slenderness ratio 7. However, the values of
vyp/ Lt are very small for 77 = 39 and 50. Because the stiffening effect of the centrifugal force
is significant for slender beam, as expected, it can be seen from Table 8 that the lower natural
frequencies of lateral vibration increase remarked with increase of the dimensionless angular
speed for n = 1000.

Figures 4-6 show the deformed configurations, axial displacements, and lateral
displacements for the steady-state deformation of rotating beams with n = 100, « = 90°,
and 7 =1000, a = 5°,90° at different dimensionless angular speeds. In Figures 4-6, the X; and
X» coordinates of the deformed configurations of rotating beam are present at the same scale,
and X| denotes the global Lagrangian coordinate of the beam axis. Very large displacement
and rotation are observed in Figure 6.

Figures 7-10 show the first six vibration modes for rotating beams with = 39, a = 0°,5°,
and 7 = 1000, a = 5°,90° at different dimensionless angular speeds. In Figures 7-10, U and V
denote the X; and X, components of the vibration mode, respectively. The definitions of U
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Table 8: Dimensionless frequencies for rotating beam with different inclination angle (77 = 1000, R = 1).

a k&M (107) & (107) vgp/Lr (1072) K; (102) K, (107) K3 (1071) Ky Ks Ks

0 .000000 0 0 351601 220341  .616949 .120893 .199838 .298509

.010  14.8998 0 0 1.32581 432338  .886010 .151855 .233376 .333736
.020  59.6058 0 0 2.52842 766172  1.38410 .216189 .309541 .419056

0° .030 134.137 0 0 3.73648 1.11402 1.92511 .289167 .400408 .525942
.040  238.527 0 0 494495 146597  2.47903 .364653 .496007 .640880
.050  372.820 0 0 6.15267 1.81983  3.03912 .441165 .593428 .759068

.060 537.076 0 0 7.35907  2.17482  3.60301 .518237 .691707 .878747
.005  3.71469 765147 5.97092 741097 289190  .695401 .129392 .208701 .307598
.010  14.8600 1.67568 7.33938 1.32573 432307  .885745 .151766 .233190 .333432
015  33.4431 2.57966 7.79173 1.92549 595911 1.12500 .182037 .268266 .371976

> .020 59.4713 3.46977 8.02050 2.52834 766160  1.38402 .216153 .309441 .418839
.025 929513 4.34189 8.15957 3.13220 939307  1.65211 .252155 .353965 .470793
.030  133.889 5.19316 8.25360 3.73641 1.11401 1.92507 .289150 .400356 .525817
.002  .542410 1.31449 16.2578 436039 231506  .625674 .121676 .200527 .299138

30° .004  2.15709 3.45499 31.0603 628044  .264068  .655502 .124160 .202509 .300711

.006  4.84203 5.61881 37.4726 851755 312455 712896 .129772 207598 .305211
.008  8.61268 7.78502 40.6536 1.08530 .369468 .788930 .138176 .215896 .313013
.0005 .012524 216407 3.11010 352489 220632  .617142 120911 .199852 .298522
.0010 .050204 .860794 12.1582 357434 221288  .616084 .120749 .199640 .298279
.0015  .112068 1.89528 25.7173 371925 221920 .610342 .119952 .198654 .297181
90°.0020 .194123 3.21653 40.7205 400095 222722 599365 .118425 .196788 .295121
.0025 290775 4.68879 54.0272 440751 224723 587411 .116669 .194633 .292734
.0030  .398355 6.21301 64.2905 489485 228876  .578807 .115177 .192740 .290595
.0035 .516056 7.74385 71.7152 542488 235452 575106 .114128 .191302 .288900

and V are given by
vz, . . U,
u= <LI%e + U%) sign(sin ¢,), sin ¢y, = m, - < ¢y <,
rRTYI
— 2 2 1z . . . _ \%; B
V= <VR + VI> sign(sin ¢ ), sin ¢, = WI a < ¢y <, (3.1)

1 forx>0,
-1 forx<0,

sign(x) = {

where Ug and Vg, and Uy and V; are the X; and X, components of Qr and Qy, real part
and imaginary part of the vibration mode given in (2.47), respectively. ¢,, and ¢, are phase
angles. Mode j (j = 1-6) denotes the vibration mode dominated by the vibration mode
corresponding to the jth natural frequency of the nonrotating beam. It can be seen from
Figures 7-10, and Tables 5 and 8 that all vibration modes shown in Figures 7-10 are lateral
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Figure 4: The steady-state deformation of rotating beam, (a) deformed configuration, (b) axial
displacement, and (c) lateral displacement (17 = 100, R = 1, &« = 90°).

vibration at k = 0, except the fourth and the sixth vibration modes of 7 = 39. Mode 3 is
the third bending vibration mode, and mode 4 is the first axial vibration mode for n = 39.
Figure 11 shows the third and the fourth dimensionless natural frequencies for the rotating
beam with 77 = 39 at different dimensionless angular velocities. Because the third and the
fourth natural frequencies are relatively close, frequency veering phenomenon [24] induced
by the Coriolis force and the centrifugal force is observed in Figure 11. It can be seen from
Figures 7 and 8 that the coupling of the axial and lateral vibration modes is very significant.
Due to the effect of Coriolis force and the lateral steady-state deformation, the axial and lateral
vibrations of rotating beam should be coupled. However, from the numerical results of this
study, it is found that the coupling is negligible for rotating beam with small slenderness
ratio if the corresponding natural frequencies of the axial and lateral vibrations are not close.
Due to the steady-state lateral deformation, it can be seen from Figures 9 and 10 that when
k #0, all vibration modes consist of the X; and X, components. The difference between the
vibration modes of rotating beam at different k is very significant for 7 = 1000.
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Figure 5: The steady-state deformation of rotating beam, (a) deformed configuration, (b) axial
displacement, and (c) lateral displacement (17 = 1000, R = 1, = 5°).

4. Conclusions

In this paper, a corotational finite element formulation combined with the rotating frame
method and numerical procedure are proposed to derive the equations of motion for a
rotating-inclined Euler beam at constant angular velocity. The element deformation and
inertia nodal forces are systematically derived by the virtual work principle, the d Alembert
principle, and consistent second-order linearization of the fully geometrically nonlinear
beam theory in the current element coordinates. The equations of motion of the system are
defined in terms of an inertia global coordinate system which is coincident with a rotating
global coordinate system rigidly tied to the rotating hub, while the total strains in the beam
element are measured in an inertia element coordinate system which is coincident with a
rotating element coordinate system constructed at the current configuration of the beam
element. The rotating element coordinates rotate about the hub axis at the angular speed
of the hub. The steady-state deformation and the natural frequency of infinitesimal-free
vibration measured from the position of the corresponding steady-state deformation are
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Figure 6: The steady-state deformation of rotating beam, (a) deformed configuration, (b) axial
displacement, (c) lateral displacement (7 = 1000, R = 1, a = 90°).

investigated for rotating-inclined Euler beams with different inclination angles, slenderness
ratios, and angular speeds of the hub.

The results of dimensionless numerical examples demonstrate the accuracy and efficie-
ncy of the proposed method. The present results show that the geometrical nonlinearities that
arise due to steady-state lateral and axial deformations should be considered for the natural
frequencies of the inclined-rotating beams. Due to the effect of the centrifugal stiffening,
the lower dimensionless natural frequencies of lateral vibration increase remarked with
increase of the dimensionless angular speed for slender beam. The decrease of the cen-trifugal
stiffening effect of the rotating inclined beam caused by the increase of the inclination angle
is alleviated by the increase of lateral deflection induced by the lateral centrifugal force. Due
to effect of the Coriolis force and centrifugal stiffening, frequency veering phenomenon is
observed when inclination angle a = 0°, and two natural frequencies corresponding to axial
vibration and lateral vibration are close.

Finally, it may be emphasized that, although the proposed method is only applied
to the two dimensional rotating cantilever beams with inclination angle here, the present
method can be easily extended to three dimensional rotating beams with precone and setting
angle.
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