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In this paper, we consider the supplier selection problem, which deals with comparing two one-sided
processes and selecting a better one that has a higher capability. We first review two existing approximation
approaches, and an exact approach proposed which we refer to as the division method. We then develop
a new exact approach called the subtraction method. We compare the two exact methods on the selection
power. The results show that the proposed subtraction method is indeed more powerful than the division
method. A two-phase selecting procedure is then developed based on the subtraction method for practical
applications. Some computational results are tabulated for practitioners’ convenience.

Keywords: supplier selection; process capability index; non-conformities

1. Introduction

Process capability indices, which are unitless numerical values, quantifying process performance,
have been widely used in the manufacturing and service industries, to measure process reproduc-
tion capability of meeting the preset product quality requirement. Several basic process capability
indices, including Cp, CPU, CPL, Cpk , Cpm, and Cpmk , have been developed for this purpose [1–3].
Those indices essentially compare the predefined product specifications with the actual produc-
tion or service performance of the investigated quality characteristics. Those indices are defined
as follows:

Cp = USL − LSL

6σ
, CPU = USL − μ

3σ
, CPL = μ − LSL

3σ
,

Cpk = min

{
USL − μ

3σ
,

μ − LSL

3σ

}
, Cpm = USL − LSL
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√

σ 2 + (μ − T )2
,

Cpmk = min
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1314 W.L. Pearn et al.

where USL is the upper specification limit, LSL is the lower specification limit, μ is the process
mean, σ is the process standard deviation (overall process variation), and T is the target value.
While the indices Cp, Cpk , Cpm, and Cpmk are appropriate for statistically controlled normal
processes with two-sided specification limits, the indices CPU and CPL are designed, specifically,
for processes with one-sided specification limit. We note that if a process is under control, process
mean μ and standard deviation σ are stable, but this does not imply that process quality is
satisfactory, or meeting customers requirement, particularly, for processes with a very low fraction
of defecting (where classical control charts cannot be used for controlling such stringent quality
requirements).

Those indices have been implemented in many industry manufacturing applications, includ-
ing the multi-process performance analysis chart for factory defective control [4–6], process
performance analysis for multiple quality characteristics [7,8], better supplier selection [9–15],
capability measures for multiple manufacturing streams [16,17], variables acceptance sampling
plans for lot sentencing [18–20], tool replacement optimization [21–23] and many others. Pearn
and Kotz [24] presented a thorough review on the development of process capability indices in
the past 20 years.

We note that this paper deals with measuring process performance based on production yield
rather than process loss, which is the focus of most current industrial applications. The purpose
of the index CPU is different from that of the index Cpm, and the focus of our paper is primarily
on production yield (not process loss). The problem cast in decision theoretic terms based on loss
functions has been considered by Chan et al. [2] who introduced the index Cpm.

1.1. Fraction of non-conformities

For normally distributed processes with one-sided specification limit USL or LSL, process yield,
Pr(X < USL), or Pr(X > LSL) can be established as the following, where Z is the standard
normal distribution,

Pr(X < USL) = Pr

(
X − μ

σ
<

USL − μ

σ

)
= Pr (Z < 3CPU) = � (3CPU) ,

Pr(X > LSL) = Pr

(
μ − X

σ
<

μ − LSL

σ

)
= Pr (Z > −3CPU) = � (3CPL) .

For convenience of presentation, we define CI = CPU or CPL. Therefore, the corresponding
non-conformities in parts per million (NCPPM) for a well-controlled normally distributed pro-
cess can be calculated exactly, as NCPPM = 106 × [1 − �(CI )]. For example, if CI = 1.00, the
corresponding NCPPM is 1350; if CI = 1.25, the corresponding NCPPM is 88; if CI = 1.33,
the corresponding NCPPM is 32; if CI = 1.45, the corresponding NCPPM is 6.8; if CI = 1.50,
the corresponding NCPPM is 3.4; if CI = 1.67, the corresponding NCPPM is 0.27, and for
CI = 2.00, the corresponding NCPPM is 0.001.

1.2. Discussion

Many real-world processes are not normally distributed and this departure from normality could
potentially affect the accuracy of the capability measure. In the normal case, the bootstrap resam-
pling method can be used, which handles more general distributions. The bootstrap resampling
method does not rely on any distributional assumptions about the underlying population, which
has been proved useful in many existing research for those cases.
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2. Supplier selection problem and existing selection methods

The supplier selection problem is a practical problem frequently occurred in the industry, partic-
ularly, in the top-down supply chain and logistic management. Some literatures have provided
following criteria for selecting the best manufacturing supplier from several available candidates
(Table 1).

From the above references, one may find that quality is a very important criterion. Recently,
many studies have widely used the process capability indices as tools for comparing suppliers’
capability. Examples include, Tseng andWu [9], Chou [10], Huang and Lee [11], Hubele et al. [29],
Chen and Chen [30] and Pearn et al. [15]. The results presented in this paper are useful for
practitioners, which have received some research attentions.

For the supplier selection problem with measuring process performance based on CPU, Chou
[10] considered a likelihood ratio approximation approach (which is a division-oriented approach).
A decision rule for testing the hypothesis H0: CPU1 ≥ CPU2 vs. H1: CPU1 < CPU2 is proposed. The
rule rejects H0 if ĈPU1 < ĈPU2 and satisfying the condition A < exp{−χ2

1 (1 − 2α)/2}, where

A =
{

2

/[√
aĈ2

PU1 + 2
√

aĈ2
PU2 + 2 − aĈPU1ĈPU2

]}n

,

a = 9n/(n − 1) and χ2
1 (1 − 2α) is the (1 − 2α)th quantile of a chi-square distribution with one

degree of freedom. The test statistic A is the log-likelihood ratio statistic, which is used to approx-
imate an exponential function of the chi-square distribution with one degree of freedom using
the large-sample theory. We note that this approximation method requires equal sample sizes,
n1 = n2 = n, in all applications.

Hubele et al. [29] adopted the formulation of Chou [10] using the Wald test investigated in Nairy
and Rao [31], and developed an approximation approach for testing whether k processes are equal
(which is also a division-oriented approach). The hypothesis is H0: CPU1 = CPU2 = · · · = CPUk

vs. H1: CPUi = CPUj , i �= j for at least one pair of (i, j), where i, j ∈ {1, 2, . . ., k}. The approach
does not require equal sample sizes.

2.1. The division method

Pearn et al. [15] developed an exact approach, which we refer to as the division method, to handle
the supplier selection problem. The hypothesis testing considered is H0: CPU2/CPU1 ≤ 1 vs. H1:
CPU2/CPU1 > 1. The division method does not require equal sample sizes for the two processes.
The probability density function of the test statistic R = ĈPU2/ĈPU1 is as follows:

fR(r) = A

∫ ∞

−∞

∣∣∣∣ 1

u

∣∣∣∣I ( r

u
> 0

) (r/u)n1−2(
1 + (n1 − 1)/(n2 − 1)(r/u)2

)((n1+n2)/2)−1

× exp

[
9

2

(n1CPU1 + n2CPU2u)2

n1 + n2 u2

] {
2

9(n1 + n2u2)
exp

[
−9

2

(n1CPU1 + n2CPU2u)2

n1 + n2u2

]

+ n1CPU1 + n2CPU2u

n1 + n2u2

√
2π

9(n1 + n2u2)

[
1 − 2 �

(
− 3(n1CPU1 + n2CPU2u)√

n1 + n2u2

)]}
du,

where

A = 2

(
n1 − 1

n2 − 1

)(n1−1)/2
�(((n1 + n2)/2) − 1)

�((n1 − 1)/2)�((n2 − 1)/2)

9
√

n1n2

2π
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[
−9

2
(n1 C2

PU1 + n2 C2
PU2)

]
,
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1316 W.L. Pearn et al.

Table 1. Some criteria for selecting the best supplier.

Author(s) Criteria

Dickson [25] (1) Quality; (2) delivery; (3) performance history
Krause et al. [26] (1) Quality; (2) reliability; (3) flexibility; (4) cost; (5) originality
Stevenson [27] (1) Lead time; (2) reputation; (3) flexibility; (4) delivery; (5) quality; (6) location; (7) price
Tracey and Tan [28] (1) Quality; (2) price; (3) product performance; (4) delivery reliability

�(·) is the cumulative function of the standard normal distribution, I is the indicator function,
and −∞ < r < ∞.

Pearn et al. [15] demonstrated that the division method is indeed more accurate and powerful
than Chou’s approximation method (also a division method). A question remains unanswered is
that whether the test used for selection is the uniformly most powerful test, which provides the
maximal fair protection to the new competing supplier CPU2. Consequently, the new development
in this paper would answer that question.

3. The proposed subtraction method

In this section, we propose a new exact approach called the subtraction method. We consider the
hypothesis testing for comparing the two CPU values, H0: CPU2 ≤ CPU1 vs. H1: CPU2 > CPU1 (or
equivalently, H0: CPU2 − CPU1 ≤ 0 vs. H1: CPU2 − CPU1 > 0). For test statistic

W = ĈPU2 − ĈPU1 = USL − X̄1

3S1
− USL − X̄2

3S2
,

where X̄1 and X̄2 are sample mean, and S1 and S2 are sample standard deviation, we may obtain
the probability density function as

fW(w) =
∫ ∞

−∞
fY1(y1)fY2(w + y1) dy1

= A ×
∫ ∞

−∞
g(w, y1) dy1, −∞ < w < ∞,

where

A = 2√
2π/9n1�((n1 − 1)/2)(2/(n1 − 1))(n1−1)/2

× 2√
2π/9n2�((n2 − 1)/2)(2/(n2 − 1))(n2−1)/2

,

and

g(w, y1) =
∫ ∞

0
exp

[
−9n1(v1y1 − CPU1)

2

2

]
v

n1−1
1 e−((n1−1)/2)v2

1 dv1

×
∫ ∞

0
exp

[
−9n2 (v2(w + y1) − CPU2)

2

2

]
v

n2−1
2 e−((n2−1)/2)v2

2 dv2.

Figure 1 plots the probability density function of W for CPU1 = 1.0, 1.5, CPU2 = 1.0, 1.5, and
n1 = n2 = 30, 50, 100, 150, 200 (from the bottom to top in plots). From Figure 1, we can see
that (1) the larger the value of CPU2 − CPU1, the larger the variance of W = ĈPU2 − ĈPU1, (2) the
distribution of W is unimodal and is rather symmetric to CPU2 − CPU1 even for small sample sizes.
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Journal of Statistical Computation and Simulation 1317

Figure 1. Probability density function plots of W for sample sizes n1 = n2 = 30, 50, 100, 150, 200 (from bottom to
top in plots).

4. Selection procedure for the subtraction method

4.1. Phase I: selection determination

Assume that the minimum requirement of CPU values for all candidate processes is C, and the
existing supplier, supplier I, has achieved the requirement, i.e. CPU1 ≥ C. If a new supplier,
supplier II, wants to compete for the orders by claiming that its capability is better than the
existing supplier I, then the new supplier must furnish convincing information justifying the
claim with a prescribed level of confidence. To test whether the new supplier, supplier II, has a
better capability than the existing supplier I, we consider the hypothesis testing: H0: CPU2 ≤ CPU1

vs. H1: CPU2 > CPU1, which is equivalent to

H0 : CPU2 − CPU1 ≤ 0

H1 : CPU2 − CPU1 > 0.
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1318 W.L. Pearn et al.

Based on the probability density function of W = ĈPU2 − ĈPU1 and a given level of Type I error
α, the chance of incorrectly judging CPU2 ≤ CPU1 as CPU2 > CPU1, the decision rule is to reject
H0 if the test statistic W = CPU2 − CPU1 ≥ c0, where c0 is the critical value that satisfies

Pr {W ≥ c0|H0 : CPU2 ≤ CPU1, n1, n2, and CPU1 ≥ C} ≤ α.

Since the larger the CPU2 − CPU1 value, the larger the critical value; we calculate the critical value
c0 with the conditions CPU2 = CPU1 = C, i.e.

Pr {W ≥ c0|CPU2 = CPU1 = C, n1, n2} = α.

Note that our supplier selection procedure can be applied to cases with unequal sample sizes,
n1 �= n2. It is also noted that by replacing CPU by CPL, the procedure can be used to test the
hypothesis: H0: CPL2 ≤ CPL1 vs. H1: CPL2 > CPL1. Table 2 displays the critical values for CPU2 =
CPU1 = 1.0(0.1)2.0, n1 = n2 = n = 30(10)200 and α = 0.05.

4.2. Phase II: selection determination with designated outperformance

In Phase I of the supplier selection procedure, the supplier selection decisions would be based
solely on the hypothesis testing comparing the two CPU values without investigating further the
designated outperformance of the difference between the two suppliers. In practice, the customer
would consider choosing the new supplier only if the new supplier’s capability is significantly
better than the existing supplier’s by a designated outperformance h > 0, due to the high cost of
the supplier replacement. Our exact approach, in this case, can be used to test the corresponding
hypothesis:

H0 : CPU2 ≤ CPU1 + h

H1 : CPU2 > CPU1 + h,

Table 2. Critical values for rejecting CPU2 ≤ CPU1 with n1 = n2 = n = 30(10)200 and α = 0.05.

CPU1 = CPU2 = C

n 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

30 0.3512 0.3833 0.4124 0.4421 0.4725 0.5036 0.5355 0.5683 0.5978 0.6280 0.6591
40 0.2991 0.3232 0.3512 0.3761 0.4014 0.4272 0.4534 0.4802 0.5075 0.5355 0.5600
50 0.2651 0.2854 0.3094 0.3336 0.3547 0.3797 0.4014 0.4234 0.4496 0.4725 0.4958
60 0.2384 0.2584 0.2786 0.3025 0.3232 0.3441 0.3654 0.3833 0.4050 0.4272 0.4496
70 0.2219 0.2384 0.2584 0.2753 0.2956 0.3163 0.3336 0.3547 0.3725 0.3941 0.4124
80 0.2055 0.2219 0.2384 0.2584 0.2753 0.2922 0.3128 0.3301 0.3477 0.3654 0.3833
90 0.1924 0.2087 0.2252 0.2417 0.2584 0.2753 0.2922 0.3094 0.3267 0.3441 0.3618

100 0.1826 0.1989 0.2120 0.2285 0.2451 0.2618 0.2753 0.2922 0.3094 0.3267 0.3406
110 0.1729 0.1891 0.2022 0.2186 0.2318 0.2484 0.2618 0.2786 0.2956 0.3094 0.3267
120 0.1664 0.1794 0.1924 0.2087 0.2219 0.2384 0.2517 0.2651 0.2820 0.2956 0.3094
130 0.1600 0.1729 0.1859 0.1989 0.2120 0.2285 0.2417 0.2551 0.2685 0.2854 0.2991
140 0.1536 0.1664 0.1794 0.1924 0.2055 0.2186 0.2318 0.2451 0.2584 0.2719 0.2854
150 0.1471 0.1600 0.1729 0.8459 0.1989 0.2120 0.2252 0.2384 0.2517 0.2618 0.2753
160 0.1440 0.1536 0.1664 0.1794 0.1924 0.2055 0.2153 0.2285 0.2417 0.2551 0.2685
170 0.1375 0.1503 0.1600 0.1729 0.1859 0.1989 0.2087 0.2219 0.2351 0.2484 0.2584
180 0.1343 0.1439 0.1568 0.1697 0.1794 0.1924 0.2022 0.2153 0.2285 0.2384 0.2517
190 0.1311 0.1407 0.1536 0.1632 0.1761 0.1859 0.1989 0.2087 0.2219 0.2318 0.2451
200 0.1279 0.1375 0.1471 0.1600 0.1697 0.1826 0.1924 0.2055 0.2153 0.2285 0.2384
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Table 3. Critical values for rejecting CPU2 ≤ CPU1 + h for various values of h with α = 0.05.

(CPU1, CPU2)

n (1.25, 1.35) (1.25, 1.45) (1.25, 1.55) (1.25, 1.65) (1.25, 1.75)

30 0.5477 0.6727 0.7934 0.9186 1.0417
40 0.4802 0.5978 0.7146 0.8352 0.9540
50 0.4346 0.5518 0.6682 0.7833 0.9014
60 0.4050 0.5155 0.6324 0.7435 0.8423
70 0.3797 0.4918 0.6063 0.7194 0.8299
80 0.3582 0.4725 0.5808 0.6958 0.8089
90 0.3441 0.4534 0.5642 0.6773 0.7883

100 0.3301 0.4421 0.5518 0.6591 0.7732
110 0.3197 0.4272 0.5396 0.6457 0.7582
120 0.3094 0.4197 0.5275 0.6368 0.7435
130 0.3025 0.4087 0.5195 0.6280 0.7338
140 0.2922 0.4014 0.5075 0.6193 0.7241
150 0.2854 0.3941 0.5036 0.6106 0.7194
160 0.2786 0.3869 0.4958 0.6020 0.7099
170 0.2753 0.3833 0.4879 0.5978 0.7052
180 0.2685 0.3761 0.4841 0.5893 0.6958
190 0.2651 0.3725 0.4763 0.5851 0.6911
200 0.2618 0.3654 0.4725 0.5808 0.6865

(1.45, 1.55) (1.45, 1.65) (1.45, 1.75) (1.45, 1.85) (1.45, 1.95)

30 0.6106 0.7338 0.8568 0.9782 1.1025
40 0.5315 0.6502 0.7682 0.8900 1.0031
50 0.4802 0.5978 0.7146 0.8299 0.9480
60 0.4459 0.5600 0.6727 0.7883 0.9014
70 0.4161 0.5315 0.6412 0.7533 0.8678
80 0.3941 0.5075 0.6193 0.7289 0.8406
90 0.3761 0.4879 0.5978 0.7099 0.8194

100 0.3618 0.4725 0.5808 0.6911 0.8037
110 0.3512 0.4572 0.5683 0.6773 0.7883
120 0.3371 0.4459 0.5560 0.6636 0.7732
130 0.3301 0.4383 0.5436 0.6546 0.7632
140 0.3197 0.4272 0.5355 0.6457 0.7533
150 0.3128 0.4197 0.5275 0.6368 0.7435
160 0.3059 0.4124 0.5195 0.6280 0.7338
170 0.2991 0.4050 0.5115 0.6193 0.7289
180 0.2922 0.4014 0.5075 0.6150 0.7194
190 0.2888 0.3941 0.4997 0.6063 0.7146
200 0.2820 0.3905 0.4958 0.6020 0.7099

(1.60, 1.70) (1.60, 1.80) (1.60, 1.90) (1.60, 2.00) (1.60, 2.10)

30 0.6591 0.7782 0.9014 1.0222 1.1451
40 0.5725 0.6911 0.8089 0.9244 1.0483
50 0.5155 0.6324 0.7484 0.8623 0.9782
60 0.4763 0.5893 0.7052 0.8194 0.9361
70 0.4459 0.5600 0.6727 0.7833 0.8957
80 0.4234 0.5355 0.6457 0.7582 0.8678
90 0.4050 0.5155 0.6237 0.7338 0.8460

100 0.3869 0.4958 0.6063 0.7194 0.8299
110 0.3725 0.4802 0.5935 0.7005 0.8089
120 0.3618 0.4686 0.5767 0.6865 0.7986
130 0.3512 0.4572 0.5683 0.6773 0.7833
140 0.3406 0.4496 0.5559 0.6636 0.7732
150 0.3301 0.4383 0.5477 0.6546 0.7632
160 0.3232 0.4309 0.5396 0.6457 0.7533
170 0.3163 0.4234 0.5315 0.6368 0.7484
180 0.3094 0.4161 0.5235 0.6324 0.7386
190 0.3059 0.4124 0.5195 0.6237 0.7338
200 0.2991 0.4050 0.5115 0.6193 0.7241
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1320 W.L. Pearn et al.

The decision rule is similar to that in Phase I. We would reject H0 and accept that CPU2 >

CPU1 + h, if W = ĈPU2 − ĈPU1 is larger than or equal to the critical value c0, where c0 satisfies

Pr{W ≥ c0|H0 : CPU2 ≤ CPU1 + h, n1, n2, and CPU1 ≥ C} ≤ α.

For all combinations of (CPU1, CPU2) under H0, the maximal critical value occurs at CPU1 = C

and CPU2 = C + h, and the larger the α, the smaller the critical value. Thus, we calculate the

Figure 2. Power curves for CPU1 = 1.0, 1.5, and 2.0, with sample sizes n = 30, 50, 100, 150, 200.
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critical value c0 with the probability

Pr {W � c0|CPU1 = C, CPU2 = C + h, n1, n2} = α.

If the test rejects the null hypothesis H0, then there is sufficient information to conclude
that supplier II is significantly better than supplier I by a designated outperformance h, and
the replacement of supplier I by supplier II would be suggested. Table 3 shows the critical
values for some minimum quality requirements C of CPU suggested by Montgomery [32], with
the designated outperformance h = 0.1(0.1)0.5, the difference between the two suppliers and
n1 = n2 = n = 30(10)200 with α = 0.05.

4.3. Power analysis

In Phases I and II, the supplier selection procedure is developed for given α risk, the probability
of incorrectly judging H0 as H1, which does not take into account the β risk (Type II error), the
probability of incorrectly judging H1 as H0, which is comparatively unfavourable to H1 or the new
supplier. This is due to the additional cost of replacing the existing supplier with the new one. Once
the sample sizes and the α risk are defined, the power of test, 1 − β, can be calculated. Figure 2
plots the power of the test for CPU1 = 1.0, 1.5, 2.0 vs. various values of CPU2, n1 = n2 = n = 30,
50, 100, 150, 200, and α = 0.05. It can be seen that the larger the sample size, the larger the power
of test, and consequently, the smaller the β risk.

Pr{W ≥ c0|H0 : CPU2 ≤ CPU1, n1, n2, and CPU1 ≥ C} ≤ α, and

Pr{W ≥ c0|H1 : CPU2 > CPU1, n1, n2, and CPU1 ≥ C} ≥ 1 − β.

To reduce the β risk and at the same time maintain the α risk at the required level, one could
increase the sample sizes. By calculating the power for a specific value of CPU2, we may obtain
the minimal sample size required for designated power and α risk. The required sample size can
be calculated using recursive search method with the following two probability equations.

5. Comparison between subtraction and division methods

Pearn et al. [15] developed an exact method for the supplier selection problem using test statistic
R = ĈPU2/ĈPU1. Under the same significant level (Type I error), hypothesis tests are compared and
evaluated through their power function, the probability of rejecting the null hypothesis correctly.
Figures 3–18 display the power curves of the subtraction method (shown in — lines) and the
division method (shown in - - - lines) for CPU1 = 1.00, 1.33, 1.67,2.00 vs. CPU2 with sample sizes
n1 = n2 = 30, 50, 100, 150, respectively.

From those figures, it can be seen that the test using W = ĈPU2 − ĈPU1 is significantly more
powerful than the one based on R = ĈPU2/ĈPU1 as the power curves of the subtraction method
are apparently higher than the power curves of the division method uniformly over all cases.
Unfortunately, this result cannot be proved theoretically due to the complexity of their probability
density functions.

In Table 4, we summarize the computational results in comparing the subtraction and the
division methods for the sample sizes required to differentiate CPU1 and CPU2. In Table 4, Type
I error is set to α = 0.05, the designated test power 1 − β is set to 0.90, 0.95, 0.975, 0.99,
CPU1 = 1.00, 1.25, 1.45, 1.60, and the designated outperformance of difference CPU2 − CPU1 =
0.15(0.05)1.00. For example, if the minimal capability requirement CPU is 1.25, the designated α

and β risks are 0.05 (i.e. power of the test = 0.95), and the expected designated outperformance
of difference CPU2 − CPU1 is 0.3, and then the required sample sizes for both suppliers is 233.
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1322 W.L. Pearn et al.

Figure 3. Power curves of the two methods for CPU1 = 1.00 vs. CPU2 with n1 = n2 = 30.

Figure 4. Power curves of the two methods for CPU1 = 1.00 vs. CPU2 with n1 = n2 = 50.

Figure 5. Power curves of the two methods for CPU1 = 1.00 vs. CPU2 with n1 = n2 = 100.
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Figure 6. Power curves of the two methods for CPU1 = 1.00 vs. CPU2 with n1 = n2 = 150.

Figure 7. Power curves of the two methods for CPU1 = 1.33 vs. CPU2 with n1 = n2 = 30.

Figure 8. Power curves of the two methods for CPU1 = 1.33 vs. CPU2 with n1 = n2 = 50.
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1324 W.L. Pearn et al.

Figure 9. Power curves of the two methods for CPU1 = 1.33 vs. CPU2 with n1 = n2 = 100.

Figure 10. Power curves of the two methods for CPU1 = 1.33 vs. CPU2 with n1 = n2 = 150.

Figure 11. Power curves of the two methods for CPU1 = 1.67 vs. CPU2 with n1 = n2 = 30.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

8:
11

 2
4 

A
pr

il 
20

14
 



Journal of Statistical Computation and Simulation 1325

Figure 12. Power curves of the two methods for CPU1 = 1.67 vs. CPU2 with n1 = n2 = 50.

Figure 13. Power curves of the two methods for CPU1 = 1.67 vs. CPU2 with n1 = n2 = 100.

Figure 14. Power curves of the two methods for CPU1 = 1.67 vs. CPU2 with n1 = n2 = 150.
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1326 W.L. Pearn et al.

Figure 15. Power curves of the two methods for CPU1 = 2.00 vs. CPU2 with n1 = n2 = 30.

Figure 16. Power curves of the two methods for CPU1 = 2.00 vs. CPU2 with n1 = n2 = 50.

Figure 17. Power curves of the two methods for CPU1 = 2.00 vs. CPU2 with n1 = n2 = 100.
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Figure 18. Power curves of the two methods for CPU1 = 2.00 vs. CPU2 with n1 = n2 = 150.

Table 4. Sample size required for the subtraction (S) and the division (D) methods to differentiate CPU1 and CPU2 with
power 1 − β = 0.90, 0.95, 0.975, 0.99.

Power Power

CPU1 CPU2 0.90 0.95 0.975 0.99 CPU1 CPU2 0.90 0.95 0.975 0.99

1.00 1.15 S 466 597 727 888 1.25 1.40 S 672 854 1043 1268
D 535 675 810 980 D 763 965 1157 1403

1.20 S 272 347 426 517 1.45 S 401 510 614 737
D 314 396 474 574 D 445 561 673 816

1.25 S 183 230 278 340 1.50 S 260 330 397 487
D 210 264 316 383 D 295 372 447 540

1.30 S 130 164 245 245 1.55 S 184 233 287 350
D 152 191 229 277 D 212 267 320 388

1.35 S 98 123 183 183 1.60 S 138 176 214 262
D 116 146 175 211 D 161 203 243 295

1.40 S 77 99 117 144 1.65 S 109 138 169 206
D 93 116 139 168 D 128 161 192 233

1.45 S 62 79 95 117 1.70 S 88 112 136 165
D 76 96 114 138 D 104 131 157 190

1.50 S 52 66 79 98 1.75 S 72 93 112 137
D 64 81 96 116 D 87 110 131 159

1.55 S 44 56 68 83 1.80 S 62 78 95 116
D 55 69 82 99 D 75 94 112 135

1.60 S 38 49 59 71 1.85 S 53 68 82 99
D 48 60 72 87 D 65 81 97 117

1.65 S 33 42 51 62 1.90 S 46 59 71 86
D 43 53 63 77 D 57 71 85 103

1.70 S 30 37 45 55 1.95 S 41 52 63 76
D 38 48 57 68 D 51 64 76 92

1.75 S 27 34 40 49 2.00 S 36 46 56 68
D 35 43 51 62 D 46 57 68 82

1.80 S 24 30 36 45 2.05 S 33 41 50 61
D 31 39 47 56 D 41 52 62 74

1.85 S 22 28 33 40 2.10 S 30 38 45 55
D 29 36 43 51 D 38 47 56 68

1.90 S 20 25 30 37 2.15 S 27 34 41 50
D 27 33 39 47 D 35 43 52 62

1.95 S 19 23 28 34 2.20 S 25 31 38 46
D 25 31 36 44 D 32 40 48 57

2.00 S 17 22 26 31 2.25 S 23 29 35 43
D 23 29 34 41 D 30 37 44 53

(Continued)
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1328 W.L. Pearn et al.

Table 4. Continued

Power Power

CPU1 CPU2 0.90 0.95 0.975 0.99 CPU1 CPU2 0.90 0.95 0.975 0.99

1.45 1.60 S 869 1099 1335 1639 1.60 1.75 S 1034 1368 1594 1947
D 983 1241 1488 1805 D 1167 1475 1768 2145

1.65 S 519 658 788 945 1.80 S 615 781 933 1123
D 570 719 862 1046 D 674 852 1021 1238

1.70 S 331 422 516 622 1.85 S 394 501 618 740
D 376 474 569 690 D 444 560 672 815

1.75 S 236 302 382 445 1.90 S 282 360 432 528
D 269 339 407 493 D 317 400 479 581

1.80 S 178 227 276 333 1.95 S 212 271 325 394
D 204 257 308 373 D 239 302 362 438

1.85 S 138 178 213 262 2.00 S 165 211 252 308
D 161 203 243 294 D 189 238 285 345

1.90 S 112 142 172 211 2.05 S 132 170 205 250
D 131 165 197 239 D 153 193 231 280

1.95 S 93 118 142 174 2.10 S 109 139 169 205
D 109 137 164 199 D 127 160 192 232

2.00 S 78 100 120 147 2.15 S 92 117 142 174
D 93 117 140 169 D 108 136 163 197

2.05 S 67 85 103 127 2.20 S 79 100 122 148
D 80 101 121 146 D 93 117 140 170

2.10 S 58 74 89 110 2.25 S 68 87 105 128
D 71 88 106 128 D 82 103 123 148

2.15 S 51 65 79 96 2.30 S 60 76 92 113
D 63 78 94 113 D 72 91 109 131

2.20 S 45 58 70 85 2.35 S 53 68 82 100
D 56 70 84 101 D 65 81 97 117

2.25 S 41 52 63 77 2.40 S 48 61 73 90
D 51 63 76 91 D 58 73 87 106

2.30 S 37 47 56 69 2.45 S 43 55 66 81
D 46 58 69 83 D 53 66 79 96

2.35 S 33 43 51 63 2.50 S 39 49 60 73
D 43 53 63 76 D 48 61 72 87

2.40 S 31 39 47 57 2.55 S 36 45 55 67
D 40 49 58 70 D 45 56 67 80

2.45 S 28 36 43 53 2.60 S 33 42 50 62
D 37 45 54 65 D 41 52 62 74

6. A supplier selection example

The couplers and wavelength division multiplexers (WDM) have been widely used in high-speed,
high-volume image data transmission systems to provide sufficient bandwidth and smaller channel
spacing for greater throughput. The example was taken form a company located on the Science-
Based Industrial Park, Hsinchu, Taiwan. This product has the multiple quality characteristics,
including the polarization dependent loss (PDL), and the insertion loss. A detailed description of
this product can be found in Wu and Pearn [8]. In this paper, the main contribution is to propose a
simple and powerful procedure for the supplier selection problem, which outperforms the previous
results. We considered the company importing WDM products requiring a minimal capability on
the PDL characteristic, and adopted the recently published data given in Pearn et al. [15] to
compare the selection power between the proposed subtraction method and the division method
presented by Pearn et al. [15]. The minimal requirement of the PDL characteristic is CPU1 = 1.25.
Kolmogorov–Smirnov normality tests for data of both suppliers are performed and confirmed to
be normally distributed for both supplies. The test results in p-value are all greater than 0.15.
Histograms of the data are shown in Figure 19. To determine if supplier II provides a better
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Figure 19. Histograms of the two PDL data [15].

process capability of the WDM products than supplier I, we perform the hypothesis testing:
H0: CPU2 ≤ CPU1 vs. H1: CPU2 > CPU1. For the PDL data, the sample means, sample standard
deviations, and the sample estimators for both suppliers are obtained as

x̄1 = 0.06079, x̄2 = 0.05018.

s1 = 0.00495, s2 = 0.00486.

ĈPU1 = 1.2936, ĈPU2 = 2.04527.

We calculated W = ĈPU2 − ĈPU1 = 0.75167 for the proposed subtraction method, and R =
ĈPU2/ĈPU1 = 1.58107 for the division method. To compute the critical value, we used the ‘Visual
C++’ computer program developed by Pearn et al. [15] to handle the complicated computations.
The program reads the input parameters CPU1, CPU2, the corresponding sample sizes n1, n2, and α,
the risk for wrongly rejecting CPU2 ≤ CPU1 while actually CPU2 ≤ CPU1 is true, and outputs with
the critical value. We run the C++ program with n1 = 105, n2 = 100, CPU2 = CPU1 = 1.25 (the
minimal capability requirement of CPU) and α = 0.05 to obtain the critical value as 0.2211 for
the proposed subtraction method, and 1.1924 for the division method. Since the testing statistic
W = 0.75167 > 0.2211, and R = 1.58107 > 1.1924, we therefore conclude that the supplier II
is superior than supplier I with 95% confidence level (using either one of the two methods).

6.1. Selection determination with designated outperformance

To investigate the designated outperformance of the capability difference between the two suppli-
ers, we perform the hypothesis testing: H0: CPU2 ≤ CPU1 + h vs. H1: CPU2 > CPU1 + h. We run
the C++ program with n1 = 105, n2 = 100, CPU1 = 1.25 (the minimal capability requirement

Table 5. Critical values and decisions of testing the two WDM suppliers for
CPU1 = 1.250, CPU2 = 1.450, 1.550, 1.650, 1.660, 1.670.

CPU1 1.250 1.250 1.250 1.250 1.250
CPU2 1.450 1.550 1.650 1.660 1.670
h 0.200 0.300 0.400 0.410 0.420
c0 0.4412 0.5508 0.6625 0.6716 0.6830
S Reject Reject Reject Reject Reject
D Reject Reject Reject Reject Accept
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1330 W.L. Pearn et al.

Table 6. Critical values and decisions of testing the two WDM suppliers for CPU1 = 1.250,
CPU2 = 1.680(0.01)1.740.

CPU1 1.250 1.250 1.250 1.250 1.250 1.250 1.250
CPU2 1.680 1.690 1.700 1.710 1.720 1.730 1.740
h 0.430 0.440 0.450 0.460 0.470 0.480 0.490
c0 0.6946 0.7063 0.7182 0.7277 0.7398 0.7496 0.7521
S Reject Reject Reject Reject Reject Reject Accept
D Accept Accept Accept Accept Accept Accept Accept

of CPU), CPU2 = 1.25 + h, h = 0.2(0.1)0.4, 0.41(0.01)0.49 and α = 0.05 to obtain the critical
values for various h. The decisions of the hypotheses are shown in Tables 5 and 6. The results show
that if the division method is used, we can only conclude that supplier II has a manufacturing capa-
bility better than supplier I by a designated outperformance h = 0.41, i.e. CPU2 > CPU1 + 0.41.
If the subtraction method is used, however, we can conclude that supplier II is better than supplier
I by a designated outperformance h = 0.48, i.e. CPU2 > CPU1 + 0.48.

7. Conclusions

For stable normal processes with one-sided specification limits, capability indices CPU and CPL

have been widely used in the manufacturing industry to provide numerical measures on process
performance. In this paper, we considered the supplier selection problem with two one-sided
processes. We presented a new analytical exact approach to solve the problem. The proposed
approach which we referred to as the subtraction method, indeed, is more powerful than the
existing division method used in all existing research.

In practice, often the replacement of suppliers would be made only if the new supplier’s capa-
bility is significantly better than the existing supplier’s by a designated outperformance h > 0 due
to the high cost for the replacement of a new supplier. The proposed exact approach, in this case,
can be used to test the corresponding hypothesis H0: CPU2 ≤ CPU1 + h vs. H1: CPU2 > CPU1 + h.
The investigation results showed that for the WDM example considered. If the existing division
method is applied, supplier II outperforms supplier I by a designated outperformance 0.41. If the
proposed subtraction method is used, however, supplier II outperforms supplier I with designated
outperformance determined as 0.48 rather than 0.41.
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